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Abstract

We introduce and characterize a new solution concept for TU
games. The new solution is called SD-prenucleolus and is a lexi-
cographic value although is not a weighted prenucleolus. The SD-
prenucleolus satis�es several desirable properties. Itis the only known
solution that satis�es core stability, strong aggregate monotonicity and
null player out property in the class of balanced games. It is the only
known continuous core concept that satis�es monotonicity for games
with veto players.
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1 Introduction

This paper introduces and characterizes a new solution concept for coalitional
games with transferable utility (TU games). The new solution is a lexico-
graphic value, so its name (SD-prenucleolus) re�ects its connection with the
classic, widely-analyzed prenucleolus. The solution also has a relationship
with the family of weighted prenucleoli although it is not a member of this
family. In particular, the new solution shares some similarities with the per
capita prenucleolus. The SD-prenucleolus satis�es several desirable proper-
ties. It is the only known solution that satis�es core stability, the Null Player
Out property and strong aggregate monotonicity in the class of balanced
games. It is the only known continuous core concept satisfying monotonicity
in the class of convex games and in the class of veto balanced games.
Given a TU game the prenucleolus, de�ned as a lexicographic value, se-

lects the vector of excesses of coalitions that lexicographically dominates any
other vector of excesses of coalitions. When this vector is selected its asso-
ciated allocation is automatically selected and this proves to be the prenu-
cleolus of the game. When the excesses of coalitions are weighted by using
a system of weights for the size of the coalitions this procedure will generate
the di¤erent weighted prenucleoli. In the per capita prenucleolus excesses
are divided by the size (cardinality) of the coalition.
In this paper we propose a di¤erent way of computing the excesses of

coalitions given an allocation1. Once the vector of excesses is computed for
any allocation the SD-prenucleolus arises as the lexicographic optimal value
in the set of vectors of excesses of coalitions. We characterize the solution
in terms of balanced collections of coalitions, the equivalent of Kohlberg�s
classic theorem of the prenucleolus (Kohlberg, 1971). This characterization
is the main tool for checking whether an allocation is the SD-prenucleolus
of the game. Section 5 provides a simple formula for computing the SD-
prenucleolus of monotonic games with veto players. In this class, the SD-
prenucleolus satis�es coalitional monotonicity.

1In Section 3 we explain and interpret the new vector of satisfactions.
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2 Preliminaries

2.1 TU Games

A cooperative n-person game in characteristic function form is a pair (N; v),
where N is a �nite set of n elements and v : 2N ! R is a real-valued function
in the family 2N of all subsets of N with v(;) = 0: Elements of N are called
players and the real valued function v the characteristic function of the game.
Any subset S of N is called a coalition. Singletons are coalitions that contain
only one player. A game is monotonic if whenever T � S then v(T ) � v(S):
The number of players in S is denoted by jSj. Given S � N we denote by
NnS the set of players of N that are not in S. A distribution of v(N) among
the players, an allocation, is a real-valued vector x 2 RN where xi is the
payo¤ assigned by x to player i. A distribution satisfying

P
i2N
xi = v(N) is

called an e¢ cient allocation and the set of e¢ cient allocations is denoted by
X(v):We denote

P
i2S
xi by x(S). The core of a game is the set of imputations

that cannot be blocked by any coalition, i.e.

C(N; v) = fx 2 X(N; v) : x(S) � v(S) for all S � Ng :

It has been shown that a game with a non-empty core is balanced2 and
therefore games with non-empty core are called balanced games. Player i is
a veto player if v(S) = 0 for all S where player i is not present. A balanced
game with at least one veto player is called a veto balanced game. We denote
by �B the class of balanced games and by �V B the class of veto balanced
games.
A solution ' on a class of games �0 is a correspondence that associates a

set '(N; v) in RNwith each game (N; v) in �0 such that x(N) � v(N) for all
x 2 '(N; v). This solution is e¢ cient if this inequality holds with equality.
The solution is single-valued if the set contains a single element for each
game in the class.
Given x 2 RN the excess of a coalition S with respect to x in a game v is

de�ned as e(S; x) := v(S)� x(S): Let �(x) be the vector of all excesses at x
2See Peleg and Südholter (2007).
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arranged in non-increasing order. The weak lexicographic order �L between
two vectors x and y is de�ned by x �L y if there exists an index k such that
xl = yl for all l < k and xk < yk or x = y:

Schmeidler (1969) introduced the prenucleolus of a game v; denoted by
PN(v); as the unique allocation that lexicographically minimizes the vector
of non increasingly ordered excesses over the set of allocations. In formula:

fPN(N; v)g = fx 2 X(N; v) j�(x) �L �(y) for all y 2 X(N; v)g :

For any game v the prenucleolus is a single-valued solution, is contained
in the prekernel and lies in the core provided that the core is non-empty.
The per capita prenucleolus (Groote, 1970) is de�ned analogously by

using the concept of per capita excess instead of excess. Given S and x the
per capita excess of S at x is

epc(S; x) :=
v(S)� x(S)

jSj

Other weighted prenucleoli can be de�ned in a similar way whenever
a weighted excess function is de�ned. The same solution concepts can be
analogously de�ned using the notion of satisfaction instead of excess. Given
x 2 RN the excess of a coalition S with respect to x in a game (N; v) is de�ned
as f(S; x) := x(S)� v(S): In this paper we use the notion of satisfaction in
de�ning the new solution.

2.2 Properties

Some convenient and well-known properties of a solution concept ' on �0
are the following.

� ' satis�es anonymity if for each (N; v) in �0 and each bijective map-
ping � : N �! N such that (N; �v) in ��0 it holds that '(N; �v) =
�('(N; v)) (where �v(�T ) = v(T ); �x�(j) = xj (x 2 RN ; j 2 N; T �
N)): In this case v and �v are equivalent games.
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� ' satis�es equal treatment property (ETP) if for each (N; v) in
�0 and for every x 2 '(N; v) interchangeable players i; j are treated
equally, i.e. xi = xj: Here, i and j are interchangeable if v(S [ i) =
v(S [ j) for all S � Nn fi; jg :

� ' satis�es desirability if for each (N; v) in �0 and for every x 2
'(N; v); xi � xj if i is more desirable than j in v: We say that in a
game v a player i is more desirable than a player j if v(S[ i) � v(S[j)
for all S � Nn fi; jg :

� ' satis�es covariance if (N; v); (N;�v + �) 2 �0 for any � > 0 and
any � 2 RN implies that '(N;�v + �) = �'(N; v) + � holds.

� ' satis�es null player property if for each (N; v) in �0 and for every
x 2 '(N; v) null players receive 0: Here, a player is a null player if
v(S [ fig) = v(S) for all S � Nn fig :

� ' satis�es null player out property (NPO) if for each (N; v) in �0
and for every x 2 '(N; v) it holds that (xi)i2NnT 2 '(NnT; v): Here T
is the set of null players in game (N; v):

The NPO property implies the Null Player property. Both properties
try to capture the idea that null players should not in�uence the allocations
selected by a solution. However, only the NPO property captures entirely
this idea. If the payo¤ of some players (di¤erent than the null player) can
be a¤ected for the presence of null players is di¢ cult to conclude that null
players are irrelevant players.

� ' satis�es core stability if it selects core allocations whenever the
game is balanced.

Note that desirability implies ETP. The following two properties are de-
�ned for single-valued solutions.

� ' satis�es coalitional monotonicity: if for all v; w 2 �0, if for all S 6=
T; v(S) = w(S) and v(T ) < w(T ); then for all i 2 T; 'i(v) � 'i(w):
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� ' satis�es aggregate monotonicity: if for all v; w 2 �0, if for all
S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N; 'i(w)�
'i(v) � 0:

� ' satis�es strong aggregate monotonicity: if for all v; w 2 �0, if
for all S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N;
'i(w)� 'i(v) = 'j(w)� 'j(v) � 0:

Young (1985) proves that no solution satis�es coalitional monotonicity
and core stability. However, there are solutions satisfying core stability and
the strong aggregate monotonicity. Meggido (1974) proves that the nu-
cleolus does not satisfy aggregate monotonicity. Clearly, strong aggregate
monotonicity implies aggregate monotonicity.

3 A vector of satisfactions

3.1 Introduction

The prenucleolus is a lexicographic value that selects a maximal element in
the set of vectors of excesses of coalitions. The solution does not change if the
vector of satisfaction is taken instead of vectors of excesses. In the de�nition
of the new lexicographic value we use the notion of satisfaction instead of
excess. The main change with respect to the classic prenucleolus, the per
capita prenucleolus and any other weighted prenucleolus lies in how the vector
of satisfactions is de�ned. The main idea of the new vector of satisfactions
is to identify how a coalition divides its surplus (the di¤erence between the
payo¤ received by the coalition and the worth of the coalition) among its
members. We also require this distribution to keep some consistency. We
argue that the classic prenucleolus has no answer to this question while the
per capita prenucleolus provides an unsatisfactory answer.
Before introducing the new vector of satisfactions we illustrate by means

of an example the two ideas that support the new solution.
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Consider the following 4-player game3 (N; v):

v(S) =

8>>><>>>:
1 if S 2 ff1; 3; 4g ; f1; 2; 4gg
4 if S = f1; 2; 3g
8 if S = N
0 otherwise.

