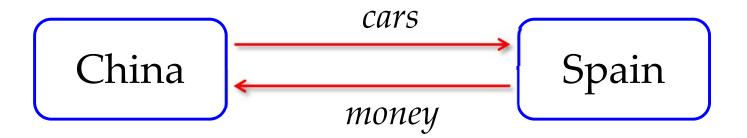

The circular flux of income

I


Am I a trillionaire for having this?

http://stephenlaughlin.posterous.com/buy-an-100-trillion-zimbabwe-dollar-bank-note http://en.wikipedia.org/wiki/Zimbabwean_dollar

Why IM – EX is foreign saving

• Imagine that China exports only cars to Spain and that China imports nothing from Spain.

- China runs a <u>trade surplus</u> (with Spain) and Spain a trade deficit (with China).
- China delivers goods and receives in exchange money. Thus, <u>China is saving and has lending capacity</u>: has money (in general, financial assets) to lend. So <u>trade surplus means lending capacity</u>.

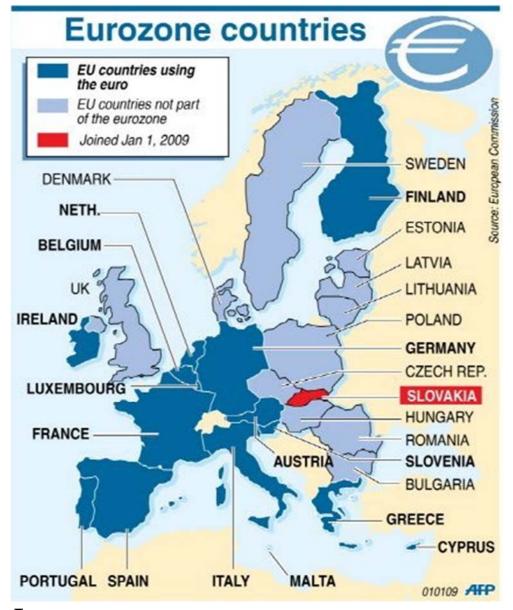
Monetary economies are two-faced

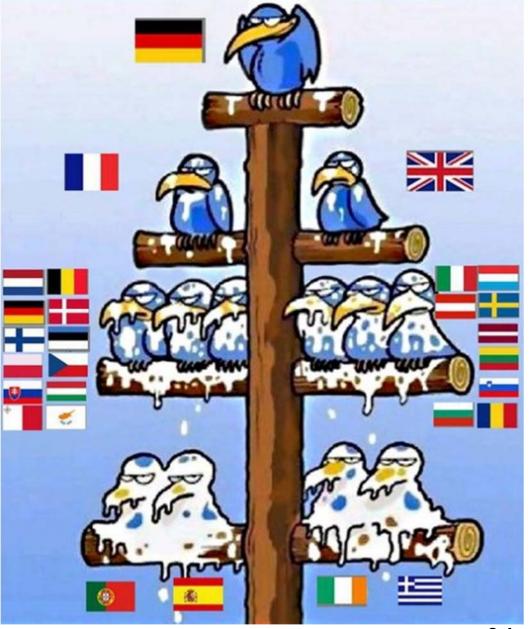
- Every activity taking place in an economy can be assigned to one of two sides.
- In the <u>real side of the economy</u>, goods (= goods & services) are exchanged for money. Wealth (goods) is generated in the real side.
- In the <u>financial side</u>, financial assets (which in essence are promissory notes or money substitutes) are exchanged for money (or other financial assets).
- Though each side has a life of its own, most of what happens in an economy is the result of the <u>interaction</u> between these two sides.

Money

- Money is everything considered money. Money is recognized by its three main functions.
- <u>Medium of exchange</u>. Goods can be generally obtained in exchange for money, that is, money must can be <u>used to make purchases of goods</u>.
- Store of value. Money has the ability to preserve (at least part) of its purchasing power in time: it is a way of accumulating purchasing power.
- <u>Unit of account</u>. The value of goods is expressed in terms of money (this was the € from 1999 to 2002).

