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Abstract 

In economic literature, information deficiencies and computational complexities have 

traditionally been solved through the aggregation of agents and institutions. In input-

output modelling, researchers have been interested in the aggregation problem since the 

beginning of 1950s. Extending the conventional input-output aggregation approach to 

the social accounting matrix (SAM) models may help to identify the effects caused by 

the information problems and data deficiencies that usually appear in the SAM 

framework. This paper develops the theory of aggregation and applies it to the social 

accounting matrix model of multipliers. First, we define the concept of linear 

aggregation in a SAM database context. Second, we define the aggregated partitioned 

matrices of multipliers which are characteristic of the SAM approach. Third, we extend 

the analysis to other related concepts, such as aggregation bias and consistency in 

aggregation. Finally, we provide an illustrative example that shows the effects of 

aggregating a social accounting matrix model.     
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1. INTRODUCTION 

For different reasons, the aggregation of information is a common practice in 

economic analysis. As the data requirements and the data availabilities are not always 

reconcilable, some level of aggregation is necessary to solve the deficiencies that 

usually characterise the empirical sources. Aggregation is also used because the national 

accounts, which are prepared and compiled on a detailed basis, are published in an 

aggregated form by the national statistics institutes. Additionally, researchers use 

aggregated data when their interest lies in analysing the total effects of economic 

relationships. Finally, aggregation is a way of ensuring the confidentiality of economic 

data when there are restrictions on showing the individual information of agents and 

institutions.  

In the input-output literature, the study of aggregation started in the early 1950s. 

In this field, a complete set of concepts has been developed, and nowadays it is possible 

to evaluate the properties of any input-output aggregation procedure. In fact, concepts 

such as aggregation bias, consistency in aggregation, and information requirements are 

perfectly defined and commonly used in input-output analysis. Because the theory of 

aggregation has also suggested specific criteria to reduce a given detailed input-output 

table, it minimises the errors due to the loss of information under aggregation.  

The general question of input-output aggregation was first studied by Hatanaka 

(1952), Fei (1956), Theil (1957), Fisher (1958), and Ara (1959). Ijiri (1971) surveyed 

the fundamental queries that had been raised in the aggregation literature. Kimura 

(1985) developed the concept of consistency in aggregation within a dynamic input-

output model. Howe and Johnson (1989) analysed the properties of an aggregated input-
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output model in relation with the original one. Kymn’s paper (1990) reviewed all the 

theory of aggregation developed since then, and Olsen (1990) added some remarks and 

comments to the Kymn’s paper. Oksanen and Williams (1992) used the factor-analytic 

approach to find similarities between industries to group them into aggregated sets. 

Olsen (1993) presented a joint theory of aggregation in input-output quantity-oriented 

models and price-oriented models. De Mesnard and Dietzenbacher (1995) considered 

the effects of aggregation over regions within an interregional input-output model, and 

focused on the interpretation of coefficients and multipliers under aggregation. Murray 

(1998) developed an optimisation-based approach for minimising the resulting error or 

the information loss in aggregated input-output models. Olsen (2000) presented an 

indicator of aggregation bias that allows the aggregation problems of a reduced input-

output model to be identified. Dietzenbacher and Hoen (2000) analysed the effects of 

aggregation in an input-output table estimated in constant prices by means of double 

deflation. More recently, Lahr and Stevens (2002) discussed the implications of 

aggregation in regional input-output modelling, when the aggregated national input-

output data are regionalised with trade-adjustments procedures.   

In recent decades, Social Accounting Matrices (SAMs) have become a common 

instrument in economic analysis. SAM modelling can be defined as an extension of the 

input-output model because it reflects a greater set of income relations than those of the 

input-output approach. The SAM model completes the circular flow of income by 

capturing not only the intermediate demand relations, but also the relations between 

factor income distribution and private consumption. Since the pioneering contributions 

of Stone (1978) and Pyatt and Round (1979), social accounting techniques have been 
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used to analyse the income generation process providing details about the sources and 

destinations of transactions between economic institutions.  

As in the input-output model, the aggregation of information plays an important 

role within the SAM framework. One of the most important aspects in the social 

accounting context lies in choosing the aggregation level of agents and institutions 

considered in empirical analysis. Specifically, the division of consumers into 

socioeconomic groups and the number of foreign agents analysed is an important 

decision in applied research, since it determines the level of detail in the resulting 

description of the income generation process. Generally, the data deficiencies force us 

to consider aggregated regions and aggregated households, and this seriously impedes 

the identification of detailed income effects. Despite SAM aggregation being a common 

practice in applied research, as far as we know, the aggregation problem has not been 

analysed within the context of the social accounting matrix framework. 

