Money

- Paradoxical? Money is everything considered money. Money has three main functions.
- Medium of exchange. Goods can be generally obtained in exchange for money, that is, money must can be used to make purchases of goods.
- Store of value. Money has the ability to preserve (at least part) of its purchasing power in time: it is a way of accumulating purchasing power.
- Unit of account. The value of goods is expressed in terms of money (this was the $€$ from 1999 to 2002). 3

Our currency: the $€$

- The euro (sign: $€$; code: EUR) is the official currency (= physical money) of the 17 members of the Eurozone: A, B, C, E, FI, FR, GE, GR, IR, IT, L, M, N, P, SLVA, SLVE, and SP.
- The euro was born in Jan. 1999 as a unit of account and became currency on 1 Jan. 2002. It is managed by the Eurosystem: the European Central Bank plus the central banks of the eurozone members.
- It is the 2nd most traded currency in the world, after the $\$$. By mid-2010, it surpassed the $\$$ as the currency with highest value in circulation ($€ 800$ b.).

The Eurozone (as of February 2010)

The business of making money

- In a (modern) monetary economy, goods are typically not exchanged for goods but for (fiat) money.
- Therefore, the first activity in which people must engage in a monetary economy is raising money.
- One way of raising money consists of selling goods others want. Thus, one may sell his/her time for a wage or a good he/she can produce for a price.
- What if one has no good others may want? Then one can raise money by issuing a financial asset, which is little more than a promise of payment.

Fiat money

- In essence, money is anything which is generally accepted as a payment for goods.
- But money is accepted in exchange for goods because of the belief that it will be subsequently accepted in exchange for goods.
- To reinforce that belief, originally money had to have intrinsic value: money itself was a good (like cattle or silver: commodity money). With time, it became unnecessary for money to have intrinsic value. Money is now fiat money: intrinsically worthless pieces of paper and metal.

Interest rates

- Suppose you will have $1000 €$ in a month and need (or want) them today. You then issue a financial asset stating that you will pay $1000 €$ in a month to the bearer (owner) of the asset.
- But it will illusory to expect to sell that asset for $1000 €$, for the buyer gives $1000 €$ and receives $1000 €$ in a month: the buyer losses the possession of $1000 €$ for a month in exchange for nothing.
- So the asset should be sold for less than $1000 €$. The interest rate of the asset is its implicit rate of return. 3

Rate of return of an asset

- Let V the nominal (face) value of the asset: how much it promises to pay in the future.
- Let P be the price at which the asset is sold.
- Then the (implicit) rate of return i_{A} (or rate of profit) of the asset is the profit $V-P$ obtained from buying the asset per monetary unit invested in the purchase. The formula is (multiply the right-hand by 100 to get a percentage):
- For instance, if $V=1000$ and

$$
i_{\mathrm{A}}=\frac{V-P}{P} .
$$

$P=800$, then $i_{\mathrm{A}}=25 \%$.

Functions of financial assets

- From the perspective of the purchaser, the financial asset is a way of saving purchasing power (a way of sending it from the present to the future).
- From the perspective of the issuer (or the seller, if the buyer becomes a seller), the financial asset is a way of acquiring purchasing power (a way of bringing it from the future to the present).
- A financial asset is an instrument to get money if you need it from someone not needing it now. Put it briefly, a financial asset is a loan of money.

A selection of financial assets (I)

- Currency. It is an extreme case of financial asset: instant maturity ($1 €$ pays $1 €$ now), no return, no risk, and maximum liquidity.
- Bank deposit. By depositing money in a bank, the depositor is purchasing an asset issued by the bank: the deposit. This asset is riskier than currency: if the bank goes bankrupt, the money is lost.
- Loan. The loan is the reverse of the deposit: it is as if the bank deposited money on you in exchange for a premium and the repayment of the deposit.

Properties of financial assets

- Liquidity. Ease and rapidity with which the asset can be turned into money (can be sold).
- Risk. The likelihood that the compromise of repayment will not be respected.
- Rate of return. Ratio of the profit to the cost of obtaining that profit.
- Maturity. The date at which the issuer must pay the face value to the holder of the asset.

A selection of financial assets (II)

- Bonds. A bond is a debt security that, in exchange for the face value V, pays a certain amount (the coupon) at fixed periods before maturity and repays V at maturity. A 4 -year $100 €$ bond offering an annual 5% pays $5 €$ at the end of years $1,2,3$, and 4 , and repays the $100 €$ at the end of year 4 .
- Variations: perpetuities (bonds with no maturity), floating-rates bonds, inflation-linked bonds...
- Zero-coupon bonds. Bonds issued (like T-bills) at a discount, that is, sold for less than the face value.

