Essays on
 collective decision-making

Anna Moskalenko
Advisor: Antonio Quesada

Reus, 2019

Outline

- Introduction

"We have an agreement in principle. The question is, do we all have the same principles?"
- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
- Chapter 5: Dictatorship versus manipulability

Outline

- Introduction

"We have an agreement in principle.
The question is, do we all have the same principles?"
- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
- Chapter 5: Dictatorship versus manipulability

Introduction

Typical setting of collective decision-making situation:

A group of individuals

A set of
alternatives/choices

Introduction

Typical setting of collective decision-making situation:

Introduction

Typical setting of collective decision-making situation:

Introduction

Typical setting of collective decision-making situation:

Introduction

Typical setting of collective decision-making situation:

Introduction

Typical setting of collective decision-making situation:

Introduction

Typical setting of collective decision-making situation:

Individuals have conflicting preferences over alternatives

Aggregation rule/voting rule

Different voting rule $=$ different outcome
Collective choice/ social outcome

Introduction

Problematic nature of social choice/ collective decision-making:

1 Individuals' conflicting preferences \rightarrow conflict of interests \rightarrow strategic incentives

2 The choice of an aggregation rule/ voting rule to transform individual preferences or choices into collective preference or choice.

Introduction

Problematic nature of social choice/ collective decision-making:

1 Individuals' conflicting preferences \rightarrow conflict of interests \rightarrow strategic incentives

$$
\text { Chapter } 2 \text { + Chapter } 3
$$

2 The choice for an aggregation rule/ voting rule to transform individual preferences or choices into collective preference or choice

Introduction

Problematic nature of social choice/

collective decision-making:

1 Individuals' conflicting preferences \rightarrow conflict of interests \rightarrow strategic incentives

2 The choice for an aggregation rule/ voting rule to transform individual preferences or choices into collective preference or choice.

Outline

- Introduction

"We have an agreement in principle.
The question is, do we all have the same principles?"
- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
- Chapter 5: Dictatorship versus manipulability

Introduction

- Collective decision-making in a model of the intra-party politics.
- A political party, is composed of two factions: a party elite (leadership) and a dissenting faction (non-leadership).
- Collective decision-making problem: to choose the party's candidate.
- Conflict of interests: each faction wants its own faction's candidate to be the party's candidate.

Background

- This chapter was inspired by a similar problem in HortaláVallve and Mueller, 2015 (HM hereinafter).
- They build a game-theoretical model as a strategic game between the elite faction and the dissenting faction.
- They show how the incorporation of internal democracy (primaries) can resolve the intra-party conflict.
- We build on their model but add some extensions.

HM model

- In HM model, the party elite is the first-mover.
- Elite decides on the institutional setup of the party (strategic topdown calculations).
- Dissenting faction is the last-mover.
- It has only two options: stay or exit the party.
- Two-stage game.
- The elite adopts primaries only under the credible exit threat.

HM model

- In HM model, the party elite is the first-mover.
- Elite decides on the institutional setup of the party (strategic topdown calculations).
- Dissenting faction is the last-mover.
- It has only two options: stay or exit the party.
- Two-stage game.
- The elite adopts primaries only under the credible exit threat.

Our model

- In our model, the dissenting faction is the first-mover.

HM model

- In HM model, the party elite is the first-mover.
- Elite decides on the institutional setup of the party (strategic topdown calculations).
- Dissenting faction is the last-mover.
- It has only two options: stay or exit the party.
- Two-stage game.
- The elite adopts primaries only under the credible exit threat.

Our model

- In our model, the dissenting faction is the first-mover.

Why?

HM model

- In HM model, the party elite is the first-mover.
- Elite decides on the institutional setup of the party (strategic topdown calculations).
- Dissenting faction is the last-mover.
- It has only two options: stay or exit the party.
- Two-stage game.
- The elite adopts primaries only under the credible exit threat.

Our model

- In our model, the dissenting faction is the first-mover.

Why?

- We want to explicitly model the internal dissent.
- We add additional stage to the game, where dissenters can demand primaries (strategic bottom-up calculations).
- It has three options: stay loyal, demand primaries or exit the party.
- Three-stage game.

Our model

- New structure adds additional variable to the analysis: public cost of intra-party conflict, called the cost of party disunity.
- Divided parties lose election. Party unity is important for electoral success.
- We study in addition how the party (dis)unity influences the party's internal democratisation (primaries).

