## The exchange rate

- The nominal exchange rate $e$ (or, for short, exchange rate) between two currencies is the price of one currency in terms of the other. It allows domestic purchasing power to be spent abroad.
- If $e=2 \$ / €$, one euro can be traded for two dollars: the price in dollars of one euro is two dollars.
- The inverse $e^{\prime}=\frac{1}{2} \$ / €$ of $e=2 \$ / €$ shows how many euros can be traded for one dollar: the price in euros of one dollar is 0.5 euros. Accordingly, both $e$ and $e^{\prime}$ express the same information.


## Quoting an exchange rate

- The direct quotation of an exchange rate expresses the exchange rate as
$\frac{\text { domestic (home) currency units }}{\text { foreign currency units }}$.
- In indirect quotation, the exchange rate is quoted as foreign currency units
domestic (home) currency units
- If the euro is the home currency, $e=2 \$ / €$ expresses the exchange rate using indirect quotation (the quotation chosen determines the units of $e$ ).


## Currency appreciation

- A currency $X$ appreciates with respect to another currency $Y$ if the number of units of $Y$ that one unit of $X$ can buy increases.
- When $X$ appreciates with respect to $Y$, currency $X$ becomes more valuable in terms of $Y$.
- Using indirect quotation, the home currency appreciates when the exchange rate rises.
- Using direct quotation, the home currency appreciates when the exchange rate falls.


## Examples of appreciation

- In passing from $e=1 \$ / €$ to $e^{\prime}=2 \$ / €$, the euro appreciates with respect to the dollar. Initially, one euro could be traded for only one dollar; after the jump in the exchange rate, one euro can be traded for two dollars, so the euro has increased its value.
- In passing from $e=2 € / ¥$ to $e^{\prime}=1 € / ¥$, the euro appreciates with respect to the yen. Initially, two euros were needed to buy one yen; after the fall of the exchange rate, only one euro is required to buy one yen, so the euro has increased its value.


## Currency depreciation

- A currency $X$ depreciates with respect to another currency $Y$ if the number of units of $Y$ that one unit of $X$ can buy diminishes.
- When $X$ depreciates with respect to $Y$, currency $X$ becomes less valuable in terms of $Y$.
- Using indirect quotation, the home currency depreciates when the exchange rate falls.
- Using direct quotation, the home currency depreciates when the exchange rate rises.


## Examples of depreciation

- In passing from $e=2 \$ / €$ to $e^{\prime}=1 \$ / €$, the euro depreciates with respect to the dollar. Initially, one euro could be traded for two dollars; after the rise in the exchange rate, one euro can only be traded for one dollar, so the euro has reduced its value.
- In passing from $e=1 € / ¥$ to $e^{\prime}=2 € / \nsupseteq$, the euro depreciates with respect to the yen. Initially, one euro could buy one yen; after the exchange rate falls, one euro can only buy 0.5 yen, so the euro has lost value.

|  | 踦 USD | He GBP | $1+1$ CAD | © EUR | \％${ }_{\text {\％}}$ AUD |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 嫘 | 1 | 0.59676 | 1.10661 | 0.72389 | 1.11928 |  |  |  |  |  |
| 迷 | 1.67571 | 1 | 1.85436 | 1.21302 | 1.87559 | 婜 USD |  | $\begin{gathered} \text { CAD } \\ 1.11317 \end{gathered}$ |  |  |
| $1+1$ | 0.90366 | 0.53927 | 1 | 0.65415 | 1.01145 | 1.67117 | 1 | 1.86029 | 1.21168 | 1.86538 |
| ■ | 1.38143 | 0.82439 | 1.52871 | 1 | 1.54621 | 898 | 37 | 1 | 0.65134 | ． 0227 |
| \％ | 0.89343 | 0.53317 | 0.98868 | 0.64674 | 1 | 1.37921 0.89589 | 0.82530 0.53608 | 1.53529 | 0.64956 | 1.53950 |
| $1 €$ exchanges for 1.38143 \＄ |  |  | Refresh in 0：33｜Feb 28， 2014 17：28 UTC |  |  | 0.89589 |  |  |  |  |


|  | 帮 USD |  | I－1 CAD | E EUR | \％AUD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 㖓 | 1 | 0.62990 | 0.99322 | 0.75169 | 0.95072 |
| د10 | 1.58756 | 1 | 1.57680 | 1.19336 | 1.50932 |
| $1+1$ | 1.00682 | 0.63420 | 1 | 0.75682 | 0.95720 |
| 『 | 1.33033 | 0.83797 | 1.32131 | 1 | 1.26476 |
| \％ | 1.05184 | 0.66255 | 1.04471 | 0.79066 | 1 |
| $1 €$ exchanges for 1.33033 \＄ |  |  | Refresh in 0：52｜Jan 21， 2013 11：29 UTC |  |  |


