Multiplier effect / $\mathbf{1}$

$\boldsymbol{A D}$ function $\quad A D=C+I=(4+0.8 \cdot Y \quad \pi)+10=$ $=14+0.8 \cdot Y \quad \pi$
AS function $\quad Y=30 \cdot \pi$
Macroeconomic equilibrium condition $Y=A D$

- In equilibrium, $Y=4+0.8 \cdot Y \quad \pi$, with $Y=30 \cdot \pi$. Hence, $0.2 \cdot Y=14 \pi$. Amb $Y=30 \cdot \pi, 0.2 \cdot 30 \cdot$ $\pi=14 \quad \pi$. That is, $6 \cdot \pi=14 \pi$, so $\pi^{*}=2$ is the equilibrium inflation rate. Given $\pi^{*}=2$, the AS function yields the equilibrium production level Y^{*}
$=30 \cdot 2=60$.

Multiplier effect /2

- The impact on Y^{*} of a change in the $A D$ function is the result of an expenditure multiplier effect.
- Since expenditure $A D$ depends on income Y and, in equilibrium $Y=A D$, the sequence

$$
\Delta A D \rightarrow \Delta Y \rightarrow \Delta A D \rightarrow \Delta Y \rightarrow \ldots
$$

is generated, so a change in $A D$ multiplies itself.

- Example. Let the $A D$ function only depend on C and I, so $A D=C+I$. Let I be constant. Specifically, $C=4+0.8 Y \quad \pi$ and $I=10$ (the 0.8 is the marginal propensity c to consume: which fraction of an additional unit of income is consumed).

Multiplier effect /3

- The $A S$ function is $Y=30 \cdot \pi$. The macroeconomic equilibrium is obtained from the condition $Y=A D$. That is, $Y=4+0.8 \cdot Y \quad \pi+10$. Thus, $0.2 \cdot Y=$ 14π. As $Y=30 \cdot \pi, \pi=2$ (π is a percentage).
- Imagine now that there is an increase in investment, from 10 to 17 (for instance, businessmen become more optimistic).
- To better illustrate the multiplier effect, assume that the inflation rate does not change and remains at 2% (it is as if the $A S$ function were horizontal at $\pi=2$: the economy absorbs any increase in planned expenditure without fuelling inflation).

Multiplier effect /4

- The state of the economy is described by equations $Y=A D$ and $\pi=2$. Hence, $Y=4+0.8 \cdot Y \quad \pi+$ $17=19+0.8 Y$. That is, $0.2 Y=19$, so $Y=95$.
- To sum up, expenditure has only been increased 7 units (from $I=10$ to $I=17$), but production and income have risen 35 units (from $Y=60$ to $Y=95$). This is caused by the multiplier effect. In this case, the multiplier is 5 , which equals $1 /\left(\begin{array}{ll}1 & c\end{array}\right)$.
- When the AS function enters the picture, part of the expenditure is transformed into inflation. With $Y=30 \cdot \pi$ and $A D=4+0.8 \cdot Y \quad \pi+17, \pi^{*}=3$ and $Y^{*}=90$ (inflation eats up 5 units of income).

Temporary shock

$\pi=2$

time	\boldsymbol{Y}	$\boldsymbol{C}=\mathbf{4}+\mathbf{0 . 8} \cdot \boldsymbol{Y} \quad \boldsymbol{\pi}$	\boldsymbol{I}	$\boldsymbol{A D}=\boldsymbol{C}+\boldsymbol{I}$
0	60	$4+0.8 \cdot 60-2=50$	10	60
1	60	$4+0.8 \cdot 60-2=50$	17	$50+17=67$

$$
\Delta Y_{2}=7
$$

2	67	$4+0.8 \cdot 67-2=55.6$	10	$55.6+10=65.6$

$\Delta Y_{3}=1.4$				
3	65.6	$4+0.8 \cdot 65.6-2=54.48$	10	$54.48+10=64.48$

| 4 | 64.48 | $4+0.8 \cdot 64.48-2=53.58$ | 10 | $53.584+10=63.58$ |
| :---: | :---: | :---: | :---: | :---: | | $5 Y_{5}=0.896$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 63.58 | $4+0.8 \cdot 63.58-2=52.86$ | 10 | $52.86+10=62.86$ |

\cdots	\cdots	\cdots	10	\ldots
∞	60	$4+0.8 \cdot 95-2=78$	10	$50+10=60$

Permanent shock

Shock with inflation adjustement