Fiat money


- Essentially, money is anything which is generally accepted as a payment for goods.
- But money is accepted in exchange for goods because of the belief that it will be subsequently accepted in exchange for goods.
- To reinforce that belief, originally money had to have intrinsic value: money itself was a good (like cattle or silver: commodity money). With time, it became unnecessary for money to have intrinsic value. Money is now <u>fiat money</u>: intrinsically worthless pieces of paper and metal.


Our currency: the €

- The euro (sign: €; code: EUR) is the official currency (= physical money) of the 17 members of the <u>eurozone</u>: A, B, C, E, FI, FR, GE, GR, IR, IT, L, M, N, P, SLVA, SLVE, and SP.
- The euro was born in Jan. 1999 as a unit of account and became currency on 1 Jan. 2002. It is managed by the Eurosystem: the European Central Bank plus the central banks of the eurozone members.
- It is the 2nd most traded currency in the world, after the \$. By mid-2010, it surpassed the \$ as the currency with highest value in circulation (€800 b.).

Eurozone / European Union

http://aviagemdosargonautas.blogs.sapo.pt/437873.html

64

The business of making money

- In a (modern) monetary economy, goods are typically not exchanged for goods but for (fiat) money.
- Therefore, the first activity in which people must engage in a monetary economy is raising money.
- One way of raising money consists of selling goods others want. Thus, one may sell his/her time for a wage or a good he/she can produce for a price.
- What if one has no good others may want? Then one can raise money by issuing a <u>financial asset</u>, which is little more than a <u>promise of payment</u>.

T

Financial assets

- In essence, a financial asset is an IOU: a paper where someone acknowledges a debt ("I owe you").
- A financial asset is a substitute for money, as it represents a promise today to pay money <u>in the future</u>. It is a way of capitalizing future revenues.
- So you do not have money today, but presume that you will have in the future. A financial asset is like a time machine allowing you to take your money back from the future: you issue an IOU and sell it today for money. Problem: part of your future money is lost when reaching the present.

T

Interest rates

- Suppose you will have 1,000€ in a month and need (or want) them today. You then issue a financial asset stating that you will pay 1,000€ in a month to the bearer (owner) of the asset.
- But it will illusory to expect to sell that asset for 1,000€, for the buyer gives 1,000€ and receives 1,000€ in a month: the buyer losses the possession of 1,000€ for a month in exchange for nothing.
- So the asset should be sold for less than 1,000€. The interest rate of the asset is its implicit rate of return.

Rate of return of an asset

- Let *V* the <u>nominal (face) value</u> of the asset: how much it promises to pay in the future.
- Let *P* be the <u>price</u> at which the asset is sold.
- Then the (implicit) rate of return i_A (or rate of profit) of the asset is the profit V P obtained from buying the asset per monetary unit invested in the purchase. The formula is (multiply the right-hand by 100 to get a percentage):
- For instance, if V = 1000 and P = 800, then $i_A = 25\%$.

$$i_{A} = \frac{V - P}{P} .$$

Functions of financial assets

- From the perspective of the purchaser, the financial asset is a way of <u>saving purchasing power</u> (a way of sending it from the present to the future).
- From the perspective of the issuer (or the seller, if the buyer becomes a seller), the financial asset is a way of <u>acquiring purchasing power</u> (a way of bringing it from the future to the present).
- A financial asset is an instrument to get money if you need it from someone not needing it now. Put it briefly, a financial asset is a loan of money.

69

Properties of financial assets

- <u>Liquidity</u>. Ease and rapidity with which the asset can be turned into money (can be sold).
- <u>Risk</u>. The likelihood that the compromise of repayment will not be respected.
- Rate of return. Ratio of the profit to the cost of obtaining that profit.
- <u>Maturity</u>. The date at which the issuer must pay the face value to the holder of the asset.

70

A selection of financial assets (I)

- <u>Currency</u>. It is an extreme case of financial asset: instant maturity (1€ pays 1€ now), no return, no risk, and maximum liquidity.
- <u>Bank deposit</u>. By depositing money in a bank, the depositor is purchasing an asset issued by the bank: the deposit. This asset is riskier than currency: if the bank goes bankrupt, the money is lost.
- Loan. The loan is the reverse of the deposit: it is as if the bank deposited money on you in exchange for a premium and the repayment of the deposit.