| http：／／www．x－rates．com／ |  | －USD | GBP |  | －EUR | －${ }^{\text {a }}$ AUD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 国 | 1 | 1.58437 | 0.99672 | 1.33879 | 1.0683 |
|  | ${ }^{\text {H }}$ | 0.631162 | 1 | 0.629092 | 0.844999 | 0.674273 |
|  | ［＾\｜ | 1.00329 | 1.58959 | 1 | 1.3432 | 1.07182 |
| $1 €$ exchanges for 1.33879 \＄ | － | 0.746938 | 1.18343 | 0.744488 | 1 | 0.797957 |
| $7 \quad 1$ \＄exchanges for $0.746938 €$ | 잢ํ | 0.936062 | 1.48307 | 0.932992 | 1.25319 | 1 |
|  | Monday，February 27， 2012 |  |  |  |  |  |


| Alphabetical order Euro 4 | 1.00 EUR ${ }^{\text {P }}$ V | Jan 21, 2013 11:10 UTC <br> inv. 1.00 EUR $\Delta$ V | Alphabetical order Euro $\triangle$ | 1.00 EUR A V | Feb 28, 2014 17:08 UTC inv. 1.00 EUR $\Delta$ V |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Argentine Peso | 6.584374 | 0.151875 | Argentine Peso | 10.891473 | 0.091815 |  |
| Australian Dollar | 1.264280 | 0.790964 | Australian Dollar | 1.545866 | 0.646887 |  |
| Bahraini Dinar | 0.501556 | 1.993795 | Bahraini Dinar | 0.520752 | 1.920300 |  |
| Botswana Pula | 10.641423 | 0.093972 | Botswana Pula | 12.220769 | 0.081828 |  |
| Brazilian Real | 2.714622 | 0.368375 | Brazilian Real | 3.223470 | 0.310225 |  |
| British Pound | 0.838164 | 1.193083 | British Pound | 0.824268 | 1.213197 | 8 |
| Bruneian Dollar | 1.635636 | 0.611383 | Bruneian Dollar | 1.749708 | 0.571524 | $\stackrel{7}{11}$ |
| Bulgarian Lev | 1.955129 | 0.511475 | Bulgarian Lev | 1.955889 | 0.511276 | $\stackrel{5}{5}$ |
| Canadian Dollar | 1.321215 | 0.756879 | Canadian Dollar | 1.529190 | 0.653941 | $\varepsilon$ |
| Chilean Peso | 628.034927 | 0.001592 | Chilean Peso | 771.531557 | 0.001296 | $\stackrel{\sim}{\propto}$ |
| Chinese Yuan Renminbi | 8.279226 | 0.120784 | Chinese Yuan Renminbi | 8.485542 | 0.117848 | ? |
| Colombian Peso | 2356.124402 | 0.000424 | Colombian Peso | 2826.785773 | 0.000354 | E |
| Croatian Kuna | 7.578196 | 0.131958 | Croatian Kuna | 7.648890 | 0.130738 |  |
| Czech Koruna | 25.579354 | 0.039094 | Czech Koruna | 27.326648 | 0.036594 | $\stackrel{4}{0}$ |
| Danish Krone | 7.463196 | 0.133991 | Danish Krone | 7.462659 | 0.134000 | $\stackrel{7}{7}$ |
| Emirati Dirham | 4.885744 | 0.204677 | Emirati Dirham | 5.072475 | 0.197142 | ¢ |
| Hong Kong Dollar | 10.313085 | 0.096964 | Hong Kong Dollar | 10.717523 | 0.093305 | 0 |
| Hungarian Forint | 292.753917 | 0.003416 | Hungarian Forint | 309.803248 | 0.003228 | +10 |
| Icelandic Krona | 170.967649 | 0.005849 | Icelandic Krona | 156.533756 | 0.006388 | $\stackrel{+}{¢}$ |
| Indian Rupee | 71.727447 | 0.013942 | Indian Rupee | 85.313901 | 0.011721 | 3 |
| Indonesian Rupiah | 12800.301851 | 0.000078 | Indonesian Rupiah | 15985.908788 | 0.000063 | 3 |
| Iranian Rial | 16324.564494 | 0.000061 | Iranian Rial | 34523.519976 | 0.000029 | 을 |
| Israeli Shekel | 4.977133 | 0.200919 | Israeli Shekel | 4.817120 | 0.207593 |  |
| Japanese Yen | 119.046752 | 0.008400 | Japanese Yen | 140.970921 | 0.007094 | Xrate |


