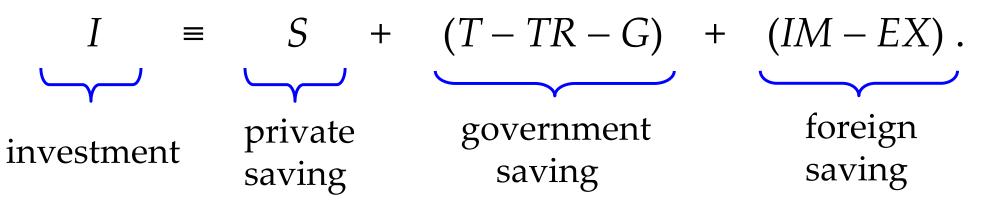
1st fundamental accounting identity

• With all variables being <u>real</u>, the f<u>undamental</u> <u>national income accounting identity</u> states that


$$Y \equiv C + I + G + NX.$$

ex-post supply of output ex-post demand for output

C = consumption spending by households I = investment spending by firms and households G = government purchases of goods NX = net exports of goods = exports – imports EX IM

2nd fund. accounting identity/v1

- *T* = taxes paid by households and firms
- *TR* = transfers paid to households and firms
- *S* = private saving (saving by households & firms)
- $C + S \equiv Y_D$ (disposable income) $\equiv Y + TR T$
- By adding TR T to each side of $Y \equiv C + I + G + NX$ and rearranging, the following identity obtains:

2nd fund. accounting identity/v2

• The identity says that <u>domestic investment must be</u> <u>financed by private saving</u>, <u>public saving</u>, <u>or</u> <u>foreign saving</u>. It can also be expressed as follows:

+

$$(S-I) \equiv$$

net private saving

budget surplus if T > G + TRbudget deficit if T < G + TR government budget = = spending – receipts (can also be defined the other way round)

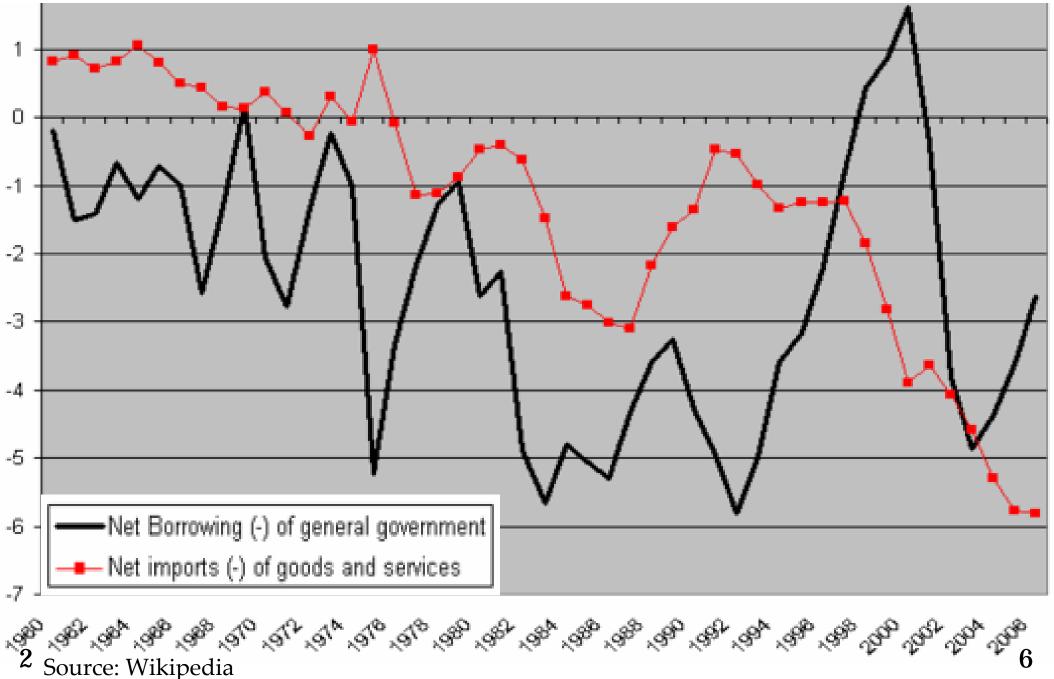
(G + TR - T)

lending NX . capacity trade trade surplus balance if NX > 0or net trade exports deficit if NX < 0financial

need

Where do savings go?