A selection of financial assets (II)

- <u>Bonds</u>. A bond is a debt security that, in exchange for the face value *V*, pays a certain amount (the coupon) at fixed periods before maturity and repays *V* at maturity. A 4-year 100€ bond offering an annual 5% pays 5€ at the end of years 1, 2, 3, and 4, and repays the 100€ at the end of year 4.
- Variations: perpetuities (bonds with no maturity), floating-rates bonds, inflation-linked bonds...
- Zero-coupon bonds. Bonds issued (like T-bills) at a discount, that is, sold for less than the face value.

72

Shares (stocks)

- <u>Commercial paper</u>. They are promissory notes issued by firms to fund operational expenses.
- <u>Shares</u>. The share of a firm is an indivisible unit of the firm's capital. Shares are equity security. <u>A</u> security is a fungible, negociable instrument representing financial value.
- Securities are divided into <u>debt securities</u> (like bonds) and <u>equity</u>. Having an equity means owning part of a firm; having a bond issued by the firm means being a creditor of the firm.

Are shares financial assets?

- In a strict sense, shares of a firm are not financial assets, since they represent parts of a firm: the owner of shares is a shareholder (owns the firm).
- <u>Unlike debt securities</u>, shares do not entitle to a regular payment: the payment of dividends is discretional.
- But shares typically represent such a small part of the value of a firm that <u>they are bought and sold</u> not because of their intrinsic value, but <u>because of</u> <u>the expected evolution of their price</u>.

74

Goods turned to financial assets

- Hence, buying shares is a form of saving, and selling them is a form of raising money. Thus shares are indistinguishable from financial assets.
- Any good sold and bought according to the expected evolution of its price behaves like a financial asset: it is not sold or bought due to intrinsic qualities, but as a tool for making money by exploiting price changes.
- This may generate "speculative bubbles". Known cases: oil, real estate, raw materials, stamps...

T

Trade-off between properties

- <u>Financial assets can be viewed as money imitators</u>. But as they cannot have maximum liquidity, they must offer something in return to be attractive.
- <u>Liquidity and profitability</u>. If 2 assets differ only in liquidity and profitability, the more liquid must be the less profitable and vice versa (money vs bonds).
- Risk and profitability. If two assets differ only in risk and profitability, the riskier should be the more profitable and vice versa (shares vs deposits).

T

Inverse relationships

- Having more of the favourable properties is balanced by having more of the unfavourable ones.
- More profitability will be accompanied by less attractive qualities: more risk and/or less liquidity.
- More liquidity will be accompanied by less attractive qualities: more risk and/or less profitability.
- More risk will be accompanied by more attractive qualities: more profitability and/or more liquidity.

The nominal interest rate

- The rate of return associated with a financial asset is the nominal interest rate of the asset.
- An economy has nearly as many interest rates as financial assets. Fortunately, all the them move in parallel, so it is reasonable to adopt the <u>fiction that</u> there is a unique interest rate *i* in the economy.
- That unique rate could be taken to be the interest rate of a loan, which is itself a reference interest rate. From now on, *i* will represent the average interest rate charge for a typical loan.

T

Meaning of the interest rate (I)

- Defined as the rate of return of a loan (of currency), having an interest rate of i means that a moneylender receives at maturity 1 + i for every unit lent. So $\underline{1}$ (in t) $\underline{becomes 1 + i}$ (in t + 1).
- For the moneylender, *i* measures the <u>profit of lending</u> 1 unit of currency. For the borrower, *i* measures the <u>cost of receiving a loan</u> of 1.
- For the moneylender, *i* is the <u>reward of saving</u>: by giving up 1 today, (s)he gets 1 + *i* tomorrow. For the borrower, *i* is the <u>cost of bringing currency</u> from the future.

Meaning of the interest rate (II)

- On the one hand, *i* represents the <u>profit of sending</u> money to the future: the reward for saving.
- On the other, *i* also represents the profit of <u>cost of bringing money from the future</u>: the cost of a loan.
- It can also be interpreted as a <u>measure of patience</u>: the higher *i*, the more a borrower is willing to pay for having 1 unit of currency today instead of tomorrow, so the less patient the borrower is.
- A positive *i* expresses a <u>preference for the present</u>: better to have money today than tomorrow.