Model: key parameters

- Level of the intra-party conflict
- Electoral bonus (proportionality of electoral system)
- E's relative strength inside the party (whether E is in the majority or minority)
- Dimension of public cost of intra-party conflict = cost of party disunity

Intra-party game

- By default, the party's candidate belongs to E
- D can either agree or voice discontent and demand primaries

Intra-party game

- By default, the party's candidate belongs to E
- D can either agree or voice discontent and demand primaries
- If D chooses loyal \rightarrow game ends, both factions run jointly

Intra-party game

- By default, the party's candidate belongs to E
- D can either agree or voice discontent and demand primaries
- If D chooses loyal \rightarrow game ends, both factions run jointly
- If D chooses voice \rightarrow next stage, where E chooses accept or reject

Intra-party game

- If E accepts \rightarrow primaries, D wins

Intra-party game

Intra-party game

- If D chooses stay \rightarrow public cost of unresolved conflict

Intra-party game

- If D chooses stay \rightarrow public cost of unresolved conflict
- If D exits, the party splits

Results

The solution concept is SPNE.

All our results depend on the relative values of the four key parameters:

- level of the intra-party conflict
- electoral bonus
- relative strength of E
- cost of party disunity

We find two equilibria when the primaries are adopted.

Primaries

- Two types of primaries:
- Primaries with threat

Conditions:

- Credible exit threat from the dissidents (internal pressure)
- High public cost of intra-party conflict, high cost of disunity (external pressure)

Primaries

- Two types of primaries:
- Primaries no threat

Conditions:

- No internal nor external pressure
- Voluntary adoption of primaries by the party elite
- Requires high ideological cohesion between both factions
- Low cost of disunity

Final remarks

- Primaries are adopted in two cases:

1 There is an internal and external pressure to adopt primaries.

- Internal pressure: D's threat to exit the party.
- External pressure: public cost of intra-party conflict.
- As the cost of disunity decreases, the likelihood of this type of primaries increases.

Final remarks

- Primaries are adopted in two cases:

2 E's initiative to adopt primaries when both factions are close ideologically.

New results in comparison with HM model:

- Primaries occur when there is no exit threat from the dissidents.
- Primaries are more likely when the elite and the dissenting faction are more ideologically closer.
- The cost of disunity needs to be sufficiently low.

Final remarks

- Additional factor influencing the adoption of primaries cost of party disunity.
- The cost of party disunity is inversely related to the proportionality of electoral system.

Final remarks

- In highly disproportional (majoritarian) electoral systems, electoral bonus of running jointly is the highest (equivalently, the public cost of intra-party conflict is high)

Party elite is willing to adopt primaries in order to conceal factional divisions from the public.

Final remarks

- In proportional electoral systems, electoral bonus is minimal (equivalently, public cost of intra-party conflict is small)

Party elite is willing to adopt primaries if there is a high ideological cohesion between both factions.

Outline

"We have an agreement in principle.
The question is, do we all have the same principles?"

- Introduction
- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
- Chapter 5: Dictatorship versus manipulability

Motivation

- Voting = strategic game.
- Some individuals may be tempted to manipulate the final outcome.
- Which can lead to a suboptimal decision for the group.
- The goal: to avoid this kind of situations.

Problem

- A group of agents choosing a
 winner among themselves
- Voters = candidates

Problem

- A group of agents choosing a
 winner among themselves
- Voters = candidates
- There exist a deserving winner = desirable outcome

Problem

- A group of agents choosing a winner among themselves
- Voters = candidates
- There exist a deserving winner = desirable outcome
- Each agent is selfish: he always wants to be the winner

Problem

- A group of agents choosing a winner among themselves
- Voters = candidates
- There exist a deserving winner = desirable outcome
- Each agent is selfish: he always
 wants to be the winner
- If an agent is not chosen, he prefers the deserving winner to be chosen

The goal

To design a voting mechanism (a game form)
that always chooses the deserving winner

We apply a mechanism design approach

Background

- This chapter was inspired by the work of Amorós (2011)
- A sequential mechanism where agents take turns to announce an individual to be the winner
- The winner is always the deserving winner
- Needs at least four individuals to work