| Malaysian Ringgit | 4.036420 | 0.247744 |
| :--- | ---: | ---: |
| Mauritian Rupee | 40.875832 | 0.024464 |
| Mexican Peso | 16.880615 | 0.059240 |
| Nepalese Rupee | 114.989998 | 0.008696 |
| New Zealand Dollar | 1.591461 | 0.628354 |
| Norwegian Krone | 7.460848 | 0.134033 |
| Omani Rial | 0.511919 | 1.953434 |
| Pakistani Rupee | 130.008042 | 0.007692 |
| Philippine Peso | 53.978611 | 0.018526 |
| Polish Zloty | 4.178300 | 0.239332 |
| Qatari Riyal | 4.842909 | 0.206487 |
| Romanian New Leu | 40.285064 | 0.229727 |
| Russian Ruble | 1.635636 | 0.024823 |
| Saudi Arabian Riyal | 11.811669 | 0.200457 |
| Singapore Dollar | 1415.720836 | 0.611383 |
| South African Rand | 168.433635 | 0.084662 |
| South Korean Won | 8.702729 | 0.000706 |
| Sri Lankan Rupee | 1.240458 | 0.005937 |
| Swedish Krona | 38.549246 | 0.114906 |
| Swiss Franc | 39.554227 | 0.806154 |
| Taiwan New Dollar | 2.534559 | 0.025941 |
| Thai Baht | 5.719765 | 0.025282 |
| Trinidadian Dollar | 0.117171 |  |
| Turkish Lira | 0.426400 |  |
| US Dollar | Venezuelan Bolivar | 0.174832 |


| Malaysian Ringgit | 4.524648 | 0.221012 |  |
| :---: | :---: | :---: | :---: |
| Mauritian Rupee | 41.580128 | 0.024050 | \% |
| Mexican Peso | 18.267719 | 0.054741 | $\stackrel{\text { F }}{ }$ |
| Nepalese Rupee | 136.957334 | 0.007302 | $\stackrel{\sim}{\sim}$ |
| New Zealand Dollar | 1.645850 | 0.607589 | ~ |
| Norwegian Krone | 8.278334 | 0.120797 | $\stackrel{\text { ¢ }}{+}$ |
| Omani Rial | 0.531593 | 1.881138 |  |
| Pakistani Rupee | 144.860690 | 0.006903 | 8 |
| Philippine Peso | 61.652102 | 0.016220 | $\stackrel{11}{4}$ |
| Polish Zloty | 4.165675 | 0.240057 | 5 |
| Qatari Riyal | 5.028558 | 0.198864 | $\stackrel{1}{0}$ |
| Romanian New Leu | 4.504040 | 0.222023 | $\stackrel{\sim}{\sim}$ |
| Russian Ruble | 49.531535 | 0.020189 | 保 |
| Saudi Arabian Riyal | 5.179218 | 0.193079 | $\varepsilon$ |
| Singapore Dollar | 1.749708 | 0.571524 | $\stackrel{+}{4}$ |
| South African Rand | 14.817695 | 0.067487 | $\stackrel{1}{0}$ |
| South Korean Won | 1477.142470 | 0.000677 | 0 |
| Sri Lankan Rupee | 180.526936 | 0.005539 | 팅 |
| Swedish Krona | 8.853300 | 0.112952 | 0 |
| Swiss Franc | 1.216035 | 0.822345 | $\stackrel{+}{0}$ |
| Taiwan New Dollar | 41.846651 | 0.023897 | $\stackrel{1}{\times}$ |
| Thai Baht | 44.911722 | 0.022266 | 3 |
| Trinidadian Dollar | 8.813850 | 0.113458 | 3 |
| Turkish Lira | 3.039791 | 0.328970 | $\pm$ |
| US Dollar | 1.380941 | 0.724144 | - |
| Venezuelan Bolivar | 8.699927 | 0.114943 | Xrat |








## The currency (foreign exchange) market

- It is the market for the trading of currencies.
- It is the largest and more liquid financial market in the world.
- Average trading in currency markets in April 2013: $\$ 5.3$ trillion per day ( $\$ 4.0$ trillion in April 2010; \$3.3 trillion in April 2007). It is estimated that about $70 \%$ to $90 \%$ of all the transacctions are speculative.
- The main traders are banks. Interbank trading accounts for more of the $50 \%$ of all the transactions.


| 1 | [- United States dollar | USD (\$) | 87.0\% |
| :---: | :---: | :---: | :---: |
| 2 | - Euro | EUR ( $¢$ ) | 33.4\% |
| 3 | - Japanese yen | JPY ( $¥$ ) | 23.0\% |
| 4 | Pound sterling | GBP (£) | 11.8\% |
| 5 | - Australian dollar | AUD (\$) | 8.6\% |
| 6 | $\pm$ Swiss franc | CHF (Fr) | 5.2\% |
| 7 | - +1 Canadian dollar | CAD (\$) | 4.6\% |
| 8 | -1.1 Mexican peso | MXN (\$) | 2.5\% |
| 9 | - Chinese yuan | CNY ( $\ddagger$ ) | 2.2\% |
| 10 | New Zealand dollar | NZD (\$) | 2.0\% |
| 11 | HeSwedish krona | SEK (kr) | 1.8\% |
| 12 | - Russian ruble | RUB ( ${ }_{\text {w }}$ ) | 1.6\% |
| 13 | * Hong Kong dollar | HKD (\$) | 1.4\% |
| 14 | resingapore dollar | SGD (\$) | 1.4\% |
| 15 | c. Turkish lira | TRY ( $\ddagger$ ) | 1.3\% |