Consider the prenucleolus of the game, the allocation x = (2; 2; 2; 2).
The satisfaction of coalition f1; 2; 3g is 2 and players 1; 2 and 3 share this
surplus. That is, if the surplus obtained by player 1 in coalition f1; 2; 3g at
x is 2 then the surplus obtained by players 2 and 3 in coalition f1; 2; 3g at
x is 0. However, player 4 owns the entire satisfaction obtained by coalition
f4g at x. From the point of view of the coalitions it can be asserted that
coalitions f1; 2; 3g and f4g have been treated equally at x but this assertion
is not so evident from the point of view of the players.
The per capita prenucleolus apparently solves this question. Consider the

per capita prenucleolus of the game, the allocation y = (2:6; 2:2; 2:2; 1).
The per capita satisfaction of coalition f1; 2; 3g is 1 and players 1, 2 and 3

share a total surplus of 3. That is, the per capita satisfaction can be seen as
how much each player receives from the total surplus. Now the assertion that
players in coalition f1; 2; 3g and player 4 have been equally treated at y can
be justi�ed. But consider now the situation of coalition f2; 4g. According
to the per capita satisfaction it must be concluded that each player in the
coalition receives a surplus of 1:6, i.e. more than the total payo¤ received
by player 4. It seems incorrect to allocate a surplus of 1.6 to player 4 in
coalition f2; 4g at y. It seems more correct to consider that the total surplus
of coalition f2; 4g at y has been distributed as follows: player 2 gets 2:2 and
player 4 gets 1.
These ideas motivate the de�nition of a new vector of satisfactions (and

therefore a new lexicographic value) and the name of the new solution con-
cept: Surplus Distributor Prenucleolus.

3In Section 4 we compute the SD-prenucleolus of this game, i.e. (3; 2; 2; 1):
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3.2 The Algorithm

Consider a game (N; v) and an allocation x. Our goal is to calculate a
satisfaction vector fF (S; x)gS(N . We de�ne the components of this vector
recursively by de�ning an algorithm.
The algorithm has several steps (at most 2n � 2) and at each step we

identify the collection of coalitions that has obtained the satisfaction. We
denote by H this collection of coalitions. In the �rst step this collection H
is empty. The algorithm ends when H = 2N .
For a collection H and a function F : H ! R the function FH : 2N ! R

is de�ned. To this end, we introduce some notation.
For H � 2N we denote

�H(S) =
[

T2H;T�S
T

and also for a collection H � 2N and a function F : H ! R we denote
by fH;F (i; S) the satisfaction of player i with respect to a coalition S and a
collection H (i 2 �H(S)):

fH;F (i; S) = min
T :T2H;i2T�S

F (T )

Note that this de�nition can only be used in a situation when the function
F (S) is de�ned for all S 2 H.
Now we de�ne a function FH : 2N ! R. We consider two cases (since it

is evident that �H(S) � S):
1. Relevant coalitions. �H(S) 6= S. In this case the satisfaction of S is

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j

Note that if the collection H is empty then the current satisfaction of the
coalition S coincides with its per capita satisfaction:

F;(S) =
x(S)� v(S)

jSj
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2. Non relevant coalitions. �H(S) = S. In this case the current satisfac-
tion of S is

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S)

Therefore for any function F : H ! R the value fH;F (i; S) can be calcu-
lated for every coalition S and player i 2 �H(S). Also if a function fH;F (�; �)
is de�ned for each S ( N and i 2 �H(S) then the function FH can be de�ned.
The algorithm for the satisfaction vector is de�ned as follows:.

Algorithm 1 Consider a game (N; v) and an allocation x 2 X(N; v).
Step 1: Set k = 0, H0 = ;. Go to Step 2.
Step 2: Set

Hk+1 = Hk [ fS 62 Hk : FHk
(S) = min

T 62Hk

FHk
(T )g

Step 3: De�ne for each S 2 Hk+1 n Hk:

F (S) = FHk
(S)

Step 4: If Hk+1 6= 2N n fNg then let k = k+ 1 and go to Step 2, else go
to Step 5.
Step 5: Stop. Return the vector

fF (S); S ( Ng

For simplicity we use the notation F (S) instead of F (S; x):
Note that according to this algorithm if the game introduced in this sec-

tion and the allocation y (the per capita prenucleolus of the game) are con-
sidered it holds that F (f2; 4g ; y) = 2:2 > 1:6:
The outcome provided by the algorithm satis�es several interesting prop-

erties, which are pointed out in the following lemmas.

Lemma 2 Let (N; v) be a TU game and x be an allocation. Let function F
be the result of Algorithm 1 and let fHigi=1::k be the associated collections of
sets. Then
1. the function F is de�ned for every S ( N
2. the function F is continuos.
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Proof. 1. It holds that H0 = ;, Hk = 2N n fNg. In the i-th stage
of the algorithm the function F is de�ned for all coalitions from Hi n Hi�1:

Therefore at the end this function is de�ned for all coalitions in[
i=1::k

(Hi n Hi�1) = Hk n H0 = 2
N n fNg:

2. This is immediately apparent.

Lemma 3 Let (N; v) be a TU game and x be an allocation. Let function F
be the result of Algorithm 1 and let fHigi=1::k be the associated collections of
sets. If S 2 Hi, T 62 Hi then F (T ) > F (S):

The proof is in the Appendix. This lemma implies that for a relevant
coalition (�H(S) 6= S) it holds that

x(S)� v(S) = (jSj � j�H(S)j)FH(S) +
X

i2�H(S)

fH;F (i; S) =
X
i2S
fH;F (i; S)

which can be interpreted as a distribution of the total surplus of coalition S
among its members. The following 3-person game is used to illustrate how
this algorithm works. Let (N; v) be a game where N = f1; 2; 3g and

v(S) =

8>>><>>>:
0 if jSj = 1
4 if S 2 ff1; 3g ; f1; 2gg
�10 if S = f2; 3g
6 if S = N:

Consider the allocation x = (5; 1; 0): Applying the algorithm the following is
obtained:

Coalition Satisfaction
f3g 0

f2g f1; 2g f1; 3g 1

f1g 5

f2; 3g 11:

Coalition f2; 3g is a non relevant coalition. The rest of the coalitions are
relevant coalitions. Consider the satisfaction of coalition f1; 3g : This coali-
tion has a subset (coalition f3g) that has already obtained its satisfaction.
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This fact is incorporated into the computation of the satisfaction of coalition
f1; 3g since �H(f1; 3g) = f3g. Therefore

FH(f1; 3g ; x) =
x(f1; 3g)� v(f1; 3g)�

P
i2�H(f1;3g)

fH;F (i; f1; 3g)

j f1; 3g j � j�H(f1; 3g)j
=
5� 4� 0
2� 1 :

The total surplus of the coalition is divided as follows: player 1 gets 1
and player 3 gets 0.
The case of non relevant coalitions is di¤erent. If a coalition is non rele-

vant for any player in the coalition there exists a subset of the coalition with
a lower satisfaction and that subset determines the individual satisfaction of
the player in the non relevant coalition. Note that

x(f2; 3g)� v(f2; 3g) = 11 >
X

i2�H(f2;3g)

fH;F (i; f2; 3g) = 1 + 0:

4 The SD-prenucleolus

4.1 De�nition

We de�ne the new solution concept (the SD-prenucleolus) as a lexicographic
value in the set of vectors of the new satisfactions. We denote the SD-
prenucleolus of game (N; v) by SD(N; v):
The de�nition of the SD-prenucleolus coincides with the de�nition of the

classic prenucleolus, except that we use the vector of negative satisfactions
f�F (S; x)g instead of the vector of excesses. Therefore the SD-prenucleolus
is a lexicographic value that selects from a set a vector that lexicographically
dominates the other vectors of the set.
We now formulate it in detail.
We say that the satisfaction vector F x = fF (S; x)gS�N dominates the

satisfaction vector F y = fF (S; y)gS�N if there is k � 1 such that
1. ~F xi = ~F yi for all i < k
2. ~F xk > ~F yk ,
where ~F x and ~F y are the vectors with the same components as the vectors

F x, F y, but rearranged in a non decreasing order (i > j ) ~F xi � ~F xj ).
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We say that the vector x belongs to the SD-prenucleolus if its satisfaction
vector dominates (or weakly dominates) every other satisfaction vector.

De�nition 4 Let (N; v) be a TU game. Then x 2 SD(N; v) if and only if
for any y 2 X(N; v) it holds that F x �L F y:

Similarly to the prenucleolus, the SD-prenucleolus satis�es nonemptiness
and single-valuedness on the class of all TU games.

Proposition 5 Let (N; v) be a TU game. Then jSD(N; v)j = 1.

Proof. The standard proof of the nonemptiness of the prenucleolus can
be repeated in this case with no changes. The proof of single-valuedness is
also very close to the standard one but has some di¤erences. Assume that
there is a pair of vectors x; y 2 X(N; v) such that both vectors f�F (S; x)gS(N ,f�F (S; x)gS(N
dominates a vector f�F (S; z)gS(N for every z 2 X(N; v).
Consider the allocation t = x+y

2
and the vector f�F (S; t)gS(N . Because

x 6= y the number k can be chosen such that for every i < k it holds that
Hi(x) = Hi(y) and that Hk(x) 6= Hk(y).
Assume that because of the linearity of functions f and F it can be

concluded that for i < k it is also true that Hi(x) = Hi(t).
Consider the k-th stage of the algorithm for all three vectors (x; y; t).

We can note that functions f and F are the same for these vectors. Denote
F xHk(S)

for S 2 Hx
knHk�1 byGk. Because of the coincidence of the satisfaction

vectors for x and y it also holds that Gk = F
y
Hk(T )

for T 2 Hy
k n Hk�1.