Background

- This chapter was inspired by the work of Amorós (2011)
- A sequential mechanism where agents take turns to announce an individual to be the winner
- The winner is always the deserving winner
- Needs at least four individuals to work
- We propose an alternative mechanism
- A sequential mechanism where agents take turns to veto an individual not to be the winner
- The winner is always the deserving winner
- Needs at least three individuals to work

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n
- Take turns to veto an agent from 1 till n-1

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n
- Take turns to veto an agent from 1 till n-1

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n
- Take turns to veto an agent from 1 till n-1
- Each one can only be vetoed once

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n
- Take turns to veto an agent from 1 till n-1
- Each one can only be vetoed once

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n
- Take turns to veto an agent from 1
 till n-1
- Each one can only be vetoed once
- After n-1 has made his veto, there only remains one not vetoed agent, v

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n

- Each one can only be vetoed once
- After n-1 has made his veto, there only remains one not vetoed agent, v
- Call z a first agent who does not veto himself, if such exists (the first to veto different agent than
himself)

The veto mechanism

- There are n agents, who are placed in an arbitrary linear ordering from 1 to n

- Take turns to veto an agent from 1 till n-1
- Each one can only be vetoed once
- After n-1 has made his veto, there only remains one not vetoed agent, v
- Call z a first agent who does not veto himself, if such exists (the first to veto different agent than himself)
- Let v^{\prime} be an agent vetoed by \mathbf{v}

The veto mechanism

Picking rules:

- If no \mathbf{z} exists or if $\mathbf{z} \neq \mathbf{v}$,
then \mathbf{v} is chosen as the winner.

The veto mechanism

Picking rules:

- If no \mathbf{z} exists or if $\mathbf{z} \neq \mathbf{v}$, then \mathbf{v} is chosen as the

winner.

The veto mechanism

Picking rules:

- If no \mathbf{z} exists or if $\mathbf{z} \neq \mathbf{v}$, then v is chosen as the winner
- If $v=z$, then the last individual n picks between v and v .

Results

- The veto mechanism always chooses the deserving winner.
- Even if he has been vetoed before.

Observations

- The veto mechanism asks agents from 1 to $n-1$ to cast a veto.
- The last n agent does not veto anyone.
- However, n has his role to choose the winner, which happens if some agent vetoes the deserving winner.

Observations

- If some agent vetoes the deserving winner, all subsequent agents do not veto this agent (he is not vetoed, v)
- Then $z=v$ and so the last agent n picks the winner between v and v^{\prime} (the deserving winner)

Final remarks

- Works with at least three agents.
- Uses veto rule, allows the agents to express negative preferences.

Outline

"We have an agreement in principle.
The question is, do we all have the same principles?"

- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
joint with D. Bednay and A. Tasnádi, Corvinus University of Budapest
- Chapter 5: Dictatorship versus manipulability

Motivation

- Voting - the most common way to reach a decision.
- Aggregation rule is a voting rule.
- There are a lot of voting rules. Which rule is the best?
- Important: to select a voting rule that will reflect the "will of the people".
- Axiomatic approach: evaluate voting rules according to a set of certain desirable properties (axioms).

Motivation

- Negative results from the two cornerstone theorems of social choice theory:
- Arrow's Impossibility Theorem (Arrow, 1951)
- Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975)

Motivation

- Negative results from the two cornerstone theorems of social choice theory:
- Arrow's Impossibility Theorem (Arrow, 1951)

No voting procedure that fairly chooses a winner for more than three alternatives and satisfying unrestricted domain, Pareto efficiency, independence of irrelevant alternatives and non-dictatorship.

Motivation

- Negative results from the two cornerstone theorems of social choice theory:
- Arrow's Impossibility Theorem (Arrow, 1951)

No voting procedure that fairly chooses a winner for more than three alternatives and satisfying unrestricted domain, Pareto efficiency, independence of irrelevant alternatives and non-dictatorship.

The only voting method satisfying certain desirable properties = dictatorship.

Motivation

- Negative results from the two cornerstone theorems of social choice theory:
- Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975)

The only voting rule for at least three alternatives that is strategy-proof (immune to manipulation) is dictatorship.

Motivation

- Negative results from the two cornerstone theorems of social choice theory:
- Arrow's Impossibility Theorem (Arrow, 1951)
- Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975)

dictatorship

Motivation

- Dictatorial voting rule \rightarrow bad.