The objective of this paper is to adapt the conventional aggregation theory, 

typically applied to input-output modelisation, in such a way that it can be applied in the 

SAM model. Specifically, we extend the general context of aggregation to the social 

accounting database context, and we define the aggregation of the partitioned matrices 

of multipliers that are characteristic of the SAM framework. We also extend to the 

social accounting model other related concepts, such as aggregation bias of income and 

aggregation bias of multipliers. With this extension, therefore, we further analyse the 

aggregation problem and provide a conceptual framework that is useful for establishing 

the consequences of the information problems and the data deficiencies that commonly 

appear in the SAM database context.     
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The rest of the paper is organised as follows. Section 2 describes the social 

accounting matrix model of linear multipliers. In section 3 we apply the aggregation 

theory to the SAM framework, through the definition of aggregation functions, 

aggregation bias of income, aggregation bias of multipliers, and aggregation 

consistency. Section 4 shows an illustrative example. At the end of the paper we provide 

some concluding remarks.    

2. THE SAM MODEL 

The SAM model is based on the accounting identities reflected in a social 

accounting matrix. A SAM is a square matrix whose rows and columns add up to the 

same amount. This matrix contains the flows of income and expenditure related to all 

the economic agents by a temporal reference.
1
 By convention, receipts of agents are 

entered in the rows, and expenditures are entered in the columns. Table 1 shows 

schematically the transactions that appear in a social accounting matrix.  

[PLACE TABLE 1 HERE] 

In the first row, T11 is a square matrix that contains the intermediate inputs. Matrix T13 

shows the private consumption and has the same number of columns as the number of 

consumers in the SAM. Additionally, matrix T21 contains the factor income or value 

added, matrix T32 shows the factor income of consumers and matrix T33 shows the 

transferences between consumers. Finally, the last row and the last column in table 1 

show the income relations with the remaining sectors, which include the government, 

the capital account and the foreign agents. 

                                                           

 
1
 See, for example, Pyatt (1988) for a detailed description of social accounting matrices. 
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To transform the representation of table 1 into a model, we assume that the 

structure of income and payments is constant. On the other hand, we must also divide 

the accounts of the SAM into two different categories: endogenous accounts and 

exogenous accounts. The standard representation of the SAM model can then be written 

as follows: 

    Y = A Y + X = [I – A]
-1 

X = M X,           (1) 

where Y is the vector of column totals of the endogenous accounts, X is the vector of 

exogenous injections, I is the identity matrix and A is a square matrix of structural 

coefficients, calculated by dividing the transactions in the SAM by the corresponding 

column sum. In expression (1), M = [I – A]
-1
 is the matrix of multipliers, and the 

element mij quantifies the increase in the income or receipts of account i caused by a 

unitary and exogenous injection received by account j. These elements thus show both 

the direct and the indirect effects on the endogenous accounts of the exogenous inflows 

received.  

In the traditional endogeneity assumption of Stone (1978) and Pyatt and Round 

(1979), activities, factors of production and households are considered to be endogenous 

components. So, matrix A of structural coefficients has the following structure: 

A = 

















3332

21

1311

0

00

0

AA

A

AA

, 

where A11 contains the input-output coefficients, A13 contains the coefficients of 

households’ sectorial consumption, A21 contains the factors of production coefficients, 

A32 contains the coefficients of factor income to consumers, and A33 contains the 
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transactions between consumers. Note that expression (1) is an extension of the classical 

input-output model, since it includes a greater set of interdependencies than those of the 

input-output approach. The SAM model completes the circular flow by capturing not 

only the intermediate demand relations, but also the relations between factor income 

distribution and private consumption.  

To provide a deeper insight into the analysis of SAM multipliers, Pyatt and 

Round (1979) divided matrix M into different circuits of interdependence. Specifically, 

it can be seen that:  

Y = A Y + X  

  = (A - A ) Y + A Y + X  

  = (I - A )
-1
 [(A - A ) Y + X]

 
 

      =
•

A Y + (I - A )
-1 

X
 
 

  =
•
2A  Y + (I +

•

A )
 
(I- A )

-1 
X 

  =
•
3A Y + (I +

•

A +
•
2A )

 
(I - A )

-1 
X  

  = (I -
•
3A )

-1
 (I +

•

A +
•
2A )

 
(I - A )

-1 
X  

      = M3 M2 M1X,                  (2) 

where 
•

A = (I - A )
-1
(A - A ), M1 = (I - A )

-1
, M2 = (I +

•

A +
•
2A ),

 
and M3 = (I -

•
3A )

-1
. 

Finally, matrix A  has the following structure: 

A  = 

















33

11

00

000

00

A

A

. 
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In the expression above, matrix M of the total SAM multipliers has been defined 

by three multiplicative components that convey different economic meanings.
2
 After the 

corresponding matrix algebra is applied, it can be seen that the first block M1 has the 

following elements: 

M1 = 

( )

( ) 















−

−

−

−

1
33

1
11

00

00

00

AI

I

AI

. 