Most traded currencies by value \% daily share (April 2013)
\% daily share (April 2010)

| 프 United States dollar 84.9\% |  |
| :---: | :---: |
| - Euro | 39.1\% |
| - Japanese yen | 19.0\% |
| Pound sterling | 12.9\% |
| - Australian dollar | 7.6\% |
| + Swiss franc | 6.4\% |
| $1 \downarrow 1$ Canadian dollar | 5.3\% |
| - Hong Kong dollar | 2.4 |
| meswedish krona | 2.2\% |
| mew Zealand dollar | 1.6\% |
| :o: South Korean won | 1.5\% |

## The currency market model

- The currency market is modelled as a competitive market.
- In this market, the euro is the home currency and the dollar is the foreign currency.
- Quantity is the quantity of euros. Price is the exchange rate $\$ / €$ quoted indirectly.
- The market demand function $D_{€}$ is the demand for euros and slopes downward. The upward sloping market supply function $S_{€}$ is the supply of euros.


## Equilibrium exchange rate



## Demand for euros

- The demand for euros is, at the same time, supply of dollars.
- The agents demanding euros have dollars but want to buy European goods and/or financial assets.
- The demand function slopes downward because a reduction in $e$ means that fewer dollars are needed to purchase an euro. This makes European goods and financial assets comparatively cheaper. To buy more such goods and assets, more euros are demanded, so $\downarrow e \Rightarrow$ quantity demanded of euros.


## Supply of euros

- The supply of euros is, at the same time, demand for dollars.
- The agents supplying euros want dollars to buy American goods and/or financial assets.
- The supply function slopes upward because a rise in $e$ means that more dollars are given in exchange for one euro, making American goods and financial assets comparatively cheaper. To buy more such goods and assets, more dollars are needed, so more euros are supplied. So $\uparrow e \Rightarrow$ qquantity supplied of euros.
$\uparrow \mathrm{GDP}_{\mathrm{EU}} \Rightarrow \uparrow \mathrm{IM}_{\mathrm{EU}} \Rightarrow \uparrow D_{\$} \Rightarrow \uparrow S_{\epsilon} \Rightarrow \downarrow e$

$\uparrow \mathrm{GDP}_{\mathrm{US}} \Rightarrow \uparrow \mathrm{IM}_{\mathrm{US}} \Rightarrow \uparrow D_{\epsilon} \Rightarrow \uparrow e$

$\uparrow \pi_{\mathrm{EU}} \Rightarrow{ }^{\mathbb{1}} \uparrow \mathrm{IM}_{\mathrm{EU}} \Rightarrow \uparrow D_{\$} \Rightarrow \uparrow S_{\epsilon} \Rightarrow \downarrow e$
inflation rate and exchange rate


interest rate and exchange rate



## Arbitrage and speculation

- Arbitrage refers to transactions that, taking advantage of price differences, generate a sure profit.
- Speculation is the same as arbitrage with the only difference that transactions do not guarantee a sure profit: whereas a speculator is taking a risk, an arbitrageur obtains a risk-free profit.
- Almost nothing lies outside the scope of arbitration and speculation: commodities, bonds, currencies, shares, options, real estate, derivatives, futures contracts...


## Spatial arbitrage /1

- Spatial arbitrage exploits price differences in different locations.
- Suppose $e_{L}=2 \$ / €$ in London and $e_{N}=3 \$ / €$ in New York. An arbitrageur would buy euros where they are "cheap" (in London, where buying $€ 1$ just takes $\$ 2$ ) to sell them were they are "expensive" (in NY, where you need $\$ 3$ to get $€ 1$ ).
- The sequence $€ 1 \rightarrow{ }^{\text {sold in } N Y} \$ 3 \rightarrow$ sold in $\mathrm{L} € 1.5$ generates a sure profit of $€ 0.5$ per euro (a $50 \%$ profit rate). It may be continued: $€ 1 \rightarrow \$ 3 \rightarrow € 1.5 \rightarrow \$ 4.5 \rightarrow$ $€ 2.25 \rightarrow \$ 6.75 \rightarrow € 3.375 \rightarrow \ldots$


## Spatial arbitrage /2

- Those transactions eventually alter prices. By buying euros in London, $D_{€}$ shifts to the right and $\uparrow e$ in London: the euro appreciates where it is "cheap".
- By selling euros in NY, arbitrageurs shift $S_{€}$ to the right in NY, so $\downarrow e$ in NY: the euro depreciates where it is "expensive".
- So $e_{L}=2 \$ / €$ rises and $e_{N}=3 \$ / €$. Eventually (may in a matter of minutes), both prices will converge to some value between 2 and 3 . Reached that point, spatial arbitrage is no longer possible.