With no loss of generality it can be assumed that there exists T 2
Hfkg(x) n Hfkg(y). By the linearity of the function F it can be concluded
that

F tHk�1
(T ) =

F xHk�1
(T ) + F yHk�1

(T )

2
=
Gk + F

y
Hk�1

(T )

2

Because of T 62 Hk(y) we get F
y
Hk�1

(T ) > Gk: Therefore

F tHk�1
(T ) =

Gk + F
y
Hk�1

(T )

2
> Gk

The same conclusions can be used for an arbitrary coalition U which
belongs toHk(y) but not toHk(x). Therefore the collection of coalitions with
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satisfaction less than or equal toGk for the vector t is equal to the intersection
of such collections for vectors x and y. It means that the satisfaction vector
for t dominates the satisfaction vectors for x and y and this contradicts the
assumption.

4.2 Properties

The new solution shares other interesting properties with the classic prenu-
cleolus and the per capita prenucleolus. It is not di¢ cult to prove that
the SD-prenucleolus satis�es desirability (and therefore the equal treatment
property), anonymity, covariance and e¢ ciency.
The SD-prenucleolus is a core selector, i.e. if a game is balanced its SD-

prenucleolus is a core allocation. This is so because any core allocation has
a non negative vector of satisfactions.
Unlike the prenucleolus, the SD-prenucleolus satis�es strong aggregate

monotonicity. This property is also satis�ed by the per capita prenucleolus.

Proposition 6 The SD-prenucleolus satis�es the strong aggregate monotonic-
ity property.

The proof is in the Appendix.
We show that the SD-prenucleolus does not satisfy the null player prop-

erty by showing that there is incompatibility between strong aggregate monotonic-
ity, the null player property and core stability.

Proposition 7 If a solution ' de�ned in the class of all TU games satis�es
core stability and the null player property then ' does not satisfy the strong
aggregate monotonicity property.

Proof. Consider the following two games (N; v1) and (N; v2) where N =

f1; 2; 3; 4g and

v1(S) =

8><>:
0 if jSj = 1
0 if jSj = 2 and 4 2 S
4 otherwise,
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v2(S) =

(
6 if S = N
v1(S) if S 6= N:

In game (N; v1) player 4 is a null player and therefore '4(N; v1) = 0. In
game (N; v2) the core is f(2; 2; 2; 0)g and therefore '4(N; v2) = 0. It must be
concluded that ' violates strong aggregate monotonicity.
Therefore, the SD-prenucleolus and the per capita prenucleolus do not

satisfy the null player property on the class of all TU games.
Obviously, on the class of balanced games a solution that satis�es core

stability must satisfy the null player property. But this is not necessarily
true for the NPO property. For example, the per capita prenucleolus does
not satisfy the NPO property. The result below reinforces the interest in the
new solution.

Proposition 8 The SD-prenucleolus satis�es the NPO property on the class
of balanced games.

The proof is in the Appendix.
In the class of balanced games the SD-prenucleolus is the only known

single-valued core selector that satis�es the NPO property and strong aggre-
gate monotonicity4.

4The per capita prenucleolus violates the NPO property as the following example shows.
Consider the games (N; v1) and (Nn f4g ; v2) where N = f1; 2; 3; 4g and

v1(S) =

8><>:
7 if S 2 ff1; 2; 3g ; Ng
4 if S 2 ff1; 2g ; f1; 2; 4gg
0 otherwise,

v2(S) =

8><>:
7 if S = Nn f4g = f1; 2; 3g
4 if S = f1; 2g
0 otherwise.

In game (N; v1) player 4 is a null player and game (Nn f4g ; v2) results after elim-
inating player 4 from game (N; v1): The per capita prenucleolus of game (N; v1) is
(2:25; 2:25; 1:5; 0) and the per capita prenucleolus of game (Nn f4g ; v2) is (3; 3; 1):
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4.3 Kohlberg�s characterization

We provide the equivalent of Kohlberg�s theorem for the SD-prenucleolus.
For this purpose we introduce the following notation. Given an allocation x
and a real number � we de�ne the following set of coalitions

B� = fS ( N : F (S; x) � �g:

The theorem is useful for checking whether an allocation is the SD-
prenucleolus of a game or not. In fact, it is used to prove the main result of
Section 6.

Theorem 9 Let (N; v) be a TU game and x be an allocation. Then x =
SD(N; v) if and only if the collection of sets B� is empty or balanced5 for
every �.

Proof. Assume that x = SD(N; v) and that the theorem is not true.
Let us choose the minimal � for which the collection of sets B� is nonempty
and not balanced. It is immediate that the collection B� coincides with the
collection Hk for some k.
The assumption of the minimality of the value � implies that for every

m < k the collection of sets Hm is balanced. The non-balancedness of the
collection Hk implies that there exists a vector y such that
1.
P
i2N

yi = 0

2.
P
i2S
yi � 0 for each S 2 Hk

3. There is S 2 Hk such that
P
i2S
yi > 0

Moreover, by using the fact that the collection Hk�1 is balanced we can
conclude that

P
i2T
yi = 0 for every T 2 Hk�1.

Let us consider the vector x + "y for "�small"�positive value ". It holds
that
1. for every T 2 Hk�1 the satisfaction with respect to vector x + "y is

equal to the satisfaction with respect to vector x

5See Peleg and Sudholter (2007) for the de�nition of a balanced collection of sets.
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2. for every T 2 Hk nHk�1 the satisfaction with respect to vector x+ "y
is higher than or equal to the satisfaction with respect to vector x and there
exists the coalition U such that this inequality is strong.
It is also immediately apparent that a value " be chosen that is so small

that the following collections Hm for m > k will be not important. Therefore
the vector x+ "y dominates the vector x.
Therefore if a collection Hk is not balanced then the allocation x is not

the SD-prenucleolus of the game. And if the allocation x is not the SD-
prenucleolus of the game then there exists some collection Hk that is not
balanced.
Using this theorem it can be asserted that the allocation (5; 1; 0) is not

the SD-prenucleolus of the second TU game in Section 3.
In general, the computation of the new solution is not an easy task. Like

the prenucleolus, the calculation of the SD-prenucleolus of a game is an open
challenge. In this sense, the characterization above is a �rst step that allows
it to be checked whether an allocation is the SD-prenucleolus of the game.
In Section 5 we introduce a formula for computing the SD-prenucleolus of
veto balanced games.

5 Games with Veto Players

The class of games with veto players has been widely used to model economic
situations where the presence of special players is needed in order to achieve
some positive outcome. The list of papers that consider TU games with veto
players is long. Our main purpose is to provide an easy way to compute the
SD-prenucleolus of games with veto players.
Arin and Feltkamp (2012) introduce and characterize the Serial Rule for

the class of veto balanced games. Let (N; v) be a game with veto players and
let player 1 be a veto player. De�ne for each player i a value di as follows:

di = max
S�Nnfig

v(S):

Then d1 = 0: Let dn+1 = v(N) and rename players according to the
nondecreasing order of those values. That is, player 2 is the player with the
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lowest value besides player 1 and so on. The solution SR associates to each
game with veto players, (N; v), the following payo¤ vector:

SRl(N; v) =
nX
i=l

di+1 � di
i

for all l 2 f1; :::; ng :

Note that since d1 = 0 the solution is e¢ cient. If there is no veto player
the solution is not e¢ cient.
The example in Section 3 illustrates how the solution behaves. The 4-

person game has a veto player, player 1. Recall the characteristic function
of the game:

v(S) =

8>>><>>>:
1 if S 2 ff1; 3; 4g ; f1; 2; 4gg
4 if S = f1; 2; 3g
8 if S = N
0 otherwise.

Computing the vector of d-values we get:

(d1; d2; d3; d4; d5) = (0; 1; 1; 4; 8):

Applying the formula

SR1 =
d2�d1
1
+ d3�d2

2
+ d4�d3

3
+ d5�d4

4
= 3

SR2 =
d3�d2
2
+ d4�d3

3
+ d5�d4

4
= 2

SR3 =
d4�d3
3
+ d5�d4

4
= 2

SR4 =
d5�d4
4

= 1:

We prove that for monotonic6 games with veto players the Serial Rule
and the SD-prenucleolus coincide.
We present several lemmas that are used in the proof of the main theorem.

Lemma 10 Let (N; v) be a monotonic veto game and let x = SR(N; v): Let l
be a non veto player and let S be a coalition such that l 2 S and F (S; x) > xl:
Then fH;F (l; S) = xl:

6If a game with veto players is monotonic then is balanced since the allocation where
a veto player receives v(N) and the rest receive 0 is a core allocation.
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Proof. It is immediately apparent that the lemma is true for player n
(the player with highest d-value) since xn = min

S�N
x(S)�v(S)

jSj = x(Nnfng)_dn
n�1 . The

lemma also must be true for player n-1 since

xn�1 = min
S�N;S =2fNnfng;fngg

F (S; x) = F (Nn fn� 1g ; x) =

n�2P
l=1

xl � dn�2

n� 2 :

Following similar arguments, it is not di¢ cult to check that if the lemma
holds for player k it must hold for player k-1:

Lemma 11 Let (N; v) be a monotonic veto game. Let x = SR(N; v) and let
i be a non veto player: Then F (Nn fig ; x) = xi:

Proof. Let T = fl 2 Nn fig : xi < xlg and let P = fl 2 Nn fig : xi � xlg :
Note that since the game is monotonic v(Nn fig) = di: Then by lemma 10

F (Nn fig ; x) =

P
l2P
SRl � di

jP j = SRi(N; v):

This last equality is a consequence of the fact that for any k

k�1X
l=1

(SRl � SRk) = dk:

Lemma 12 Let (N; v) be a monotonic veto game and let x = SR(N; v): Let
S be a coalition without the veto player. Then F (S; x) = max

i2S
xi:

Proof. Let p = max
i2S

xi: Let T = fi 2 S : xi = pg and let P = fi 2 S : xi < pg :
Then for l 2 P and applying lemma 10 it holds that

xl = F (l; x) < F (S; x) =
x(T )

jT j = p:
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Lemma 13 Let (N; v) be a monotonic veto game. Let x = SR(N; v) and
let l a non veto player. Let S be a coalition containing the veto players such
that l =2 S and xl = max

i=2S
xi: Then F (flg ; x) = xl � F (S; x):

Proof. Assume on the contrary that xl > F (S; x):
Let l be a non veto player such that l =2 S and xl = max

i=2S
xi: Let T =

fi 2 S : xi � xlg and let P = fi 2 S : xi < xlg : It is immediate that for i 2 P
it holds that F (fig ; x) < F (S;x): Therefore

F (S; x) =
x(T )� v(S)

jT j � x(T )� v(Nn flg)
jT j = xl:

The �rst equality results from applying lemma 10. The last inequality
holds because of the monotonicity of (N; v) and the last equality is a conse-
quence of lemma 11:
The main theorem of this section establishes the coincidence of the Serial

Rule and the SD-prenucleolus on the class of veto monotonic games.