80

The discount factor

- The interest rate transforms today's money into tomorrow's money: 1 today is (1 + *i*) tomorrow.
- The discount factor does the opposite: it <u>transforms</u> tomorrow's money into today's money. It determines present values out of future values as follows.

$$t \qquad t+1$$

$$1 \longrightarrow 1+i$$

$$x \longleftarrow 1$$

- The discount factor transforms 1 into **x**. This **x** is the value that, with interest rate *i*, becomes 1.
- By the rule of three, $\mathbf{x} = \frac{1 \cdot 1}{1 + i} = \frac{1}{1 + i}$ is the <u>discount</u> factor (it depends on i).

Interest rate and asset prices

- The price of an asset and the price of money (= the nominal interest rate) move in opposite directions.
- Illustration. A T-bill has face value V and price P. Let i be defined for a loan with the same maturity as the T-bill. If you have $P \in \mathcal{F}$, you have two options.
- Option 1: <u>lend</u> P. At maturity, you get $(1 + i) \cdot P$.
- Option 2: <u>buy the T-bill</u>. At maturity, you get *V*.
- If the results must be equal, then $(1 + i) \cdot P = V$, so

$$P = \frac{V}{1+i}$$
: the larger *i*, the smaller *P*.

Arbitrage in action

- Suppose $V > (1 + i)\cdot P$. An arbitrageur can then obtain <u>sure</u> profits (even having no money at all).
- First, $P \in$ are borrowed, so $(1 + i) \cdot P$ must be repaid the next period. A T-bill is purchased with the $P \in$.
- At maturity, the T-bill pays V. As $V > (1 + i) \cdot P$, the arbitrageur repays the loan and pockets a profit of $V (1 + i) \cdot P$. If V = 1000, P = 800, and i = 10%, each T-bill financed by a loan generates a profit of 120.
- If this is done by many arbitrageurs, both i and P tend to rise, so $V (1 + i) \cdot P$ diminishes.

Prices of assets as present values

• The future value of the T-bill is *V*. With interest rate *i*, the present discounted value of *V* is

$$\frac{1}{1+i}$$
 V, where $\frac{1}{1+i}$ is the discount factor.

• Therefore, the condition

$$P = \frac{V}{1+i}$$

states that the price of a T-bill coincides with the present discounted value of its face (future) value.

Equalization of rates of return

- It is reasonable to expect the equalization of the interest rates of all financial assets, for otherwise the assets with smaller rate would have no demand.
- The interest rate i_B implicit in the T-bill is $i_B = \frac{V P}{P}$ and i represents the interest rate of a loan.
- Accordingly, the equalization $i = i_B$ of rate leads to

$$i = i_{\rm B} = \frac{V - P}{P} = \frac{V}{P} - 1$$
, so $1 + i = \frac{V}{P}$.

• Solving for *P* yields the condition $P = \frac{V}{1+i}$.

The real side

- The <u>real side</u> of an economy comprises all the activities related to the production, exchange, and consumption of goods.
- The fundamental accounting identities represent outcomes of the working of the real side.
- For the short-run of an economy, the main variables summarizing what occurs in the real side are the <u>real GDP</u>, the <u>inflation rate</u> associated with the CPI, and the <u>unemployment rate</u>.

T

The financial side

- The <u>financial side</u> of an economy comprises all the activities related to the issuing, purchasing, and reselling of <u>financial assets</u>.
- The (nominal) <u>interest rate</u> is one of the main variables summarizing what occurs in the financial side. It is probably the main price in that side.
- As regards quantities, one of the most important is the amount of money in the economy, which is called <u>money stock</u>, money supply, or monetary mass. Several ways exist of measuring that mass.