## Triangular (or triangle) arbitrage $/ 1$

- Based on the idea of taking advantage of price imbalances involving at least three currencies.
- Let exchange rates be $2 \$ / €, 3 ¥ / \$$, and $4 ¥ / €$. Triangular arbitrage can only occur if the product of two rates is not equal to the third one (in the product one of the currencies should cancel out).
- The 2 nd and 3rd cannot be meaningfully multiplied, as no currency cancels out in $3 ¥ / \$ \cdot 4 ¥ / €$. By taking the inverse $\frac{1}{3} \$ / ¥$ of $3 ¥ / \$$ a meaningful product obtains: $\frac{1}{3} \$ / ¥ \cdot 4 ¥ / €=\frac{4}{3} \$ / € \neq 2 \$ / €$. This means that there are arbitrage opportunities.


## Triangular arbitrage /2

- There are 6 exchange sequences: $€ \rightarrow \$ \rightarrow ¥, € \rightarrow ¥$ $\rightarrow \$, \$ \rightarrow € \rightarrow ¥, \$ \rightarrow ¥ \rightarrow €, ¥ \rightarrow \$ \rightarrow €, ¥ \rightarrow € \rightarrow \$$.
- But the 1st is equivalent to both the 3rd and the 5 th because all generate the same cycle $€ \rightarrow \$ \rightarrow ¥ \rightarrow €$.
- And the 2nd, 4th, and 5 th are equivalent because all generate the same cycle $€ \rightarrow ¥ \rightarrow \$ \rightarrow €$. So there are two ways of trying to exploit price differences, represented by these two exchange cycles.



## Triangular arbitrage / 3

- One the cycles generates profits; the other, losses. The right-hand cycle yields a loss: $€ 1 \rightarrow ¥ 4 \rightarrow \$ 4 / 3$ $\rightarrow € 2 / 3$. The left-hand one produces a profit: $€ 1 \rightarrow$ $\$ 2 \rightarrow ¥ 6 \rightarrow$ €1.5.
- As noticed, $\frac{\$}{¥} \cdot \frac{¥}{€}<\frac{\$}{€}$ : going directly from $\$$ to $€$ is better than going indirectly through $¥$. The step " $€ 1$ $\rightarrow \$ 2^{\prime \prime}$ makes the dollar appreciate, so $\$ / €$ falls. The step " $\$ 2 \rightarrow ¥ 6$ " makes the yen appreciate, so $\$ / ¥$ raises. And the step " $¥ 6 \rightarrow € 1.5$ " makes the euro appreciate, so $¥ / €$ rises. Hence, the gap between going directly or indirectly is being closed.


## Triangular arbitrage / 4


$€$ are sold



with arbitrage

## Becoming a millionaire in one day /1

- Let $e=2 \$ / €$ today and suppose I expect $e^{\prime}=1.9 \$ / €$ tomorrow. Imagine that the daily interest rate is $3 \%$. If my expectation is correct, I can become a millionaire tomorrow. This is the recipe.
- I ask for a loan of, say, €100 million. Tomorrow I will have to return this amount plus € $€ 00,000$. With my $€ 100$ million, and given the rate $e=2 \$ /$ $€$, I purchase $\$ 200$ million. I could lend those dollars for a day, but the day has been hard enough. So I just wait for tomorrow.


## Becoming a millionaire in one day /2

- Tomorrow comes and I am right. I then sell the $\$ 200$ million at the rate $e^{\prime}=1.9 \$ / €$ and get $€ 105,263,157$ (the additional cents, left as a tip).
- I next repay my $€ 100$ million debt plus the loan interest of $€ 300,000$.
- And I finally search for a fiscal paradise that would welcome my remaining $€ 4,963,157 \ldots$
- What if I am wrong and, for instance, $e^{\prime}=2.1 \$ / €$. Then I have a little problem, since, at that rate, I can only obtain $€ 95,238,095.23$ from my $\$ 200$ million.


## Short selling (shorting, going short)

- Wikipedia: "Short-selling [...] is the practice of selling assets, usually securities, that have been borrowed from a third party [...] with the intention of buying identical assets back at a later date to return to the lender" and make a profit.
- "The short seller hopes to profit from a decline in the price of the assets between the sale and the repurchase, as the seller will pay less to buy the assets than the seller received on selling them. Conversely, the short seller will incur a loss if the price of the assets rises."