Shares (stocks)

- Commercial paper. They are promissory notes issued by firms to fund operational expenses.
- Shares. The share of a firm is an indivisible unit of the firm's capital. Shares are equity security. \underline{A} security is a fungible, negociable instrument representing financial value.
- Securities are divided into debt securities (like bonds) and equity. Having an equity means owning part of a firm; having a bond issued by the firm means being a creditor of the firm.

Are shares financial assets?

- In a strict sense, shares of a firm are not financial assets, since they represent parts of a firm: the owner of shares is a shareholder.
- Unlike debt securieties, shares do not entitle to a regular payment: the payment of dividends is discretional.
- But shares typically represent such a small part of the value of a firm that they are bought and sold not because of their intrinsic value, but because of the expected evolution of their price.

Goods turned to financial assets

- Hence, buying shares is a form of saving, and selling them is a form of raising money. Thus shares are indistinguishable from financial assets.
- Any good sold and bought according to the expected evolution of its price behaves like a financial asset: it is not sold or bought due to intrinsic qualities, but as a tool for making money by exploiting price changes.
- This may generate "speculative bubbles". Known cases: oil, real estate, raw materials, stamps...

Trade-off between properties

- Financial assets can be viewed as money imitators. But as they cannot have maximum liquidity, they must offer something in return to be attractive.
- Liquidity and profitability. If 2 assets differ only in liquidity and profitability, the more liquid must be the less profitable and vice versa (money vs bonds).
- Risk and profitability. If two assets differ only in risk and profitability, the riskier should be the more profitable and vice versa (shares vs deposits).

Inverse relationships

- Having more of the favourable properties is balanced by having more of the desfavourable ones.
- More profitability will be accompanied by less attractive qualities: more risk and/or less liquidity.
- More liquidity will be accompanied by less attractive qualities: more risk and/or less profitability.
- More risk will be accompanied by more attractive qualities: more profitability and/or more liquidity.

The nominal interest rate

- The rate of return associated with each financial asset is the nominal interest rate of the asset.
- An economy has nearly as many interest rates as financial assets. Fortunately, all the them move in parallel, so it is reasonable to adopt the fiction that there is a unique interest rate i for the economy.
- That unique rate could be taken to be the interest rate of a loan, which is itself a reference interest rate. From now on, i will represent the average interest rate charge for a typical loan.

Meaning of the interest rate (I)

- Defined as the rate of return of a loan (of currency), having an interest rate of i means that a moneylender receives at maturity $1+i$ for every unit lent. So 1 (in t) becomes $1+i($ in $t+1)$.
- For the moneylender, i measures the profit of lending 1 unit of currency. For the borrower, i measures the cost of receiving a loan of 1 .
- For the moneylender, i is the reward of saving: by giving up 1 today, (s)he gets $1+i$ tomorrow. For the borrower, i is the cost of bringing currency from the future.

Meaning of the interest rate (II)

- On the one hand, i represents the profit of sending money to the future: the reward for saving.
- On the other, i also represents the profit of cost of bringing money from the future: the cost of a loan.
- It can also be interpreted as a measure of patience: the higher i, the more a borrower is willing to pay for having 1 unit of currency today instead of tomorrow, so the less patient the borrower is.
- A positive i expresses a preference for the present: better to have money today than tomorrow.

The discount factor

- The interest rate transforms today's money into tomorrow's money: 1 today is $(1+i)$ tomorrow.
- The discount factor does the opposite: it transforms tomorrow's money into today's money. It determines present values out of future values as follows.
$t \quad t+1 \quad$ - The discount factor transforms $1 \longrightarrow 1+i \quad 1$ into ?. That ? is the value that, $? \longleftarrow 1 \quad$ with interest rate i, becomes 1 .
- By the rule of three, ? $=\frac{1 \cdot 1}{1+i}=\frac{1}{1+i}$ is the discount factor (it depends on i).

Arbitrage in action

- Suppose $V>(1+i) \cdot P$. An arbitrageur can then obtain sure profits (even having no money at all).
- First, $P €$ are borrowed, so $(1+i) \cdot P$ must be repaid the next period. A T-bill is purchased with the $P €$.
- At maturity, the T-bill pays V. As $V>(1+i) \cdot P$, the arbitrageur repays the loan and pockets a profit of $V-(1+i) \cdot P$. If $V=1000, P=800$, and $i=10 \%$, each T-bill financed by a loan generates a profit of 120 .
- If this is done by many arbitrageurs, both i and P tend to rise, so $V-(1+i) \cdot P$ diminishes.