Monetary aggregates

- Monetary aggregates are technical ways of measuring the amount of (and defining) money.
- M0 = monetary base = high-powered money = E + R
- E = currency held by the public (cash)
- R = bank reserves = currency in bank vaults + the banks' deposits at the central bank
- M1 = E + D
- D = deposits = non-interest-bearing accounts at banks
- M2 = M1 + savings deposits
- M3 = M2 + time deposits + others

Technical definitions of money (ECB)

- Narrow money (M1) includes currency, i.e. banknotes and coins, as well as balances which can immediately be converted into currency or used for cashless payments.
- "Intermediate" money (M2) comprises narrow money (M1) and, in addition, deposits with a maturity of up to two years and deposits redeemable at a period of notice of up to three months. Depending on their degree of moneyness, such deposits can be converted into components of narrow money.
- Broad money (M3) comprises M2 and marketable instruments issued by the MFI (Monetary Financial Institutions) sector. Certain money market instruments (money market fund shares/units and repurchase agreements) are included in this aggregate. A high degree of liquidity and price certainty make these instruments close substitutes for deposits.

 89

Relationship between M0 and M1

- The <u>cash reserve ratio</u> r = R/D is the amount of reserves banks must hold per euro of deposit. It is the <u>percent of deposits banks cannot lend</u>.
- Define l = E/D to be the amount of currency that people hold per euro of deposits (<u>liquidity ratio</u>).
- The money multiplier is $mm = \frac{1+l}{r+l}$.
- It then follows that M1 = $mm \cdot M0$, so mm = M1/M0. Hence, if mm remains constant, $\Delta M1 = mm \cdot \Delta M0$.

90

The money multiplier

- Calling M1 the money stock, the money multiplier *mm* indicates how many units of money stock is generated by one unit of monetary base.
- In fact, M1 = E + D and l = E/D imply M1 = lD + D = D(1 + l). In addition, M0 = E + R, l = E/D, and r = R/D imply M0 = lD + rD = D(r + l). Therefore,

$$\frac{M1}{M0} = \frac{D(1+l)}{D(r+l)} = \frac{1+l}{r+l} = mm.$$

• In sum, M1 (the money stock) is a fixed multiple (mm) of M0 (the monetary base).

- Suppose individual *i* steals 6,000€ from the ECB (the same effects would happen if the ECB purchased something from *i* and paid 6,000€).
- With l = 0.2, i must allocate the 1,000 \in in cash and deposits to make the increase in cash ΔE divided by the increase of deposits ΔD be 0.2, so $\Delta D = 5 \cdot \Delta E$. Since $\Delta E + \Delta D = 6,000$, $\Delta E = 1,000$ and $\Delta D = 5,000$.
- As a result, i deposits 5,000 on a bank. Suppose r = 0.1. This means that the bank must hold $500 \in$ as reserves and may lend $4,500 \in$. Assume people are willing to borrow any amount offered by banks.

- Now, the people borrowing the 4,500€ will spend this money purchasing goods. The sellers of the goods will then receive 4,500€ and they will face the same situation as i at the beginning: they must retain a part ΔE in cash and deposit the rest $4,500 \Delta E$ on banks so that the ratio is 0.2.
- In this case, $\Delta E = 750$ and $\Delta D = 3,750$. Of these deposits, banks hold $r \cdot \Delta D = 375$ as reserves and offer the rest (3,375 \in) to potential borrowers.
- And the cycle recommences: borrowers spend 3,375 and sellers maintained a part of 3,375 in cash (562.5) and deposit the rest (2,812.5) on banks.

93

- The initial robbery has increased M0 by 6,000.
- Deposits have grown continuously: 5,000 + 3,750 + 2,812.5 + 2,109.375 + ... In the limit, the sum converges to 20,000.
- What fraction of the 6,000 is finally held in cash? The sum 1,000 + 750 + 562.5 + 421.875 + ..., which converges to 4,000.
- Since M0 = E + R, Δ M0 = Δ E + Δ R. That is, 6,000 = 4,000 + Δ R. Thus, Δ R = 2,000. This is also the value to which the sum 500 + 375 + 281.25 + 210.9375 + ... converges.

- M1 = E + D yields Δ M1 = Δ E + Δ D. Given that Δ E = 4,000 and Δ D = 20,000, Δ M1 = 24,000.
- To recap, an increase of 6,000 in the monetary base has multiplied itself into an increase of 24,000 in the money stock.
- This suggests that the money multiplier must be 4: 6,000 have been transformed into 24,000. In effect, mm = (1 + l)/(r + l) = (1 + 0.2)/(0.1 + 0.2) = 12/3 = 4. The money stock is four times the monetary base and $\Delta M1 = mm \cdot \Delta M0 = 4 \cdot 6,000 = 24,000$.