Motivation

- Dictatorial voting rule \rightarrow bad.

If we get away from a bad voting rule will we obtain a good one?

Motivation

- Dictatorial voting rule \rightarrow bad.

If we get away from a bad voting rule will we obtain a good one?

- This chapter tries to answer this question.

Motivation

- Our goal: to get away from "bad" dictatorial voting rule.
- We search for least-dictatorial voting rules.
- We construct a distance function (a metric) between Social Choice Functions (SCF).

Background

- Distance-based approach: to explain voting rules in terms of the distance function.

Background

- Distance-based approach: to explain voting rules in terms of the distance function.

A voting rule can be characterised in terms of a goal state (e.g. unanimity, Condorcet winner) and a metric used in measuring the distance between the observed state and the goal state.

Distance rationalization of voting rules.

Notations and notions

- A set of voters $\mathrm{N}=\{1, \ldots, \mathrm{n}\}$.
- A set of alternatives $\mathrm{A}=\{1, \ldots, \mathrm{~m}\}$.
- A preference $>_{i}$ as a linear order in P (the set of all preference relations) of voter i in N .
- A voting rule (a SCF) for n voters is a function $\mathrm{f}: \mathrm{P}^{\mathrm{n}} \rightarrow \mathrm{A}$.
- Ties are broken by an anonymous tie-breaking rule.

Notations and notions

- $F=A^{P^{\wedge} n}$ is the set of all SCFs (Borda, plurality, etc)
- $\mathrm{D}=\left\{\mathrm{d}_{1}, \ldots \mathrm{~d}_{\mathrm{n}}\right\}$ is a set of dictatorial voting rules and d_{i} is the dictatorial rule with voter i as a dictator.
- D is a subset of F

Distance function

Definition:

Let f and g be two distinct SFCs.
The distance function counts the number of preference profiles on which f and g choose different alternatives.

Formally,

$$
\rho(f, g)=\#\left\{\succ \in \mathcal{P}^{n} \mid f(\succ) \neq g(\succ)\right\}
$$

Distance function: example

- Consider the preference profile $>$:

$>_{1}$	$>_{2}$	$>_{3}$	$>_{4}$	Let f be plurality rule.
a	a	b	c	
b	b	c	b	Let g be a Borda count.
c	c	a	a	

tie-breaking rule: $b>a>c$

Distance function: example

- Consider the preference profile $>$:

Let f be plurality rule.
Then a is the plurality winner.
Let g be a Borda count.
tie-breaking rule: $b>a>c$

Distance function: example

- Consider the preference profile $>$:

Let f be plurality rule.

Then a is the plurality winner.
Let g be a Borda count.
Then b is the Borda winner.
tie-breaking rule: $b>a>c$

Distance function: example

- Consider the preference profile $>$:

Let f be plurality rule.
Then a is the plurality winner.

Let g be a Borda count.
Then b is the Borda winner.
tie-breaking rule: $b>a>c$
$Q(f, g)=1$, since $f(>) \neq g(>)$
Distance function between f and g counts 1 on this preference profile, since the two SCFs f and g choose different alternatives.

Least-dictatorial voting rules

Definition:

The set of least-dictatorial voting rules are the rules for which the distance function is the greatest for the closest dictatorial rule.

- Formally,

$$
\mathcal{F}_{l d}=\left\{f \in \mathcal{F} \mid \forall f^{\prime} \in \mathcal{F}: \min _{i \in N} \rho\left(f, d_{i}\right) \geq \min _{i \in N} \rho\left(f^{\prime}, d_{i}\right)\right\}
$$

Least-dictatorial voting rules

- Consider the following preference profile $>$:

Let f be plurality rule
Let g be the Borda rule
Let d_{2} be dictatorial rule
tie-breaking rule: $a>b>c$

Least-dictatorial voting rules

- Consider the following preference profile $>$:

$$
\begin{aligned}
& \mathrm{f}(>)=\mathrm{a} \text { is the plurality } \\
& \text { winner } \\
& \mathrm{g}(>)=\mathrm{b} \text { is the Borda } \\
& \text { winner } \\
& \mathrm{d}_{2}(>)=\mathrm{a}
\end{aligned}
$$

Let f be plurality rule
Let g be the Borda rule
Let d_{2} be dictatorial rule
tie-breaking rule: $a>b>c$