Matrix M1 contains the own effects explained by the connections between the accounts 

belonging to the same income relationships. Specifically, the perspective of income 

transmission reflected in M1 responds to the effects of intersectorial linkages and the 

effects of transactions between consumers.  

Additionally, matrix M2 is as follows: 

M2 = 

( ) ( ) ( )

( )

( ) ( ) 















−−

−

−−−

−−

−

−−−

IAAIAAAI

AAIAIA

AAIAAIAAII

32
1

332132
1

33

13
1

112121

13
1

1132
1

3313
1

11

. 

This block contains the open effects caused by the accounts on the other parts of the 

circular flow of income, that is, from activities to households and factors, from factors 

to households and activities and, finally, from households to factors and activities. As it 

shows the effects of the accounts on the other income circuits of the system, the main 

diagonal in M2 is unitary and the other elements are positive.   

Finally, matrix M3 has the following structure: 

                                                           
2
 Note that the decomposition in equation (2) is not unique. In consequence, the interpretation of the 

decomposed multipliers depends basically on the division of the matrix of expenditure share coefficients, 

that is, the structure of matrix A .  
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M3 = 
[ ]

[ ]
[ ] 
















−−−

−−−

−−−

−−−

−−−

−−−

1

13

1

112132

1

33

1

32

1

3313

1

1121

1

2132

1

3313

1

11

)()(00

0)()(0

00)()(

AAIAAAII

AAIAAIAI

AAAIAAII

. 

The block M3 contains the circular effects on the accounts that are activated because of 

the exogenous inflows received. The component M3 is a block diagonal matrix, showing 

the closed-loop effects of the circular flow of income caused by the exogenous shocks 

received by the accounts. That is, this matrix shows the effects of any inflow starting 

from any part of the income circuit and coming back to its starting point, e.g. from 

activities to factors to households, and then back to activities in the form of 

consumption demand.   

The decomposition of SAM multipliers identifies the different channels by 

which the income effects can be produced and transmitted throughout the economy. 

Logically, this kind of information is very useful for establishing the origin of the 

income shocks on the economic agents and institutions, providing deeper insights of the 

circular flow of income. 

3. AGGREGATION IN THE SAM FRAMEWORK 

3.1. Basic Concepts of Aggregation  

This section describes the general notation and definitions used in the procedure 

of linear input-output aggregation. Similarly, as we will show in the next section, the 

concepts and definitions presented here can be applied to the social accounting matrix 

framework. 

Let us assume that the n original accounts of the SAM model are aggregated into 

N accounts (N < n). We use the indexes I, J = 1, …, N, to indicate the aggregated 
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accounts, and the indexes i, j = 1, …, n, to indicate the original disaggregated accounts. 

The aggregation of matrix A of structural coefficients of the SAM model is carried out 

by using an N × n aggregator matrix or grouping matrix G, which has the following 

structure: 

G = 



















110000

001100

000011

KKKK

MOMM

KKKK

KKKK

, 

where a generic element in this matrix, gIj (I = 1, …., N, and j = 1, …, n), is defined as 

follows:
 
 

gIj = 




∉

∈

.,0

,,1

Ij

Ij
 

That is, each row of matrix G corresponds to an aggregated account, and each column 

corresponds to an original disaggregated account. We place a unitary element if the 

column of G corresponds to an account belonging to the aggregated set, and we place 

zero otherwise.
3
  

Additionally, let H be an N × n matrix of aggregation weights with the same 

structure as G, that is: 

H = 



















⊗⊗

⊗⊗

⊗⊗

KKKK

MOMM

KKKK

KKKK

0000

0000

0000

, 

                                                           
3
 Note that the definition of matrix G assumes that every disaggregated account belongs exactly to one 

aggregated account, and no partial aggregation of the original accounts can be made. In consequence, the 

columns in matrix G add up to one. 
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where the symbol ⊗  indicates non-zero values. The typical element in matrix H, hIj (I = 

1, …., N, and j = 1, …, n), is defined as follows: 

hIj = 









∉

∈
∑
∈

.,0

,,

Ij

Ij
Y

Y

Ii

i

j

 

Note that hIj are weights of the value of income in the original disaggregated account j 

(Yj) with respect to the value of income in the aggregated account I (∑
∈Ii

iY ). 

Consequently, for each original account j the elements in matrix H add up to one, that is 

the row sum in this matrix is equal to one: 1=∑
∈Ij

Ij
h . 