Theorem 14 Let (N; v) be a monotonic veto game. Then SR(N; v) =
SD(N; v).

Proof. The proof is based in the above lemmas. Consider the collection
of coalitions S for which F (S; SR(N; v) � k: From lemma 12 if this collec-
tion contains a coalition without a veto player all players of this coalition
appear also in the collection as singletons. By lemma 13 and 11 if there
is a coalition S containing veto players and without non veto player l then
coalitions Nn flg and flg are also present. Therefore for a non veto player
i one of the two statements is true: either coalition flg is in the collection
or all coalitions containing the veto players also contain player i. It is clear
that such collection is always balanced.
It is clear that the solution denoted by SR satis�es monotonicity. That is,

on the class of monotonic veto games the SD-prenucleolus satis�es coalitional
monotonicity. (See Arin and Feltkamp (2012) to check that this result is not
true for the prenucleolus and the per capita prenucleolus.)
The result of Theorem 14 is not necessarily true if the game is not

monotonic. Consider the following 3-person balanced game. Let N =
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f1; 2; 3g and v(f1g) = v(f1; 3g) = v(f1; 2g) = �3 and v(S) = 0 otherwise.
Then SR(N; v) = (0; 0; 0) 6= SD(N; v) = (�2; 1; 1):

6 Conclusions

We introduce a new solution concept for TU games. This solution is a lexico-
graphic value and can therefore be seen as a member of a family of solutions
that includes the prenucleolus and the per capita prenucleolus7. The new
solution is not a weighted prenucleolus and incorporates into its de�nition
the idea that the surplus obtained by a coalition is divided among its mem-
bers in a coherent way. This interpretation links the solution with the per
capita prenucleolus and both solutions can be seen as members of a family
of solutions that provides this distribution of the surplus8. Apart from the
di¤erent way of interpreting the classic concept of excess/satisfaction, the
attractiveness of the new solution relies on two interesting facts: The SD-
prenucleolus is the only known solution that satis�es core stability, strong
aggregate monotonicity and NPO property in the class of balanced games.
The SD-prenucleolus is the only known solution de�ned in the class of all
TU games that satis�es core stability, continuity and coalitional monotonic-
ity in the class of veto balanced games. Another paper by Arin and Katsev
(2013) adds to this list a new result: the SD-prenucleolus is monotonic in the
class of convex games. Therefore, the SD-prenucleolus is the only continuous
core concept monotonic in the class of convex games and in the class of veto
balanced games.

7 Appendix

Proof of Lemma 3.
7Note that the SD-prenucleolus satis�es several properties that the per capita nucleolus

does not satisfy (and the properties satis�ed by the per capita nucleolus are satis�ed by
the SD-prenucleolus). From an axiomatic point of view in this family the SD-prenucleolus
seems more attractive.

8The de�nition of the prenucleolus does not allow this interpretation.
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Proof. Assume that the lemma is not true. Consider the minimal number
k such that there exist coalitions S; T with S 2 Hk, T 2 Hk+1 n Hk, and
F (T ) � F (S). Consider the k-th stage of the algorithm where the collection
Hk�1 was �xed. It holds that S 2 Hk and therefore

FHk�1(S) = min
U 62Hk�1

FHk�1(U)

It is also known that T 2 Hk+1 n Hk, so F (T ) = FHk
(T ).

Note that because of the assumption of the minimality of k
1. for every i 2 �Hk�1(T ) it holds that fHk;F (i; T ) = fHk�1;F (i; T ) < F (S)

2. for every i 2 �Hk
(T ) n �Hk�1(T ) it holds that fHk;F (i; T ) = F (S)

Consider three cases:
A. �Hk

(T ) 6= T . Then

FHk
(T ) =

x(T )� v(T )�
P

i2�Hk (T )
fHk;F (i; T )

jT j � j�Hk
(T )j =

=

x(T )� v(T )�
P

i2�Hk�1 (T )
fHk�1;F (i; T )� F (S)(j�Hk

(T )j � j�Hk�1(T )j)

jT j � j�Hk
(T )j

From the assumption that FHk
(T ) = F (T ) � F (S)

x(T )� v(T )�
P

i2�Hk�1 (T )
fHk�1;F (i; T )� F (S)(j�Hk

(T )j � j�Hk�1(T )j)

jT j � j�Hk
(T )j � F (S)

, x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T ) � F (S)(jT j � j�Hk�1(T )j),

,
x(T )� v(T )�

P
i2�Hk�1 (T )

fHk�1;F (i; T )

jT j � j�Hk�1(T )j
� F (S), FHk�1(T ) � F (S)

But F (S) = FHk�1(S) = min
U 62Hk�1

FHk�1(U):

Therefore FHk�1(T ) = min
U 62Hk�1

FHk�1(U) and from the Algorithm 1 it holds

that T 2 Hk. This is in contradiction with the assumption that T 2 Hk+1 n
Hk.
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B. �Hk�1(T ) 6= T , �Hk
(T ) = T . Then

FHk
(T ) = x(T )� v(T )�

X
i2T

fHk;F (i; T ) + max
i2T

fH;F (i; T )

By using the fact that �Hk�1(T ) 6= T it can be concluded that

FHk
(T ) = x(T )� v(T )�

X
i2T

fH;F (i; T ) + F (S) =

= x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T )� F (S)(jT j � j�Hk�1(T )j) + F (S)

From the assumption that FHk
(T ) = F (T ) � F (S) it can be obtained that

x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T ) � F (S)(jT j � j�Hk�1(T )j),

,
x(T )� v(T )�

P
i2�Hk�1 (T )

fHk�1;F (i; T )

jT j � j�Hk�1(T )j
� F (S), FHk�1(T ) � F (S)

and as in the previous case the contradiction is obtained.
C. �Hk�1(T ) = �Hk

(T ) = T . Then

FHk�1(T ) = FHk
(T )

Because of the fact that T 62 Hk it can be concluded that

FHk
(T ) = FHk�1(T ) > min

U 62Hk�1
FHk�1(U) = FHk�1(S):

Proof of Proposition 6.
Proof. Consider games (N; v) and (N; vA) where vA(N) = v(N) +AjN j

and vA(S) = v(S) for S 6= N . Let x 2 X(v) and y 2 X(vA) such that for
each i 2 N yi = xi + A.
It is su¢ cient to show that if the following holds for any k � 0
1. F(N;vA)(S; y) = F(N;v)(S; x) + A for each S 2 Hk

2. The collections Hk for (N; vA; y) and (N; v; x) coincide
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then the two facts hold also for k + 1 (for k = 0 it is evident). This is
shown below. Note that for every T ( N , i 2 �Hk

(T ) it holds that

f vAHk;F(N;vA)
(i; T ) = min

U :U2Hk;i2U�T
(F(N;v)(U) + A) = f

v
Hk;F(N;v)

(i; T ) + A:

Consider a coalition T ( N and two possible variants:
1. �Hk

(T ) 6= T

F
(N;vA)
Hk

(T; y) =

y(T )� vA(T )�
P

i2�Hk (T )
f vAHk;F

(i; T )

jT j � j�Hk
(T )j =

=

x(T ) + AjT j � v(T )�
P

i2�Hk (T )
f vHk;F

(i; T )� Aj�Hk
(T )j

jT j � j�Hk
(T )j =

=

x(T )� v(T )�
P

i2�Hk (T )
f vHk;F

(i; T )

jT j � j�Hk
(T )j + A = F

(N;v)
Hk

(T; x) + A

2. �Hk
(T ) = T

F
(N;vA)
Hk

(T; y) = y(T )� vA(T )�
X
i2T

f vAHk;F
(i; T ) + max

i2T
f vAH;F (i; T )

= x(T ) + AjT j � v(T )�
X
i2T

f vAHk;F
(i; T )� AjT j+max

i2T
fH;F (i; T ) + A =

= x(T )� v(T )�
X
i2T

f vAHk;F
(i; T ) + max

i2T
fH;F (i; T ) + A = F

(N;v)
Hk

(T; x)� A

In this way, for every coalition T ( N it holds that

F
(N;vA)
Hk

(T; y) = F
(N;v)
Hk

(T; x) + A

and therefore collections Hk+1 in both games (N; vA) and (N; v) coincide.
Proof of Proposition 8.
Proof. Consider a balanced game (N; v) where i 2 N is a null player.