## Going short vs going long

- Going long is the opposite strategy: an asset is bought expecting that its price will raise.
- The millionaire example is an instance of short selling: I assumed a debt in euros because I expected a depreciation of the euros. Hence, by purchasing dollars, I expected to obtain next more euros for the same dollars, so that the debt could be repaid with cheaper euros.
- To limit market volatility, some restrictions to short selling were imposed in September 2008. Short selling is capable of triggering currency crises.


## Fixed vs floating exchange rates

- There are two basic exchange rate regimes.
- In a fixed exchange rate regime the government picks an official value of the exchange rate between the domestic currency and some foreign currency (or group of them) and assumes the compromise of defending that value in the foreign exchange market by buying or selling the domestic currency.
- In a floating exchange rate regime the government lets the market determine the exchange rate. The rest of regimes combine these two (for instance, a floating rate within a fixed fluctuation band).


## Currency market intervention /1

- Let $e^{\prime}$ be the fixed exchange rate, with the central bank instructed by the govt. to sustain that value.
- Imagine that, for some reason, the exchange rate in the market is $e<e^{\prime}$ (point $a$ in the graph on slide 40). Having $e^{\prime}$ as fixed exchange rate means that the central bank must intervene to place the market equilibrium along the horizontal line with value $e^{\prime}$.
- It may appear that the central bank may either shift $S_{€}$ to reach point $b$ or shift $D_{€}$ to reach point $c$. The first option is not available, since the central bank cannot force a reduction in the supply of euros.


## Currency market intervention /2



## Currency market intervention /3

- What the central bank can do is to increase the demand for euros. Hence, to reach value $e^{\prime}$ from point $a$, the central bank must demand enough euros to shift the market demand function from $D_{€}$ to $D^{\prime}{ }_{€}$.
- The problem is that, at point $a$, the market does not value the euro as the government intends. The solution is to demand more euros to rise its value.
- But the purchase of euros to rise the value from $e$ to $e^{\prime}$ must be paid in dollars. So in passing from $a$ to $c$, the central bank spends dollars. Obviously, to sell dollars the central bank must have them.


## Currency crises /1

- A currency crises occurs when a fixed exchange rate cannot be defended (achieved through the intervention of the central bank).
- What if market participants believe that a given rate cannot be defended? They will engage in shortselling: expecting the euro to lose value, they will ask for loans in euros, and buy dollars with them.
- That shifts $S_{€}$ to the right, so the euro loses value. And here it is a self-fulfilling prophecy: what agents do in response to what they expect to occur contributes to cause what they expect to occur.


## Currency crises /2



## Currency crises / 3

- On slide 43 , the market is initially at 0 . A speculative attack unfolds through a massive sale of euros (to repurchase them later at a smaller rate). This attack shifts $S_{€}$ from $S_{€}^{0}$ to $S_{€}^{1}$, moving the market equilibrium from point 0 to point 1.
- The central bank reacts by selling dollars, shifting $D_{€}$ from $D_{€}^{0}$ to $D_{€}^{1}$. Equilibrium moves from 1 to $1^{\prime}$.
- A second attack shifts $S_{€}$ from $S_{€}^{1}$ to $S_{€}^{2}$, reaching 2. If the central bank still has enough dollar reserves, equilibrium may be moved to $2^{\prime}$. If not, the attack is successful and market equilibrium remains at 2 .


## Revaluation and devaluation

- A devaluation is a reduction of the fixed exchange rate. It occurs when the government accepts that the former fixed rate cannot be upheld.
- In the previous example, if market participants believe the "right" value to be the one associated with point 2 and the central bank has not enough dollars to sustain any other higher value, declaring the market value to be the new fixed exchange rate means devaluating the exchange rate.
- A revaluation is the opposite of a devaluation: an increase of the fixed exchange rate.


## A famous successful speculative attack

- Took place on the 16th of September, 1992: the Black Wednesday.
- On that date, George Soros became famous for forcing the British government to withdraw from the European Exchange Rate Mechanism (a fixed exchange rate agreement, predecessor of the euro).
- Soros made over $\$ 1$ billion by short selling pound sterlings. Newspapers revealed that the British Treasury spent $£ 27$ billion trying to sustain the value of the pound.


## The impossible trinity

- Due to R. Mundell, it is the trilemma according to which it is not possible to simultaneously have
- a fixed exchange rate,
- an independent monetary policy, and
- free international capital mobility $=\underline{\text { no capital }}$ control.
- Justification: if $e$ is fixed and a monetary policy that expands M1 is applied, then domestic $i$ falls, so $e$ falls. To defend $e$, domestic currency must be bought in the currency market, so M1 is reduced.


