AD function
$$AD = C + I = (4 + 0.8 \cdot Y - \pi) + 10 = 14 + 0.8 \cdot Y - \pi$$

AS function $Y = 30 \cdot \pi$

Macroeconomic equilibrium condition Y = AD

• In equilibrium, $Y = 4 + 0.8 \cdot Y$ π , with $Y = 30 \cdot \pi$. Hence, $0.2 \cdot Y = 14$ π . Amb $Y = 30 \cdot \pi$, $0.2 \cdot 30 \cdot \pi = 14$ π . That is, $6 \cdot \pi = 14$ π , so $\pi^* = 2$ is the equilibrium inflation rate. Given $\pi^* = 2$, the AS function yields the equilibrium production level $Y^* = 30 \cdot 2 = 60$.

- The impact on Y^* of a change in the AD function is the result of an expenditure multiplier effect.
- Since expenditure AD depends on income Y and, in equilibrium Y = AD, the sequence

$$\Delta AD \rightarrow \Delta Y \rightarrow \Delta AD \rightarrow \Delta Y \rightarrow \dots$$

is generated, so a change in AD multiplies itself.

• Example. Let the *AD* function only depend on *C* and *I*, so AD = C + I. Let *I* be constant. Specifically, C = 4 + 0.8Y π and I = 10 (the 0.8 is the marginal propensity *c* to consume: which fraction of an additional unit of income is consumed).

- The *AS* function is $Y = 30 \cdot \pi$. The macroeconomic equilibrium is obtained from the condition Y = AD. That is, $Y = 4 + 0.8 \cdot Y$ $\pi + 10$. Thus, $0.2 \cdot Y = 14$ π . As $Y = 30 \cdot \pi$, $\pi = 2$ (π is a percentage).
- Imagine now that there is an increase in investment, from 10 to 17 (for instance, businessmen become more optimistic).
- To better illustrate the multiplier effect, assume that the inflation rate does not change and remains at 2% (it is as if the *AS* function were horizontal at $\pi = 2$: the economy absorbs any increase in planned expenditure without fuelling inflation).

- The state of the economy is described by equations Y = AD and $\pi = 2$. Hence, $Y = 4 + 0.8 \cdot Y$ $\pi + 17 = 19 + 0.8Y$. That is, 0.2Y = 19, so Y = 95.
- To sum up, expenditure has only been increased 7 units (from I = 10 to I = 17), but production and income have risen 35 units (from Y = 60 to Y = 95). This is caused by the multiplier effect. In this case, the multiplier is 5, which equals 1/(1 c).
- When the AS function enters the picture, part of the expenditure is transformed into inflation. With $Y = 30 \cdot \pi$ and $AD = 4 + 0.8 \cdot Y$ $\pi + 17$, $\pi^* = 3$ and $Y^* = 90$ (inflation eats up 5 units of income).

Temporary shock

temporary shock on I

 $\pi = 2$

time	Y	$C=4+0.8\cdot Y$ π	I	AD = C + I			
0	60	$4 + 0.8 \cdot 60 - 2 = 50$	10	60			
1	60	$4 + 0.8 \cdot 60 - 2 = 50$	17	50 + 17 = 67			
$\Delta Y_2 = 7$							
2	67	$4 + 0.8 \cdot 67 - 2 = 55.6$	10	55.6 + 10 = 65.6			
$\Delta Y_3 = 1.4$							
3	65.6	$4 + 0.8 \cdot 65.6 - 2 = 54.48$	10	54.48 + 10 = 64.48			
$\Delta Y_4 = 1.12$							
4	64.48	$4 + 0.8 \cdot 64.48 - 2 = 53.58$	10	53.584 + 10 = 63.58			
$\Delta Y_5 = 0.896$							
5	63.58 ^{<}	$4 + 0.8 \cdot 63.58 - 2 = 52.86$	10	52.86 + 10 = 62.86			
• • •	• • •	• • •	10	• • •			
∞	60	$4 + 0.8 \cdot 95 - 2 = 78$	10	50+10=60			

equilibrium

Permanent shock

permanent shock on I

 $\pi = 2$

Ī								
7								
$\Delta Y_2 = 7$								
2.6								
$\Delta Y_3 = 5.6$								
7 .08								
$\Delta Y_4 = 4.48$								
0.66								
$\Delta Y_5 = 3.58$								
3.53								
5								

Shock with inflation adjustement

time	Y	$C=4+0.8\cdot Y$ π	I	AD = C + I	$\pi = \frac{Y}{3 \ 0}$			
0	60	$4 + 0.8 \cdot 60 - 2 = 50$	10	60	2			
1	60	$4 + 0.8 \cdot 60 - 2 = 50$	17	50 + 17 = 67	2.23			
$\Delta Y_2 = 7$								
2	67	$4 + 0.8 \cdot 67 - 2.23 = 55.37$	17	55.37 + 17 = 72.37	2.41			
$\Delta Y_3 = 5.37$								
3	72.37	$4 + 0.8 \cdot 72.37 - 2.41 = 59.48$	17	59.48 + 17 = 76.48	2.54			
$\Delta Y_4 = 4.11$								
4	76.48	$4 + 0.8 \cdot 76.48 - 2.54 = 62.64$	17	62.64 + 17 = 79.64	2.65			
$\Delta Y_5 = 3.16$								
5	79.64	$4 + 0.8 \cdot 79.64 - 2.65 = 65.06$	17	65.06 + 17 = 82.06	2.73			
	• • • •	• • •	17	• • •	• • •			
∞	90	$4 + 0.8 \cdot 90 - 3 = 73$	17	73 + 17 = 90	3			

equilibrium