Let x 2 C(N; v) be a core allocation. To prove the NPO property of the
SD-prenucleolus it is su¢ cient to show that for every S � N n fig

F (S; x) = F (S [ fig; x):
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It is immediately apparent that xi = 0 and coalition fig has the minimal
satisfaction, which is 0. Therefore for coalition P = argmin

S�Nnfig

x(S)�v(S)
jSj it holds

that F (P; x) = F (P [ fig; x):
Consider that for coalitions that obtain their satisfaction before step k it

holds that F (S; x) = F (S [ fig; x): We will prove that for the step k of the
algorithm and any coalition S 2 Hk, S � Nnfig it also holds that

FHk
(S; x) = FHk

(S [ fig; x): (1)

Note that
�Hk

(S [ fig) = S [ fig , �Hk
(S) = S

Consider two cases (relevant and non relevant coalitions):
1. �Hk

(S [ fig) 6= S [ fig. Then

FHk
(S [ fig) =

x(S [ fig)� v(S [ fig)�
P

j2�Hk (S[fig)
fHk;F (j; S)

jSj+ 1� j�Hk
(S [ fig)j =

=

x(S)� v(S)�
P

j2�Hk (S)
fHk;F (j; S)

jSj+ 1� j�Hk
(S)j � 1 = FHk

(S)

2. �Hk
(S [ fig) = S [ fig. Then

FHk
(S [ fig) =

= x(S [ fig)� v(S [ fig)�
X

j2S[fig

fHk;F (j; S) + max
j2S[fig

fHk;F (j; S [ fig) =

= x(S)� v(S)�
X
j2S

fHk;F (j; S) + max
j2S

fHk;F (j; S [ fig)

To show that FHk
(S [ fig) = FHk

(S) it su¢ ces to check that

max
j2S

fHk;F (j; S [ fig) = max
j2S

fHk;F (j; S):

But
fHk;F (j; S [ fig) = min

T2Hk;j2T�S[fig
FHk

(T )
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From the fact (1) for k0 < k it can be concluded that for every T 2 Hk it
holds that FHk

(T ) = FHk
(T [ fig). Therefore

min
T2Hk;j2T�S[fig

FHk
(T ) = min

T2Hk;j2T�S
FHk

(T ))

) fHk;F (j; S [ fig) = fHk;F (j; S)

and the proposition has been proved.
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The existence of a continuous core concept satisfying monotonic-
ity in the class of convex games is an open question that we solve
in the a¢ rmative way. We prove that the SD-prenucleolus satis�es
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1 Introduction

How to divide the outcome obtained by agents that cooperate is one of the
main issues analyzed in the literature of coalitional game theory. One ap-
proach to dealing with the problem consists of proposing rules or solutions
that are used to solve the game. In this approach, the Shapley value (Shapley,
1953) and the prenucleolus (Schmeidler, 1969) stand out as the most well-
known, widely analyzed single-valued solutions for coalitional games with
transferable utility (TU games). One of the main reasons for the attractive-
ness of the Shapley value lies in the fact that it respects the principle of
monotonicity, i.e. if a new TU game w is obtained from a given TU game
v by increasing the worth of a coalition S then the members of S receive
a payo¤ in game w that is no lower than in game v. On the other hand,
the prenucleolus respects the core stability principle, i.e. the prenucleolus
selects a core allocation whenever the game is balanced. A core allocation
provides each coalition with at least the worth of the coalition, the amount
that the members of the coalition can obtain by themselves. It seems very
attractive to ask for a solution that ful�ls both principles, since they share a
kind of incentive compatibility principle that can be summarized in the fol-
lowing idea: the higher the worth of a coalition the better for its members.
However, in the class of balanced games they are not compatible (Young,
1985) and therefore the Shapley value does not respect core stability and the
prenucleolus fails to satisfy monotonicity.
This incompatibility does not exist if we restrict the analysis to the class of

convex games where the Shapley value satis�es core stability. The nucleolus
and the per capita nucleolus do not satisfy monotonicity in thus class.
These results motivate the question that this paper seeks to solve: Does

there exists any continuous1 core concept that satis�es monotonicity in the
class of convex games? The answer is yes: the SD-prenucleolus.
This solution, introduced by Arin and Katsev (2011) also satis�es ag-

1With the requirement of continuity we avoid core concepts de�ned as follows; Let �
be a core concept that coincides with the Shapley value if the game is convex and with
the nucleolus otherwise. The solution � satis�es core stability, monotonicity for convex
games but not continuity,
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gregate monotonicity and monotonicity for games with veto players. Thus,
the SD-prenucleolus is the only known concept that satis�es monotonicity
for convex games while respecting the principle of core stability, that is, it
selects a core allocation whenever the game is balanced.
The rest of the paper is organized as follows:
Section 2 introduces TU games, solutions and properties. Section 3 pro-

vides a detailed introduction to the de�nition of SD-prenucleolus of a game,
the notion of �relevant coalition�and the concept of SD-reduced game prop-
erty. This section is based on Arin and Katsev (2011). In Section 4 we ana-
lyze the monotonicity of the SD-prenucleolus when considering SD-relevant
games and we prove that convex games are SD-relevant games.

2 Preliminaries: TU games

A cooperative n-person game in characteristic function form is a pair (N; v),
where N is a �nite set of n elements and v : 2N ! R is a2 real-valued function
in the family 2N of all subsets of N with v(;) = 0: Elements of N are called
players and the real valued function v the characteristic function of the game.
Any subset S of N is called a coalition. Singletons are coalitions that contain
only one player. A game is monotonic if whenever T � S then v(T ) � v(S):
The number of players in S is denoted by jSj. Given S � N we denote by
NnS the set of players of N that are not in S. A distribution of v(N) among
the players, an allocation, is a real-valued vector x 2 RN where xi is the
payo¤ assigned by x to player i. A distribution satisfying

P
i2N
xi = v(N) is

called an e¢ cient allocation and the set of e¢ cient allocations is denoted by
X(v): We denote

P
i2S
xi by x(S). The core of a game is the set of allocations

that cannot be blocked by any coalition, i.e.

C(N; v) = fx 2 X(N; v) : x(S) � v(S) for all S � Ng :

It has been shown that a game with a non-empty core is balanced3 and
therefore games with non-empty core are called balanced games. Player i is

2See next section for a formal de�nition of these concepts.
3See Peleg and Südholter (2007).
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a veto player if v(S) = 0 for all S where player i is not present. A balanced
game with at least one veto player is called a veto balanced game. We denote
by �V B the class of balanced games and by �V B the class of veto balanced
games.
We say that a game (N; v) is convex if v(S)+ v(T ) � v(S [T )+ v(S \T )

for all S; T � N: We denote by �C the class of convex games.
A solution ' in a class of games �0 is a correspondence that associates a

set '(N; v) in RNwith each game (N; v) in �0 such that x(N) � v(N) for all
x 2 '(N; v). This solution is e¢ cient if this inequality holds with equality.
The solution is single-valued if the set contains a single element for each
game in the class.
We say that the vector x weakly lexicographically dominates the vector

y (denoted by x �L y) if either
�
x =

�
y or there exists k such that

�
xi =

�
yi

for all i 2 f1; 2; :::; k � 1g and �
xk >

�
yk where

�
x and

�
y are the vectors with

the same components as the vectors
�
x,

�
y, but rearranged in a non decreasing

order (i > j ) �
xi �

�
xj).

Given x 2 RN the satisfaction of a coalition S with respect to x in a
game v is de�ned as e(S; x) := x(S) � v(S): Let �(x) be the vector of all
satisfactions at x arranged in non decreasing order. Schmeidler (1969) in-
troduced the prenucleolus of a game v; denoted by PN(v); as the unique
allocation that lexicographically maximizes the vector of non decreasingly
ordered satisfactions over the set of allocations. In formula:

PN(N; v) = fx 2 X(N; v) j�(x) �L �(y) for all y 2 X(N; v)g :

For any game v the prenucleolus is a single-valued solution, is contained in
the prekernel and lies in the core provided that the core is non-empty.
The per capita prenucleolus (Groote, 1970) is de�ned analogously by

using the concept of per capita satisfaction instead of excess. Given S and x
the per capita satisfaction of S at x is

epc(S; x) :=
x(S)� v(S)

jSj
Other weighted prenucleoli can be de�ned in a similar way whenever a
weighted excess function is de�ned. The same solution concepts can be anal-
ogously de�ned using the notion of satisfaction instead of excess. Given

4



x 2 RN the excess of a coalition S with respect to x in a game (N; v) is de-
�ned as f(S; x) := x(S)�v(S): In this paper we use the notion of satisfaction
in de�ning the new solution.
For two-person games the nucleolus and the per capita nucleolus coincide

with the standard solution. Let (fi; ; jg ; v) be a two person game. Then the
standard solution of the game is

(v(fig) + v(fi; jg)� v(fig)� v(fjg)
2

; v(fjg) + v(fi; jg)� v(fig)� v(fjg)
2

):

Some convenient and well-known properties of a solution concept ' on �0
are the following.

� ' satis�es core stability if it selects core allocations whenever the
game is balanced.

The following properties are de�ned for single-valued solutions.