## Only two out of three possible

- Independent monetary policy + no capital control $\Rightarrow$ exchange rate must float (UK, Canada).
- Fixed exchange rates + free mobility of capital $\Rightarrow$ no independent monetary policy (the countries of the eurozone).
- Fixed exchange rates + independent monetary policy $\Rightarrow$ capital controls needed (China until recently).


## Real exchange rate

- The real exchange rate $e_{r}$ is the nominal exchange rate expressed in terms of goods.
- Interpreting "goods" as the basket of goods in the CPI, $e_{r}$ is the price of the basket in one economy in terms of the basket of the other. Specifically:

$$
e_{r}=\frac{P}{P^{\star}}
$$

where $e$ is quoted indirectly, $P$ is the domestic CPI, and $P^{*}$ is the foreign CPI. So $e_{r}$ is $e$ adjusted by the price indices of the two economies. Note that $e_{r}$ is measured in foreign baskets/domestic basket.

## The real exchange rate: an example

- Suppose $e=4 \$ / €, P=100 € /$ basket $_{\text {Eu }}$, and $P^{*}$ $=200 \$ /$ basket $_{\text {US }}$. With these values, how many baskets $_{\text {US }}$ could be obtained from one basket ${ }_{\mathrm{EU}}$ ?
- As $P=100$, basket ${ }_{\text {EU }}$ could be sold for $€ 100$. At the rate $e=4 \$ / €$, €100 exchange for $\$ 400$. With $\$ 400$ and $P^{*}=200,2$ baskets $_{\text {US }}$ can be purchased.
- This says that the purchasing power of 1 basket $_{\text {EU }}$ is 2 baskets $_{\mathrm{US}}$. That is, $e_{r}=2$ baskets $_{\mathrm{US}} /$ basket $_{\mathrm{EU}}$.
- Applying the formula, $e_{r}=4 \cdot 100 / 200=2$ ( $4 \cdot 100$ is the cost in dollars of the basket ${ }_{\mathrm{EU}}$ ).


## Competitiveness of an economy

- The real exchange real is a measure of competitiveness: the smaller $e_{r}$, the higher the competitiveness of the domestic economy.
- For instance, in passing from $e_{r}=1$ to $e_{r}=2$ domestic competitiveness is eroded: with $e_{r}=1$, foreigners could obtain a domestic basket with just one of their baskets; with $e_{r}=2$, they must deliver 2 of their baskets to get a domestic basket.
- Going from $e_{r}=1$ to $e_{r}=2$ means that it is more expensive for foreigners to purchase our basket, so the domestic economy becomes less competitive.


## Real appreciation \& real depreciation

- A real appreciation is an increase of $e_{r}$ (a loss of domestic competitiveness).
- A real appreciation of the exchange rate means that the domestic basket can buy more foreign baskets: the purchasing power of the domestic basket raises.
- A real depreciation is a decrease of $e_{r}$ (an improvement of domestic competitiveness).
- A real depreciation of the exchange rate means that the domestic basket can buy fewer foreign baskets: the purchasing power of the domestic basket falls.


## Purchasing power parity (PPP)

- PPP is the theory that, in the long run, $e$ moves to make $e_{r}$ equal to 1 , so one domestic basket exchanges for one foreign basket (same purchase power).
- The value of $e$ that makes $e_{r}=1$ is $e_{\mathrm{PPP}}=P^{*} / P$.
- With domestic and foreign baskets being the same, PPP holds that the price of the basket should be the same in both economies when expressed in the same currency: $e \cdot p=P^{*}$, which holds if $e=e_{\mathrm{PPP}}$.
- If $e>e_{\text {PPP }}$, then domestic currency is said to be overvalued (with respect to its parity value). If $e<e_{\text {PPP }}$, it is said to be undervalued.


## PPP and commercial arbitrage /1

- In the absence of transportation costs, PPP can be justified by commercial arbitrage: to buy goods where cheap and to sell them where expensive.
- To illustrate the idea with a simple example, suppose that only one good can be traded between Euroland and the US: Macroeconomic textbooks.
- The price of a textbook in the US is $p^{*}=\$ 100$; in Euroland, $p=€ 50$. Imagine that $e=4 \$ / €$. Hence, the price in dollars of a Euroland textbook is $4 \$ / € \cdot € 50=\$ 200$. This suggests that textbooks are cheap in the US.


## PPP and commercial arbitrage /2

- Commercial arbitrageurs would buy textbooks in the US to subsequently ship them to Euroland. Once sold there, euros are converted into dollars.
- The purchase of books in the US tends to rise $p^{*}$. The sale of those books in Euroland make $p$ fall. The rise in the demand for dollars induces a reduction of $e$.
- Initially, $e \cdot p>p^{*}$. Thanks to arbitrage, $e \cdot p$ tends to fall and $p^{*}$ tends to rise. Eventually, $e \cdot p=p^{*}$. This condition stops arbitrage.