• The identity can also be formulated as


$$S = I + (G + TR - T) + NX.$$

- This says that there are three ways of disposing of the savings of an economy.
- Savings can go to firms to finance investment...
- ... to the government to finance a budget deficit...
- ... or to foreigners, when they buy more from the economy than the economy buys from them.

Twin deficits: twice the fun

- If investment equals savings, so *I* = *S*, the 2nd identity (version 2) implies that the government budget deficit equals the trade balance.
- This means that <u>if the government runs a budget</u> <u>deficit, then it must be financed by foreigners</u>: if I = S, then G + TR - T > 0 implies NX < 0.
- In sum, the government spends more without having to increase taxes and the rest of members of the economy buy from abroad more goods than they sell; see the US case during the 80s and 90s.

Twin deficits: the US case (% of GDP)

From expenditure to GDP

- According to national income accounting, <u>GDP</u> equals expenditure, income, and value added.
- The <u>expenditure approach to measure GDP</u> splits GDP into four components (*C*, *I*, *G*, and *NX*) according to the identity of the purchaser (or according to the purpose of the expenditure).
- The expenditure approach leads to the identity $\underline{Y} \equiv \underline{C + I + G + NX}$: everything that is produced is purchased by consumers to be consumed, by firms to be invested, by the government, or by foreigners. Hence, production = expenditure.

GDP, Spain, expenditure approach

2010Q1 2010Q2 2010Q3

С	153.3	156	156.5 (61.1%)
Ι	65.3	62.9	51.8 (20.2%)
G	46.2	58.4	48.7 (19%)
EX	62.3	70.1	72.5 (28.33%)
IM	70	76.2	73.6 (-28.76%)
GDP	257.3	271.5	255.9 (100%)

Source: INE

billions of €

From income to GDP

- The <u>income approach to measure GDP</u> obtains GDP as the sum of the payments made to all the factors of production (inputs).
- Inputs are aggregated into two categories: labour (workers) and capital (firms). The government is a third category, because it collects taxes.
- The income approach leads to the identity $\underline{Y} \equiv \underline{wages + profits + taxes}$: everything that is produced becomes the income of workers (wages), of firms (profits), or of the government (taxes). Summing up, <u>production = income</u>.

GDP, Spain, income approach

	2010Q1	2010Q2	2010Q3
wages	119.7	132.3	121.3 (47.4%)
profits	109.8	118.2	110 (42.9%)
taxes	27.7	20.9	24.6 (9.61%)
GDP	257.3	271.5	255.9 (100%)

Source: INE

billions of €

From value added to GDP

- The <u>value added approach to measure GDP</u> views GDP as the sum of the value that each producer adds to the production purchased by the producer.
- If the reprographic industry buys paper worth 100 and energy worth 200 to make copies worth 600, then the added value of the industry is 600 200 100 = 300. If that value were 600, the production of paper and energy would be counted twice.
- Value added = value of the final (new) goods produced – value of the intermediate goods. In this case, production = total value added.

GDP, Spain, value added approach

2010Q1 2010Q2

2010Q3

Agriculture &c.	5.4	8.1	5.1 (2%)
Energy	6.7	7.1	7.3 (2.8%)
Industry	30.7	30.3	28.2 (11%)
Construction	22.3	24.4	24.6 (9.6%)
Services	166.1	182.1	167.6 (65.4%)
Taxes	25.8	19.3	22.8 (8.9%)
GDP	257.3	271.5	255.9 (100%)

Source: INE

billions of $\in _{12}$

2