� ' satis�es coalitional monotonicity: if for all v; w 2 �0, if for all S 6=
T; v(S) = w(S) and v(T ) < w(T ); then for all i 2 T; 'i(v) � 'i(w):

� ' satis�es aggregate monotonicity: if for all v; w 2 �0, if for all
S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N; 'i(w)�
'i(v) � 0:

� ' satis�es strong aggregate monotonicity: if for all v; w 2 �0, if
for all S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N;
'i(w)� 'i(v) = 'j(w)� 'j(v) � 0:

Young (1985) proves that no solution satis�es coalitional monotonicity
and core stability. However there are solutions, including the per capita
prenucleolus and the SD-prenucleolus, that satisfy core stability and strong
aggregate monotonicity. Clearly, strong aggregate monotonicity implies ag-
gregate monotonicity. The prenucleolus does not satisfy aggregate-monotonicity
in the class of convex games (Hokari, 2000). The per capita prenucleolus does
not satisfy monotonicity in the class of convex games (see Arin, 2013).
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The following notation is widely used in this work. We denote by (N; uS)
the game:

uS(T ) =

(
1 if T = S
0 otherwise.

3 The SD-prenucleolus

3.1 De�nition

In 2011, Arin and Katsev introduce the SD-prenucleolus, a solution concept
for TU games. In this section we recall some de�nitions and results that are
needed in the present paper.
The de�nition of the SD-prenucleolus is based in the concept of satisfac-

tion of a coalition given an allocation. Given a game (N; v) and an allocation
x we calculate a satisfaction vector fF (S; x)gS(N . The components of this
vector are obtained recursively by de�ning an algorithm.
The algorithm has several steps (at most 2n � 2) and at each step we

identify the collection of coalitions that has obtained the satisfaction. This
collection of coalitions is denoted by H. In the �rst step this collection H is
empty. The algorithm ends when H = 2N .
For a collection H and a function F : H ! R the function FH : 2N ! R

is de�ned. To that end, we introduce some notation. Denote by H � 2N

�H(S) =
[

T2H;T�S
T

and also for a collection H � 2N and a function F : H ! R we denote
by fH;F (i; S) the satisfaction of player i with respect to a coalition S and a
collection H (i 2 �H(S)):

fH;F (i; S) = min
T :T2H;i2T�S

F (T )

Note that this de�nition can only be used in a situation when the function
F (S) is de�ned for all S 2 H.
Now we de�ne a function FH : 2N ! R. We consider two cases (since it

is evident that �H(S) � S):
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1. Relevant coalitions. �H(S) 6= S. In this case the satisfaction of S is

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j

Note that if the collection H is empty then the current satisfaction of the
coalition S coincides with its per capita satisfaction:

F;(S) =
x(S)� v(S)

jSj

2. Non relevant coalitions. �H(S) = S. In this case the current satisfaction
of S is

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S)

Therefore for any function F : H ! R the value fH;F (i; S) can be calculated
for every coalition S and player i 2 �H(S). Also if a function fH;F (�; �) is
de�ned for each S ( N and i 2 �H(S) then the function FH can be de�ned.
The algorithm for the satisfaction vector is de�ned as follows:.

Algorithm 1 Consider a game (N; v) and an allocation x 2 X(N; v).
Step 1: Set k = 0, H0 = ;. Go to Step 2.
Step 2: Set

Hk+1 = Hk [ fS 62 Hk : FHk
(S) = min

T 62Hk

FHk
(T )g

Step 3: De�ne for each S 2 Hk+1 n Hk:

F (S) = FHk
(S)

Step 4: If Hk+1 6= 2N n fNg then let k = k+ 1 and go to Step 2, else go
to Step 5.
Step 5: Stop. Return the vector

fF (S); S ( Ng
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For the sake of simplicity we use the notation F (S) instead of F (S; x):
The lemma below proves that the surplus of a relevant coalition (x(S)�

v)S)) is fully divided among the members of the coalition. This is not the
case with non relevant coalitions, where the surplus of the coalition is higher
than the sum of the surpluses of the members of the coalition.

Lemma 2 For every game (N; v) and allocation x 2 X(v) it holds that
1. For every relevant coalition S � NX

i2S
f(i; S) = x(S)� v(S):

2. For every non relevant coalition S � NX
i2S
f(i; S) < x(S)� v(S):

3. For every coalition S � T � N

f(i; S) � f(i; T ) for any i 2 S:

Proof. 1. By the de�nition of satisfaction of a relevant coalition it holds
that

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j
:

Therefore

x(S)� v(S) = FH(S)(jSj � j�H(S)j) +
X

i2�H(S)

fH;F (i; S) =

=
X

i2Sn�H(S)

f(i; S) +
X

i2�H(S)

f(i; S) =
X
i2S
f(i; S)

2. By the de�nition of satisfaction of a non relevant coalition it holds
that

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S):
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By Lemma 3 from Arin and Katsev (2011) FH(S) > max
i2S

fH;F (i; S) and

therefore X
i2S
f(i; S) < x(S)� v(S):

3. It is immediately apparent.
We illustrate the notion of relevant coalition by using the following 3-

person game. Let (N; v) be a game where N = f1; 2; 3g and

v(S) =

8>>><>>>:
0 if jSj = 1
4 if S 2 ff1; 3g ; f1; 2gg
�10 if S = f2; 3g
6 if S = N:

Consider the allocation x = (5; 1; 0): Applying the algorithm the following is
obtained:

Coalition Satisfaction
f3g 0

f2g f1; 2g f1; 3g 1

f1g 5

f2; 3g 11:

Coalition f2; 3g is a non relevant coalition. The rest of the coalitions are
relevant coalitions. Consider the satisfaction of coalition f1; 3g : This coali-
tion has a subset (coalition f3g) that has already obtained its satisfaction.
This fact is incorporated into the computation of the satisfaction of coalition
f1; 3g since �H(f1; 3g) = f3g. Therefore

FH(f1; 3g ; x) =
x(f1; 3g)� v(f1; 3g)�

P
i2�H(f1;3g)

fH;F (i; f1; 3g)

j f1; 3g j � j�H(f1; 3g)j
=
5� 4� 0
2� 1 :

The total surplus of the coalition is divided as follows: player 1 gets 1
and player 3 gets 0.
The case of non relevant coalitions is di¤erent. If a coalition is non rele-

vant for any player in the coalition there exists a subset of the coalition with
a lower satisfaction and that subset determines the individual satisfaction of
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the player in the non relevant coalition. Note that

x(f2; 3g)� v(f2; 3g) = 11 >
X

i2�H(f2;3g)

fH;F (i; f2; 3g) = 1 + 0:

We de�ne the SD-prenucleolus as a lexicographic value in the set of vectors
of satisfactions. We denote the SD-prenucleolus of game (N; v) by SD(N; v):
We say that the vector x belongs to the SD-prenucleolus if its satisfaction

vector dominates (or weakly dominates) every other satisfaction vector.

De�nition 3 (Arin and Katsev, 2011) Let (N; v) be a TU game. Then
x 2 SD(N; v) if and only if for any y 2 X(N; v) it holds that F x �L F y:

The SD-prenucleolus satis�es nonemptiness and single-valuedness in the
class of all TU games.
In the proof of the main theorem we need to use the fact that in the class

of all TU games the SD-prenucleolus satis�es the SD-reduced game property.
Arin and Katsev (2011) introduce the SD-reduced game.

De�nition 4 Let (N; v) be a TU game, S � N and x 2 X(N). A game
(S; vxS) is the SD-reduced game with respect to S and x if
1. vxS(S) = v(N)� x(N n S)
2. for every T ( S

F (S;v
x
S)(T; xS) = min

U2NnS
F (N;v)(U [ T; x):

For any game (N; v) and any allocation x the SD-reduced game exists
and is unique.
We say that a solution � satis�es the SD-reduced game property on �,

SD-RGP , if for every game v 2 �, for all nonempty coalitions S and for all
x 2 �(v), xS 2 �((S; vxS)).
The SD-prenucleolus satis�es the SD-reduced game property. This type

of property4 plays a determinant role in the characterization of lexicographic

4The de�nition of the reduced game depends on the de�nition of the satisfaction of a
coalition given an allocation.
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values such as the prenucleolus and the per capita prenucleolus. The reduced
games associated to the prenucleolus and the per capita prenucleolus can be
reformulated in an explicit way.
This property plays a determinant role in the proof of the main theorem

(the monotonicity of the SD-prenucleolus in the class of convex games).

3.2 Antipartitions

The notion of antipartition (Arin and Inarra, 1998) also plays a central role
in the main results of this paper.
A collection of sets C=

n
_S : S � N

o
is called antipartition if the collection

of sets fNnS : S 2 Cg is a partition of N . An antipartition is a balanced
collection of sets5. In order to balance an antipartition Q each coalition
receives the same weight, i.e. 1

jCj�1 .
For any game (N; v) the satisfaction of an antipartition C with weights

( 1
jCj�1)S2C is de�ned by

F (C) :=
v(N)�

P
S2C

1
jCj�1v(S)

jN j :

Let (N; v) be a TU game and x be an allocation. We denote by B(x) the
set of coalitions with minimal satisfaction at x:

Lemma 5 Given a game (N; v ) and an allocation x; if the collection of sets
with minimal satisfaction B(x) contains an antipartition C then F (S; x) =
F (C) for all S belonging to B(x).

Proof. Let x be an allocation and let C be an antipartition in B(x). Note
that for S 2 C it results that F (S; x) = x(S)�v(S)

jSj = �:

Since C is balanced X
S2C

�sx(S) =
X
i2N

xi = v(N):

5See Peleg and Sudholter (2007) for the de�nition of a balanced collection of sets.
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From the de�nition above the following emerges:

jN jF (C) = v(N)�
X
S2C

1

jCj � 1v(S):

From the balancedness of C it holds that

v(N)�
X
S2C

1

jCj � 1v(S) =
X
S2C

1

jCj � 1 (x(S)� v(S)) =

X
S2C

1

jCj � 1 jSjF (S; x) = �
X
S2C

1

jCj � 1 jSj = � jN j :

Last equality is a direct consequence of the fact that each player is present
in all coalitions of the antipartition but one.
Note that if the set of coalitions with minimal satisfaction with respect

to the SD-prenucleolus of the game contains an antipartition then the satis-
faction of these coalitions only depends on the characteristic function of the
game.