Interest rate and asset prices

- The price of an asset and the price of money (= the nominal interest rate) move in opposite directions.
- Illustration. A T-bill has face value V and price P. Let i be defined for a loan with the same maturity as the T-bill. If you have $P €$, you have two options.
- Option 1: lend P. At maturity, you get $(1+i) \cdot P$.
- Option 2: buy the T-bill. At maturity, you get V.
- If the results must be equal, then $(1+i) \cdot P=V$, so $P=\frac{V}{1+i}:$ the larger i, the smaller P.
3

Prices of assets as present values

- The future value of the T-bill is V. With interest rate i, the present discounted value of V is

$$
\frac{1}{1+i} V, \quad \text { where } \frac{1}{1+i} \text { is the discount factor. }
$$

- Therefore, the condition

$$
P=\frac{V}{1+i}
$$

states that the price of a T-bill coincides with the present discounted value of its face (future) value.

Equalization of rates of return

- It is reasonable to expected the equalization of the interest rates of all financial assets, for otherwise the assets with smaller rate will have no demand.
- The interest rate i_{B} implicit in the T-bill is $i_{\mathrm{B}}=\frac{V-P}{P}$ and i represents the interest rate of a loan.
- Accordingly, the equalization $i=i_{\mathrm{B}}$ of rate leads to

$$
i=i_{\mathrm{B}}=\frac{V-P}{P}=\frac{V}{P}-1, \quad \text { so } 1+i=\frac{V}{P} .
$$

- Solving for P yields the condition $P=\frac{V}{1+i}$.

The real side

- The real side of an economy comprises all the activities related to the production, exchange, and consumption of goods.
- All the identities showed in PART 2 of these slides represented outcomes of the working of the real side.
- The main variables summarizing what occurs in the real side are the real GDP, the inflation rate associated with the CPI, and the unemployment rate.

Monetary aggregates

- Monetary aggregates are technical ways of measuring the amount of (and defining) money.
- $\mathrm{M} 0=$ monetary base $=$ high-powered money $=\mathrm{E}+\mathrm{R}$
- E = currency held by the public (cash)
- $\mathrm{R}=$ bank reserves = currency in bank vaults + the banks' deposits at the central bank
- M1 = E + D
- $\mathrm{D}=$ deposits $=$ non-interest-bearing accounts at banks
- M2 = M1 + savings deposits
- M3 $=$ M2 + time deposits + others

3

Technical definitions of money (ECB)

- Narrow money (M1) includes currency, i.e. banknotes and coins, as well as balances which can immediately be converted into currency or used for cashless payments.
- "Intermediate" money (M2) comprises narrow money (M1) and, in addition, deposits with a maturity of up to two years and deposits redeemable at a period of notice of up to three months. Depending on their degree of moneyness, such deposits can be converted into components of narrow money.
- Broad money (M3) comprises M2 and marketable instruments issued by the MFI (Monetary Financial Institutions) sector. Certain money market instruments, in particular money market fund (MMF) shares/units and repurchase agreements are included in this aggregate. A high degree of liquidity and price certainty make these instruments close substitutes for deposits.

Relationship between M0 and M1

- The cash reserve ratio $r=R / D$ is the amount of reserves banks must hold per euro of deposit. It is the percent of deposits banks cannot lend.
- Define $l=E / D$ to be the amount of currency that people hold per euro of deposits (liquidity ratio).
- The money multiplier is $m m=\frac{1+l}{r+l}$.
- It then follows that $\mathrm{M} 1=m m \cdot \mathrm{M} 0$, so $m m=\mathrm{M} 1 / \mathrm{M} 0$.

Hence, if $m m$ remains constant, $\Delta \mathrm{M} 1=m m \cdot \Delta \mathrm{M} 0$.