## Over and undervaluation: an example

- With $p^{*}=\$ 100, p=€ 50$, and $e=4 \$ / €$, the euro is overvalued with respect to the dollar. In fact, $e_{\mathrm{PPP}}=p^{*} / p=100 / 50=2 \$ / €$. This is reasonable: since the price of a book in the US doubles the price of a book in Euroland, purchasing power parity demands that $€ 1$ be capable of purchasing $\$ 2$.
- Having $e=4$ instead of $e=2$ implies that the euro has more purchasing power than it should : with $€ 50$, one book can be bought in Euroland; given $e=4$, $€ 50$ can buy 2 books in the US. The euro is the a $100 \%$ overvalued: $\frac{e-e_{\text {PPP }}}{e_{\text {PPP }}}=\frac{4-2}{2}=1=100 \%$.


## Big Mac index

- It is an index set by The Economist to test PPP.
- The basket chosen is the Big Mac (BM).
- The chart shows the under/overvaluation of several currencies with respect to the dollar (on the 22nd Jan 2014).
http://www.economist.com/news/finance-and-economics/21595037-our-bun-loving-guide-currencies-


## The Big Mac index

$\begin{array}{ll}\text { Local currency under(-)/over(+) valuation } \\ \text { against the dollar, \% } & \text { Big Mac pri }\end{array}$
Big Mac price*, \$


| US <br> home <br> economy$\boldsymbol{P}^{*}=\mathrm{BM}$ <br> home <br> price | BM price <br> in $\$=$ <br> $\boldsymbol{P}^{*} / e$ | PPP of <br> $\$=$ <br> $\boldsymbol{P}^{*} / \boldsymbol{P}$ | market $\boldsymbol{e}$ <br> on 22 <br> Jan 2014 | Over $(+)$ <br> under $(-)$ <br> valuation <br> against the $\$$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| US | $\boldsymbol{P = 4 . 6 2}$ | - | - | - | - |
| Brazil | $12.4 \mathrm{R} \$$ | 5.25 | 2.68 | 2.36 | 13.48 |
| UK | $2.79 £$ | 4.63 | $1.66 \$ / £$ | $1.66 \$ / £$ | 0.06 |
| China | $16.6 ¥$ | $2.74 \$$ | $3.59 ¥ / \$$ | $6.05 ¥ / \$$ | -40.68 |
| Eurozone | $3.65 €$ | 4.96 | $1.26 \$ / €$ | $1.35 \$ / €$ | 7.3 |
| India | $95 ₹$ | 1.54 | 20.54 | 61.85 | -66.78 |
| Russia | $89 ~ p y б$ | 2.62 | 19.25 | 33.94 | -43.29 |
| Sweden | 40.7 kr | 6.29 | 8.8 | 6.47 | 35.97 |
| Venezuela | 45 Bs.F. | 7.15 | 9.73 | 6.29 | 54.66 |

## Interpreting the Big Mac index data /1

- In Venezuela, the BM was priced at Bs. F.45. Given the market rate of 6.29 Bs. F./\$, the price in dolars of a BM is $\$ 7.15$. If PPP between Bs. F. and $\$$ held, it should had been $\$ 4.62$ (the US price). With respect to the $\$$, the Bs. F. is overvalued a $\frac{7.15-4.62}{4.62} \approx 54 \%$.
- At the market exchange rate in January 2014, the $\$$ price of the BM in China was $\$ 2.74$. Since the price of the BM in the US was $\$ 4.62$, the yuan was undervalued a $\frac{2.74-4.62}{4.62} \approx 40 \%$ with respect to the $\$$. PPP predicts that the Bolívar fuerte will eventually depreciate and the yuan will appreciate.


## Interpreting the Big Mac index data $/ 2$

- In the China case, undervaluation results from the comparison of $P$ (the US price of the BM) with $P^{*} / e$ (the China price of the BM given the exchange rate).
- Undervaluation follows from the fact that $P^{*} / e<$ $P$, since $2.74<4.62$. Adopting the Chinese perspective as domestic, $1 / e<P / P^{*}$. Whereas $1 / e$ is the market exchange rate (in $\$ / \nexists$ units), $P / P^{*}$ is the PPP exchange rate (in $\$ / ¥$ units as well).
- In fact, $1 / e$ and $P / P^{*}$ can be used to calculate undervaluation: \%undervaluation $=100 \cdot \frac{1 / e-P / P *}{P / P *} \approx$

$$
100 \cdot \frac{1 / 6.05-4.62 / 16.6}{4.62 / 16.6} \approx 100 \cdot \frac{0.165-0.278}{0.278} \approx 40.6 \%
$$