4 Monotonicity of the SD-prenucleolus

4.1 SD-relevant games

In this section we introduce the class of SD-relevant TU games. This class
includes the class of convex games.
A TU game is SD-relevant if given the SD-prenucleolus of the game all

its coalitions are relevant. Formally,

De�nition 6 We say that a TU game (N; v) is SD-relevant if any S; S � N;
is relevant with respect to SD(N; v):

The game (N; v) where N = f1; 2; 3; 4g and

v(S) =

8>>><>>>:
0 if jSj = 1 or S 2 ff1; 2g ; f3; 4gg
2 if jSj = 2
2 if jSj = 3
4 if S = N
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is not SD-relevant since SD(N; v) = (1; 1; ; 1; 1) and clearly, coalition f1; 2; 3g
is non relevant at (1; 1; 1; 1).
In what follows we provide an alternative way of computing the SD-

reduced games of an SD-relevant game which bears strong similarities to the
well known Davis Maschler reduced game.
If a game is SD-relevant then any SD-reduced game with respect to the

SD-prenucleolus of the game is also SD-relevant. Therefore in the class of SD-
relevant games all the SD-reduced games with respect to the SD-prenucleolus
belong to this class.

Lemma 7 Let (N; v) be an SD-relevant TU game. Let (S; vSD) be an SD-
reduced game with respect to the SD-prenucleolus of (N; v). Then (S; vSD) is
an SD-relevant TU game.

Proof. Let P and M two subsets of S such that F (M;SD(S; vSD)) �
F (P; SD(S; vSD)) and M [ P 6= N: We seek to prove that

F (M [ P; SD(S; vSD)) � max
�
F (M;SD(S; vSD)); F (P; SD(S; vSD))

	
:

Let F (M;SD(S; vSD)) = F (M [Q;SD(N; vSD)) for some Q � NnS and
let F (P; SD(S; vSD)) = F (P [ T; SD(N; vSD)) for some T � NnS: Clearly,
(M [Q) [ (P [ T ) 6= N:
Since all coalitions in the game (N; v) are relevant It holds that

F ((M [Q) [ (P [ T ); SD(N; vSD)) �

max
�
F (M [Q;SD(N; vSD)); F (P [ T; SD(N; vSD))

	
=

F (M [Q;SD(N; vSD)):

Note that (M [Q) [ (P [ T ) = (M [ P ) [ (Q [ T ) and therefore

F (M [ P; SD(S; vSD)) � F ((M [Q) [ (P [ T ); SD(N; vSD)) �

� F (M [Q;SD(N; vSD)):

Therefore the SD-reduced game of an SD-relevant game is SD-relevant.
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Arin and Inarra (1998) prove that, given a convex game, the collection of
coalitions with minimal satisfaction with respect to the prenucleolus of the
game contains either a partition or an antipartition. In the case of the SD-
prenucleolus of an SD-relevant game only antipartitions should be considered,
as the following theorem shows.

Lemma 8 Let (N; v) be an SD-relevant TU game. Then the collection of sets
with minimal satisfactions with respect to SD(N; v) contains an antipartition.

Proof. Let x = SD(N; v) and let B(x) be the set of coalitions with
minimal satisfaction with respect to x. Let S be a maximal coalition in
B(x), that is, there is no coalition T in B(x) such that S � T: Since B(x)
is balanced for each i 2 S there exists a coalition, T i; such that i =2 T iand
T i 2 B(x). Since (N; v) is SD-relevant the maximality of S implies that
NnS � T i: Let fT i : i 2 Sg be the set of maximal coalitions for each i in
S ((perhaps the case in which for two players i; j it holds that T i = T j):

Then fT i : i 2 Sg [ fSg is an antipartition. It is immediately apparent that
(NnT i) \ (NnS) is empty. If for any i; j 2 S it holds that (NnT i) \ (NnT j)
is nonempty it is clear that T i [ T j 6= N which contradicts the maximality
of T I and T j since the fact that (N; v) is SD-relevant implies that T i [ T j is
an element of the set B(x).
The above results allow for a di¤erent interpretation of the SD-reduced

game of an SD-relevant game. The SD-reduced games with respect to the
SD-prenucleolus can be easily computed according to the result established
by the following lemma.

Lemma 9 Let (N; v) be an SD-relevant TU game, S � N and x = SD(N; v).
Consider the SD-reduced game (S; vxS): Then

vxS(T ) = v(T [ (N n S))�
X
i2NnS

zi(T [ (N n S)) =
X
i2T

zi(T [ (N n S)):

where zi(T [ (N n S)) = xi � fi(T [ (N n S))

Proof. By Lemma 7 (S; vxS) is SD-relevant. We denote by f
x
S the analog

of function f for the game (S; vxS).
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By de�nition of fxS (i; T ) it holds that

fxS (i; T ) = min
i2U�T

F (S;v
x
S)(U) = min

i2U�T
min
R�NnS

F (U [R) =

= min
i2M�T[(NnS)

F (M) = f(i; T [ (N n S)):

Therefore

vxS(T ) = x(T )�
X
i2T

fxS (i; T ) = x(T )�
X
i2T

f(i; T [ (N n S)) =

=
X
i2T

zi(T [ (N n S)) = v(T [ (N n S))�
X
i2NnS

zi(T [ (N n S)):

Here we use the fact that the coalition T [ (N n S) is relevant in the game
(N; v).
The corollary below presents a simple formula for computing some SD-

reduced games. This result is used in the proof of the main theorem.

Corollary 10 Let (N; v) be an SD-relevant TU game, x = SD(N; v) and
S 2 B(x). Consider the SD-reduced game (NnS; vx) and assume that coali-
tion T � NnS is relevant in game (NnS; vx) at x: Then

vxS(T ) = v(T [ S)�
X
i2S
zi(T [ S) = v(T [ S)� v(S):

Proof. Since S 2 B(x) it holds that f(i; S) = x(S)�v(S)
jSj : Since (N; v)

is SD-relevant, for any T such that S � T it holds that f(i; T ) = f(i; S):

Therefore, X
i2S
zi(T [ S) =

X
i2S
xi(T [ S)�

X
i2S
f(i; T [ S) =

X
i2S
(xi(S)� f(i; S) = x(S)� jSj

x(S)� v(S)
jSj == v(S):

The notion of SD-equivalent games is also needed in the proof of the main
results of the paper. We say that two TU games are SD-equivalents if the
two games have in the set of coalitions of minimal satisfaction with respect
to the SD-prenucleolus the same antipartition.
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De�nition 11 Let x = SD(N; v) and let y = SD(N;w): We say that TU
games (N; v) and (N;w) are SD-equivalent if there exists an antipartition Q
such that Q � B(x) and Q � B(y):

Next lemma allows us to consider only SD-relevant and SD-equivalent
game while analyzing the monotonicity of the SD-prenucleolus in the class
of SD-relevant games.

Lemma 12 For some S � N and any  2 [0; �], let (N; v + uS) be an
SD-relevant TU game. Then, there exists �; 0 < � � � such that:
1 (N; v) and (N; v + �uS) are SD-equivalent TU games.
2 (N; v + �uS) and (N; v + �uS) are SD-equivalent TU games.

Proof. Let y = SD(N; v + �uS) = SD(N;w) and x = SD(N; v): Let
Q be an antipartition contained in B(x). If Q is contained in B(y) then it
is evident that � = �: If Q is not contained in B(y) then it must be the
case that S 2 B(y) and F (Q; v) >F (S; y; w) and any antipartition in B(y)
must include S: Let M be an antipartition in B(y). If M is an antipar-
tition in B(y) the proof is completed and � = �: If not, it is clear that
F (M; v) >F (Q; v) >F (Q; w) >F (M; w). Therefore by decreasing � we can
�nd a new game (N; q) = (N; v + �uS) such that

F (M; q) =F (Q; v) =F (Q; q) >F (M; w)

Therefore with the game (N; q) the statement of the lemma is proved for
this last case.
The proof of the main theorem uses the following facts:
1 We only consider SD-equivalent games.
2 The set of coalitions with minimal satisfaction with respect to the SD-

prenucelolus contains an antipartition. The satisfaction of these coalitions
only depends on the characteristic function of the game.
3 The SD-reduced games with respect to the SD-prenucleolus are SD-

relevant and can be easily computed.
Now we are in a position to present the main theorem of this section.
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Theorem 13 For some S � N and any  2 [0; �], let (N; v + uS) be an
SD-relevant TU game. Then SDi(N; v + �uS) � SDi(N; v) for any l 2 S:

Proof. The fact can be proved by induction for jN j. If jN j � 2 then the
monotonicity holds since the SD-prenucleolus of the game is the standard
solution of the game. Assume that it holds for all games with no more than
k players. Now we show that it also holds for each game with k + 1 players.
Consider the game (N; v) with jN j = k+ 1 and a game (N;w) � (N; v+