Least-dictatorial voting rules

- Consider the following preference profile $>$:

Let f be plurality rule
Let g be the Borda rule
Let d_{2} be dictatorial rule
tie-breaking rule: $a>b>c$
$f(>)=a$ is the plurality winner
$g(>)=\mathbf{b}$ is the Borda
winner
$d_{2}(>)=a$
$\mathrm{f}(>)=\mathrm{d}_{2}(>) \quad \varrho\left(\mathrm{f}, \mathrm{d}_{2}\right)=0$
$\mathrm{g}(>) \neq \mathrm{d}_{2}(>) \varrho\left(\mathrm{g}, \mathrm{d}_{2}\right)=1$

Least-dictatorial voting rules

- Consider the following preference profile $>$:

$\mathrm{f}(>)=\mathrm{a}$ is the plurality
winner
$\mathbf{g}(>)=\mathrm{b}$ is the Borda
winner
$\mathrm{d}_{2}(>)=\mathrm{a}$

Let f be plurality rule
Let g be the Borda rule
Let d_{2} be dictatorial rule
$\mathbf{f}(>)=\mathbf{d}_{\mathbf{2}}(>) \quad \varrho\left(\mathrm{f}, \mathrm{d}_{2}\right)=0$

$$
\mathrm{g}(>) \neq \mathrm{d}_{2}(>) \mathrm{g}\left(\mathrm{~g}, \mathrm{~d}_{2}\right)=1
$$

What is left to see is what happens on all preference profiles and calculate the distances.

Least-dictatorial voting rule

- The reverse-plurality rule is the least-dictatorial voting rule.
- The algorithm to find it:

Step 1: if there is a unique alternative being the fewest times on the top (incl. 0 cases), then choose it.

Step 2: If not, disregard those alternatives that are not the fewest times on the top, and select the chosen alternative based on the given tie-breaking rule.

Balanced voting rules

- Alternative: to get as close as possible to all dictators at the same time.
- The balanced solution with respect to all dictators.
- We minimize the sum of the distances to all n dictators.

Balanced rules

Definition:

The set of balanced rules are rules for which the distance measure is the smallest.

$$
\mathcal{F}_{b}=\left\{f \in \mathcal{F} \mid \forall f^{\prime} \in \mathcal{F}: \sum_{i \in N} \rho\left(f, d_{i}\right) \leq \sum_{i \in N} \rho\left(f^{\prime}, d_{i}\right)\right\}
$$

Equivalent formulation of the balanced rules \rightarrow they maximize the number of cases in which a top alternative of a voter is chosen.

Balanced rule

- The plurality rule = the balanced rule.
- The plurality rule can be considered as a kind of compromise between all dictatorial rules.

Final remarks

- We were motivated by the negative results from the two cornerstone theorems in social choice theory, both of which point to dictatorship.
- We asked: what rule will we obtain if we get away from dictatorial rule.
- We searched for the least-dictatorial rules.

Final remarks

- We found that the rule that is furthest away from the closest dictatorial rule is reverse-plurality rule (the leastdictatorial rule).
- It still violates many desirable properties.
- This questions the necessity to completely eliminate dictatorial component of a voting rule.

Final remarks

- Opposite approach: to look for the rule balancing between all dictators \rightarrow balanced rules.
- We were maximizing the sum of the distances to all dictators \rightarrow "collective" dictatorship.
- We found that the plurality rule and the balanced rule are the same.
- Plurality rule minimizes collectively the distances from the dictatorial rules.

Open questions

- Consider other metrics.

$$
\rho_{w}(f, g)=\sum_{\succ \in \mathcal{P}} w(\succ) \overbrace{1_{f(\succ)} \neq g(\succ)}^{\text {whether two alte }}
$$

- Consider all distribution of preference profiles, not just the top alternatives.

Outline

"We have an agreement in principle.
The question is, do we all have the same principles?"

- Introduction
- Chapter 2: Primaries on demand
- Chapter 3: A mechanism to pick the deserving winner
- Chapter 4: Does avoiding bad voting rules leads to good ones?
- Chapter 5: Dictatorship versus manipulability
joint with D. Bednay and A. Tasnádi, Corvinus University of Budapest

Motivation

Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975):
for at feast three alternatives, every universal and resolute social choice function is either dictatorial or manipulable.