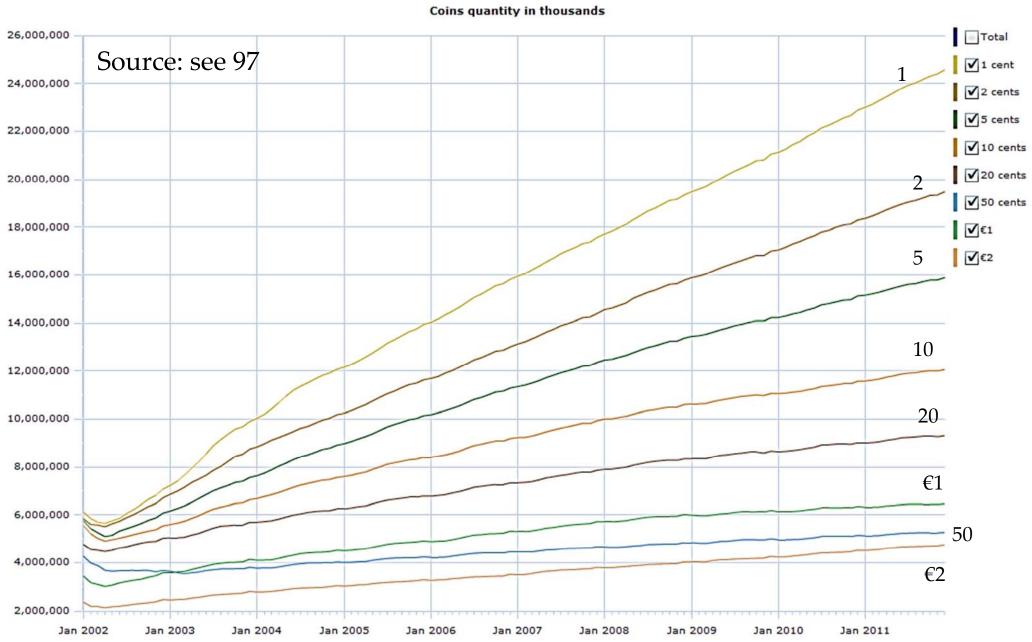
The money multiplier process

• The example shows that the money multiplier captures the total effect on the currency held by the people and the deposits generated by the process

```
... \Rightarrow \uparrow deposits \Rightarrow \uparrow loans \Rightarrow \uparrow expenditures \Rightarrow ... \Rightarrow \uparrow revenues \Rightarrow \uparrow deposits \Rightarrow \uparrow loans \Rightarrow ...
```

- This proces illustrates the <u>interaction between the financial side</u> (deposits and loans) <u>and the real side</u> (purchases of goods).
- The reverse may also occur: \downarrow deposits $\Rightarrow \downarrow$ loans $\Rightarrow \downarrow$ expenditures $\Rightarrow \downarrow$ revenues $\Rightarrow \downarrow$ deposits ...

Table I: Euro banknotes, quantities


(millions, unless otherwise indicated, not seasonally adjusted)