�uS) for S � N and � > 0. We will show that for each i 2 S it holds that
SDi(N; v) � SDi(N;w). Assume that (N;w) and (N; v) are SD-equivalent.
From Lemma 8 for the two games there is an antipartition, Q; in the

set of coalitions with minimal satisfaction. Consider a coalition T of this
antipartition Q. We seek to compare the SD-prenucleolus of the two SD-
reduced games (NnT; vSD(v)) and (NnT;wSD(w)): We distinguish 3 cases:
1. S =2 Q and T is not a subset of S: By applying Corollary 10, the

two SD-reduced games must coincide. Therefore players in S \NnT receive
the same payo¤ in both games. Since the SD-prenucleolus satis�es the SD-
reduced game property it must be the case that in games (N; v) and (N;w)
players in S \NnT also must receive the same payo¤.
2. S 2 Q. Note that this implies that S must be in the same antipartition

with T since otherwise the two games cannot be SD-equivalent.
If jNnT j = 1 then it is clear that SD(T; v) = SD(T;w) and consequently

SDi(N; v) = SDiN;w) for i 2 NnT: Therefore we only consider the case
jNnT j > 1:
Let F (S; SD(N; v); v) = F1 and F (S; SD(N;w); w) = F2: Since S is

in the same antipartition in both games by applying Lemma 5 it is quite
immediately apparent that F2 = F1 � � 1

jN j(jQj�1) and

SD(S;w) = w(S) + jSjF2 = v(S) + �+ jSj (F1 � �
1

jN j (jQj � 1)) =

SD(S; v) + �(1� jSj
jN j (jQj � 1)) > SD(S; v):

In this case the characteristic function wS for relevant coalitions in the re-
duced game (S;wSD) with respect to the SD-prenucleolus of the game (N;w)
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results

wSD(U) =

(
vSD(S) + �(1� jSj

jN j(jQj�1)) U = NnT
vSD(U) otherwise

This means that (by strong aggregate monotonicity of the SD-prenucleolus)
for each i 2 S \ (NnT ) it holds that

SDi(NnT;wSD(w)) > SDi(NnT; vSD(V )), SDi(N;w) > SDi(N; v):

3 S =2 Q and T � S:
In this case by applying Corollary 10,

wSD(U) =

(
vSD(S) + � U = SnT
vSD(U) otherwise.

In this case the TU game (NnT;wSD(w)) can be written as (NnT; vSD(v)+
auSnT _): From Lemma 7 the SD-reduced games (NnT; vSD(v) _) and (NnT; vSD(v)+
auSnT _) are SD-relevant. Note also that for any  2 [0; �] it also holds that
(NnT; vSD(v) + uSnT _) is an SD-relevant game6. We distinguish two cases;
3a) (NnT; vSD(v) _) and (NnT; vSD(v) + auSnT _) are SD-equivalent. The

analysis can be repeated for these two TU games. If the analysis ends in
case 1 or 2 the proof is complete. Otherwise the analysis is repeated for the
resulting two new SD-reduced games. In this last case the new TU games
have fewer players. Since the result is true when the number of players is 2
it can be asserted that at some stage the procedure will end in case 1 or 2.
3b) (NnT; vSD(v) _) and (NnT; vSD(v) + auSnT _) are not SD-equivalent. By

Lemma 12 there exists �; � < �; such that (NnT; vSD(v) _) and (NnT; vSD(v)+
�uSnT _) are SD-equivalent and (NnT; vSD(v) + �uSnT _) and (NnT; vSD(v) +
�uSnT ) are SD-equivalent and SD-relevant. The analysis can be repeated for
these two pairs of TU games. If the analysis ends in case 1 or 2 the proof
is complete. Otherwise the analysis is repeated for the resulting two new
SD-reduced games. In this last case the new TU games have fewer players.

6This is so because (NnT; vSD(v)+auSnT _) is the SD-reduced game of (N; v+uS _) with
respect to the SD-prenucleolus of (N; v+ uS _): Recall that (N; v+ uS _) is by assumption
SD-relevant.
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Since the result is true when the number of players is 2 it can be asserted that
at some stage the procedure will end in case 1 or 2. It is thus proved that for
any player i in S \ (NnT ) it holds that SDi(N;w) � SDi(N; v): Since this
is true for any coalition T in the antipartition Q it must be concluded that
for any player i in S it holds that SDi(N;w) � SDi(N; v):

Assume that (N;w) and (N; v) are not SD-equivalent. By Lemma 12 there
exists �; � < �; such that (N; v) and (N; v + �uS) are SD-equivalent and
(N;w) and (N; v + �uS) are SD-equivalent. Therefore the above arguments
can be used to conclude that for any player i in S it holds that SDi(N; v) �
SDi(N; v+ �uS):Similarly, it must be concluded that for any player i in S it
holds that SDi(N;w) � SDi(N; v + �uS):

4.2 Convex games

In the class of convex games7 (Shapley, 1971) core stability and coalitional
monotonicity are compatible. In thus class, the Shapley value satis�es the two
properties. In general, the Shapley value is not a core concept. Therefore the
issue of whether a core concept satisfying monotonicity in the class of convex
games exists has been an open question. The following theorem answers the
question in the a¢ rmative.

Theorem 14 In the class of convex games the SD-prenucleolus satis�es coali-
tional monotonicity.

The proof of this theorem results immediately from the facts that convex
games are SD-relevant games (see lemma below) and the fact that if (N; v)
and (N; v + �uS) are convex then (N; v + uS) is convex for any  2 [0; �].

Lemma 15 Let (N; v) be a convex game and x be an allocation. Then all
coalitions are relevant with respect to x. Therefore convex games are SD-
relevant games.

Proof. The lemma is obviously true for coalitions with minimal satis-
faction, coalitions in B(x): We seek to prove that given any two relevant
coalitions, S and T , S [ T is relevant.

7Convex games have been widely used to model many di¤erent economic situations.
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Assume that S and T are relevant coalitions, S [ T 6= N and S [ T is
non relevant. By convexity

x(S [ T )� v(S [ T ) + x(S \ T )� v(S \ T ) � x(S)� v(S) + x(T )� v(T ):

Since S and T are relevant:

x(S)� v(S) =
X
i2S
fH;F (i; S)

x(T )� v(T ) =
X
i2T

fH;F (i; T ):

Since S [ T is non relevant:

x(S[T )�v(S[T ) =
X
i2S[T

fH;F (i; S[T )+(F (x; S[T )�max
i2S

fH;F (i; S[T )):

We consider two cases.
a) There is no relevant coalition Q � S [ T such that Q " S; Q " T and

F (Q; x) < max(F (S; x); F (T; x)):

In this case it holds thatX
i2S[T

fH;F (i; S [ T ) =

=
X
i2SnT

fH;F (i; S) +
X
i2TnS

fH;F (i; T ) +
X
i2T\S

min(fH;F (i; T ); fH;F (i; S)) + �

where � > 0 since S [ T is non relevant: Therefore

�+ x(S \ T )� v(S \ T ) �
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

or (since � > 0)

x(S \ T )� v(S \ T ) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

or (assuming S \ T is relevant8)X
i2T\S

fH;F (i; T \ S) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

8If it is non relevant the proof is identical: a strictly positive number � just needs to
be added on the right-hand side of the inequality. Since � is positive the arguments do
not change.
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Since (S \ T ) � S for any i 2 S \ T it holds that

fH;F (i; S) � fH;F (i; T \ S)

and similarly, since (S \ T ) � T for any i 2 S \ T it holds that

fH;F (i; T ) � fH;F (i; T \ S):

Consequently, for any i 2 S \ T it holds that

fH;F (i; T \ S) � max(fH;F (i; T ); fH;F (i; S))

which contradicts the fact that

x(S\T )�v(S\T ) =
X
i2T\S

fH;F (i; T \S) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S)):

b) There is a relevant coalition Q � S [ T such that Q " S; Q " T and
F (x;Q) < max(F (S; x); F (T; x)): Among the relevant coalitions satisfying
these conditions Q has the minimal satisfaction.
Consider the following coalitions S1 and T 1 de�ned as follows:

S1 =

(
S if F (Q; x) � F (S; x)

S [Q if F (Q; x) < F (S; x)
and

T 1 =

(
T if F (Q; x) � F (T; x)

T [Q if F (Q; x) < F (T; x)
:

We consider two cases:
b1) Coalitions S1 and T 1 are relevant.
Using coalitions S1 and T 1 , repeat the arguments used for coalitions S

and T . Note that since Q has been chosen with minimal satisfaction then for
these two coalitions (S1and T 1) case b) does not occur and it is concluded
that S1 [ T 1 = S [ T is relevant.
b2) Assume, without loss of generality, that S1 is non relevant. Note that

S1 � S [ T and the set of players is �nite. Repeat the proof with coalitions
S and Q: This ends up either in a contradiction (cases a) and b1)) or in case
b2) with two coalitions S and P (or Q and P ) such that S [P (or Q[P ) is

21



non relevant. Repeat the proof again for coalitions S and P (or Q and P ). If
the proof ends in case a) or b1) the contradiction is found. If not, repeat the
proof with another two coalitions. Note that at the end two coalitions need
to be found for which case b2) does not occur since the number of players
is �nite and the size of the coalitions is reduced at each step whenever the
proof ends in case b2).

5 Concluding remarks

This paper follows up the research started by Arin and Katsev in 2011. Con-
sidering the results included in the two papers the SD-prenucleolus stands
out as the only known core concept that satis�es monotonicity in the class
of convex games and in the class of veto balanced games. Convex games9

and games with veto players have been widely used to model many di¤erent
economic situations. In both classes the compatibility between core stability
and monotonicity was known. However the existence of a continuous core
concept satisfying monotonicity in those two classes was an open question
that has been answered in the positive way: the SD-prenucleolus is a contin-
uous core concept that satis�es aggregate-monotonicity, monotonicity for of
convex games and for of veto balanced games. That is, the SD-prenucleolus
respects monotonicity and core stability in two important classes of games
where the two principles are compatible.
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