When choosing a voting rule \rightarrow dilemma between dictatorship and manipulability.

Motivation

Two incompatible properties: dictatorship and manipulability.

1) Can we know to what degree a voting rule is manipulable?
2) And to what degree a voting rule is dictatorial?

Motivation

Positive answer to the first question:

- Strategy-proofness can be measured by counting the number of profiles on which SCF is manipulable.
- Nitzan-Kelly index of manipulability, NKI (Nitzan 1985; Kelly 1993).
- A voting rule is less manipulable for which NKI is the smallest.
- For more see Aleskerov and Kurbanov, 1999; Aleskerov et al. 2011, 2012 among others.

Motivation

- In this chapter we try to answer to the second question.
- Based on Bednay, Moskalenko and Tasnádi (2017) we can define non-dictatorship index.

Notations (from Chapter 4)

Non-dictatorship index (NDI):
counts the number of profiles for which a SCF f chooses different alternative than the closest dictatorial voting rule d_{i}.

- Formally,

$$
N D I(f)=\min _{i \in N} \rho\left(f, d_{i}\right)
$$

Our goal

To explore the relationship between manipulability and non-dictatorship indices, NKI and NDI.

For the following voting rules:

- Plurality
- Borda count
- Copeland
- Black's procedure
- k -Approval voting rule ($\mathrm{k}=2$ and $\mathrm{k}=3$)

Our goal

To explore the relationship between manipulability and non-dictatorship indices, NKI and NDI.

For the following voting rules:

- Plurality \rightarrow chooses alternative ranked first by max number of voters
- Borda count \rightarrow chooses alternative with the highest Borda score
- Copeland \rightarrow chooses alternative that beats other alternatives by pairwise comparison
- Black's procedure \rightarrow chooses a Condorcet winner if exists, otherwise chooses a Borda winner
- k -Approval voting rule $(\mathrm{k}=2$ and $\mathrm{k}=3) \rightarrow$ chooses alternative admitted to be among k best by a max number of voters

Our goal

- Less manipulable voting rule has the smallest NKI.
- Similarly, less dictatorial voting rule has the highest NDI.
- Ideal combination = small NKI and high NDI.

Computation scheme

- Information about NKIs is taken from http://manip.hse.ru/index.html (created by F. Aleskerov et al.).
- For NDI we write our own program.
- We calculate NDIs for three, four and five alternatives.
- Up to 100 voters, by generating 1000 random preference profiles, where each profile is selected with the same probability.

NDI for five alternatives

$\mathrm{NDI}(\mathrm{m}=5)$

NDI for five alternatives

$N D I(m=5)$

NDI for five alternatives

$\mathrm{NDI}(\mathrm{m}=5)$

NDI for five alternatives

$N D I(m=5)$

Observations

- Reverse-plurality serves as a benchmark (though it is outperformed by reverse dictatorial, which is not anonymous)
- Plurality rule performs the worst
- 3-approval voting rule is the best from the investigated voting rules
- Borda, Black and Copeland lie between plurality and 3approval voting rules without clear difference between them
- If we add now NKI, do they converge to the same limit?

NDI and NKI for five alternatives

NDI and NKI ($m=5$)

NDI and NKI for five alternatives

NDI and NKI ($m=5$)

NDI and NKI for four alternatives

NDI and NKI ($m=5$)

NDI and NKI for four alternatives

NDI and NKI ($m=5$)

Observations and remarks

- NDI and NKI move in different directions \rightarrow plausible and positive sign of our non-dictatorship index.
- There is no voting rule which performs the best in terms of both indices.
- In both cases, plurality rule performs the worst.
- 3-Approval voting performs the best in terms of NDI, however, it is the second worst in terms of NKI.

Conclusions

- Both undesirable properties of dictatorship and manipulability are incompatible.
- It could be helpful and informative to classify the voting rules in terms of their degree of manipulability and distance to dictatorship.
- There could be different ways of measuring the dictatorial component of a voting rule.
- We have chosen a straightforward distance based approach.
- Chapter 3 is published as "A mechanism to pick the deserving winner" in Economics Bulletin, 2015.
- Chapter 4 is published as "Does avoiding bad voting rules lead to good ones" in Operations Research Letters, 2017.
- Chapter 2 and Chapter 5 are submitted and under review.

Thank you