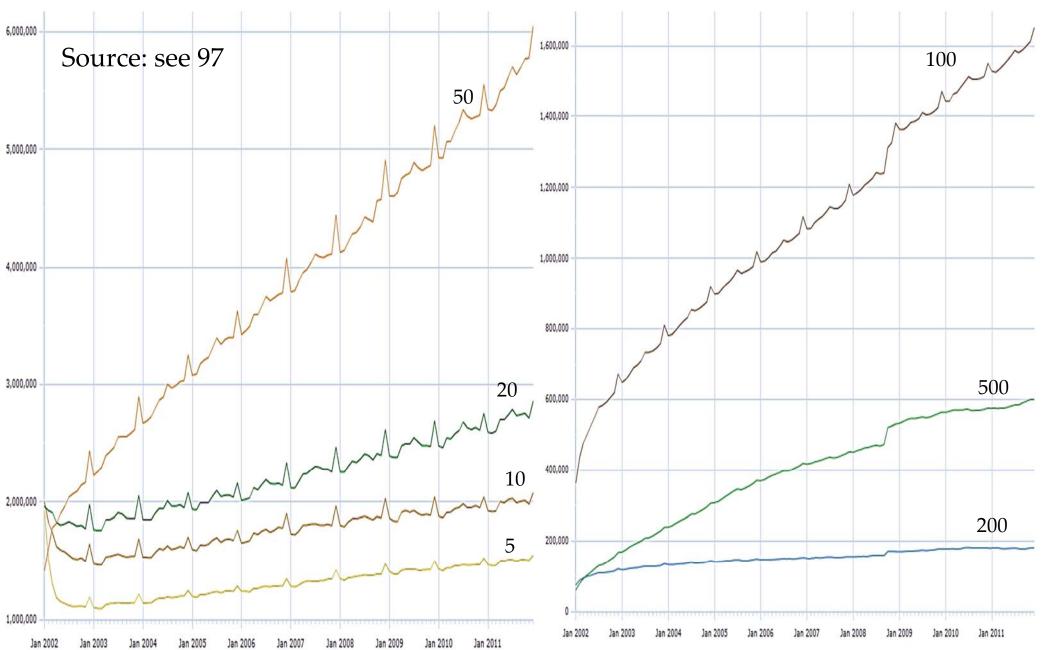

	TOTAL	500 EUR	200 EUR	100 EUR	50 EUR	20 EUR	10 EUR	5 EUR				
	% share of total banknotes (circulation of euro banknotes)											
2011 Dec. (p)	100.0	4.0	1.2	11.0	40.4	19.1	13.9	10.3				
		Circulation o	f euro banknotes (ou	itstanding amount, en	d of period)							
2007 2008 2009 2010 2011 ^(p)	12,114 13,116 13,643 14,171 14,948	453 530 564 576 599	156 170 178 181 181	1,209 1,381 1,472 1,551 1,650	4,442 4,912 5,199 5,550 6,045	2,468 2,618 2,690 2,752 2,853	1,965 2,030 2,042 2,039 2,073	1,421 1,476 1,498 1,522 1,546				
2011 Q2 Q3 Q4 ^(p)	14,224 14,314 14,948	581 591 599	179 179 181	1,571 1,588 1,650	5,621 5,700 6,045	2,741 2,744 2,853	2,020 2,005 2,073	1,511 1,507 1,546				
2011 Oct. Nov. Dec. ^(p)	14,418 14,371 14,948	595 600 599	179 180 181	1,599 1,612 1,650	5,769 5,780 6,045	2,755 2,713 2,853	2,012 1,982 2,073	1,509 1,504 1,546				

Table 3: Euro coins, quantities

(millions, unless otherwise indicated, not seasonally adjusted)

	TOTAL	2 EUR	1 EUR	50 CENT	20 CENT	10 CENT	5 CENT	2 CENT	1 CENT
			% share of tota	l coins (circulation	of euro coins)	•	•	•	
2011 Dec. (p)	100.0	4.9	6.6	5.4	9.5	12.3	16.2	19.9	25.1
8		Circ	ulation of euro co	oins (outstanding a	nount, end of perio	od)			
2007 2008 2009 2010 2011 ^(p)	76,298 82,314 87,457 92,894 97,760	3,811 4,033 4,264 4,521 4,742	5,718 6,015 6,184 6,345 6,458	4,657 4,835 5,005 5,143 5,265	7,855 8,336 8,665 9,021 9,314	9,927 10,597 11,061 11,566 12,058	12,359 13,376 14,218 15,118 15,879	14,394 15,779 17,000 18,299 19,474	17,579 19,343 21,059 22,880 24,570
2011 Q2 Q3 Q4 ^(p)	95,649 96,747 97,760	4,649 4,680 4,742	6,422 6,439 6,458	5,227 5,252 5,265	9,222 9,292 9,314	11,859 11,978 12,058	15,534 15,711 15,879	18,957 19,222 19,474	23,779 24,172 24,570
2011 Oct. Nov. Dec. ^(p)	97,095 97,190 97,760	4,691 4,706 4,742	6,435 6,431 6,458	5,247 5,242 5,265	9,308 9,278 9,314	12,008 12,001 12,058	15,773 15,786 15,879	19,326 19,344 19,474	24,308 24,403 24,570

l Quantities (milions)

Banknotes value in thousands euro