The money multiplier

－Calling M1 the money stock，the money multiplier mm indicates how many units of money stock is generated by one unit of monetary base．
－In fact， $\mathrm{M} 1=\mathrm{E}+\mathrm{D}$ and $l=\mathrm{E} / \mathrm{D}$ imply $\mathrm{M} 1=l \mathrm{D}+\mathrm{D}=$ $\mathrm{D}(1+l)$ ．In addition， $\mathrm{M} 0=\mathrm{E}+\mathrm{R}, l=\mathrm{E} / \mathrm{D}$ ，and $r=$ R / D imply $\mathrm{M} 0=l \mathrm{D}+r \mathrm{D}=\mathrm{D}(r+l)$ ．Therefore，

$$
\frac{\mathrm{M} 1}{\mathrm{M} 0}=\frac{\mathrm{D}(1+l)}{\mathrm{D}(r+l)}=\frac{1+l}{r+l}=m m .
$$

－In sum，M1（the money stock）is a fixed multiple （ mm ）of M0（the monetary base）．

Spontaneous money creation／2

－Now，the people borrowing the $4500 €$ will spend them purchasing goods．The sellers of the goods will then receive $4500 €$ and they face the same situation as i at the beginning：they must retain a part ΔE in cash and deposit the rest $4500-\Delta E$ on banks so that the ratio is 0.2 ．
－In this case，$\Delta \mathrm{E}=750$ and $\Delta \mathrm{D}=3750$ ．Of these deposits，banks hold $r \cdot \Delta \mathrm{D}=375$ as reserves and offer the rest（ $3375 €$ ）to potential borrowers．
－And the cycle recommences：borrowers spend 3375 and sellers maintained a part of 3375 in cash（562．5） and deposit the rest（2812．5）on banks．

Spontaneous money creation／1

－Suppose individual i steals $6000 €$ from the ECB （the same effects would happen if the ECB purchased something from i and paid $6000 €$ ）．
－With $l=0.2, i$ must allocate the $1000 €$ in cash and deposits to make the increase in cash $\Delta \mathrm{E}$ divided by the increase of deposits $\Delta \mathrm{D}$ be 0.2 ，so $\Delta D=5 \cdot \Delta \mathrm{E}$ ． Since $\Delta E+\Delta D=1000, \Delta E=1000$ and $\Delta D=5000$ ．
－As a result，i deposits 5000 on a bank．Suppose $r=$ 0.1 ．This means that the bank must hold $500 €$ as reserves and may lend $4500 €$ ．Assume people are willing to borrow any amount offered by banks．

Spontaneous money creation／3

－The initial robbery has increased M0 by 6000 ．
－Deposits have grown continuously： $5000+3750+$ $2812.5+2109.375+\ldots$ In the limit，the sum converges to 20000.
－What fraction of the 6000 is finally held in cash？ The sum $1000+750+562.5+421.875+\ldots$ ，which converges to 4000.
－Since $M 0=E+R, \Delta M 0=\Delta E+\Delta R$ ．That is， $6000=$ $4000+\Delta R$ ．Thus，$\Delta R=2000$ ．This is also the value to which the sum $500+375+281.25+210.9375+\ldots$ converges．

Spontaneous money creation／4

－ $\mathrm{M} 1=\mathrm{E}+\mathrm{D}$ yields $\Delta \mathrm{M} 1=\Delta \mathrm{E}+\Delta \mathrm{D}$ ．Given that $\Delta \mathrm{E}=$ 4000 and $\Delta \mathrm{D}=20000, \Delta \mathrm{M} 1=24000$.
－To recap，an increase of 6000 in the monetary base has multiplified itself into an increase of 24000 in the money stock．
－This suggests that the money multiplier must be 4 ： 6000 have been transformed into 24000 ．In effect， $m m=(1+l) /(r+l)=(1+0.2) /(0.1+0.2)=12 / 3=4$ ． The money stock is four times the monetary base and $\Delta \mathrm{M} 1=m m \cdot \Delta \mathrm{M} 0=4 \cdot 6000=24000$ ．

The money multiplier process

－The example shows that the money multiplier captures the total effect on the currency held by the people and the deposits generated by the process

$$
\ldots \Rightarrow \uparrow \text { deposits } \Rightarrow \text { loans } \Rightarrow \text { 个expenditures } \Rightarrow \ldots
$$

$\ldots \Rightarrow$ 个revenues \Rightarrow 个deposits \Rightarrow 个loans $\Rightarrow \ldots$
－This proces illustrates the interaction between the financial side（deposits and loans）and the real side （purchases of goods）．
－The process also operates the other way around： \downarrow deposits $\Rightarrow \downarrow$ loans $\Rightarrow \downarrow$ expenditures $\Rightarrow \downarrow$ revenues $\Rightarrow \downarrow$ deposits ．．．