 It should be pointed out that, irrespective of the dimension of matrices G and H, 

the definitions above yield the following mathematical property: HG’ = I; and the 

associated transpose to this property is: GH’ = I.
4
 

 Finally, note that the grouping matrix G and the aggregation weights matrix H 

can be used for any level of aggregation applied to the original accounts of the SAM 

model, once these accounts have been renumbered and compacted into the aggregated 

ones. Thus, the definitions above are general enough to be applied in whatever 

aggregation required in empirical analysis, with the unique restriction that every 

disaggregated account has to belong completely to one aggregated set and no partial 

aggregations can be applied. 

 

 

                                                           
4
  The superscript ‘ denotes transposition of the corresponding matrix. 
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3.2. Definition of aggregation  

The matrices G and H defined above allow the original SAM model to be 

transformed into a more compacted model, in which the number of accounts is lower 

than in the original one. Analogous to expression (1), the aggregated social accounting 

matrix model can be written as:
5
 

Y
*
 = A

*
Y

*
 + X

*
 = M

*
X

*
,          (3) 

where Y
*
 represents the vector of income in the aggregated endogenous accounts, A

*
 

represents the matrix of expenditure share coefficients of the aggregated accounts, and 

X
*
 represents the vector of aggregated exogenous injections.  

By using the notations defined above, the equivalence between the compacted 

components of the SAM model and the original ones responds to the following 

calculations: 

A
*
 = GAH

’
, 

X
*
 = GX, 

M
*
= G(I - A)

-1
H

’
, 

which reflect the relation between the information of the original model, that is, 

matrices A and M and vector X, and the corresponding information of the aggregated 

model.  

Taking into account the definition of matrix A
*
, the reduced matrix of multipliers 

can be obtained as follows: 

                                                           
5
 In what follows, the superscript * accompanying a matrix or a vector denotes the aggregation of the 

corresponding matrix or vector. 
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M
*
 = [I – A

*
]
-1
 

      = [I – GAH’]
-1
 

      = [G(I – A)H’]
-1
 

      = [GM
-1
H’]

-1
.                      (4) 

 According to expression (2), we can also decompose the aggregated matrix of 

multipliers into different circuits of interdependence. Specifically, the first aggregated 

block of multipliers, *

1
M , is equal to: 

*

1
M  = [I –

*

A ]
-1
 

        = [I – G A H’]
-1
 

        = [G(I – A )H’]
-1 

        = [GM1
-1
H’]

-1
,                      (5) 

where
*

A = G A H’ is the aggregated matrix of A (expression (2)). The block *

1
M  shows 

the aggregated own effects of the multiplier decomposition, taking place between the 

accounts belonging to the same income group. Specifically, *

1
M  contains the aggregated 

effects of intersectorial consumption and the aggregated effects of transfers between 

consumers. 

 The aggregated open effects, *

2
M , can be obtained as: 

                                               *

2
M = (I + 

•

A
* 
+ 

•

A
*2

)  

                                                      = I + [(I –
*

A )
-1
(

*
* AA − )] + [(I – 

*

A )
-1
(

*
* AA − )]

2
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       = I + [ *

1
M G( AA − )H’] + [ *

1
M G( AA − )H’]

2
,     (6) 

where 
•

A
*
= (I –

*

A )
-1
(

*
* AA − ). This block shows the effects caused by the aggregated 

accounts on the other parts of the circular flow of income. 

 Finally, the aggregated circular effects of the multiplier decomposition, *

3
M , are 

equal to: 

*

3
M = (I -

•

A
*3

)
-1
  

      = (I - [(I –
*

A )
-1
(

*
* AA − )]

3
)
-1
 

      = (I - [ *

1
M (G(A- A )H’)]

3
)
-1
.          (7) 

This expression contains the closed-loop effects on the aggregated accounts of the 

income shocks received. 

 Expressions (5) to (7) show the connection between the disaggregated matrices 

of coefficients and the aggregated matrices of decomposed multipliers. In other words, 

applying the equations above to the detailed original coefficients allows the multipliers 

of the aggregated SAM model and its decomposition into different income circuits to be 

directly obtained.  

3.3. Aggregation bias of endogenous income 

 The most important question in any aggregation procedure is the resulting error 

when the aggregated model is used to make economic predictions. The theory of 

aggregation assumes implicitly that the disaggregated model is the correct one while the 

aggregated model suffers from errors. This standard assumption explains why the 
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literature of input-output aggregation has turned attention towards the definition of 

optimal aggregation, consisting of those procedures that allow the error due to sectorial 

aggregation to be reduced. In this field, the contributions have provided guidance to 

researchers to ensure minimal discrepancies between the results of the aggregated input-

output models and the results that would have been reported by the corresponding 

disaggregated models.  

  Typically, the starting point in the analysis of input-output aggregation bias is 

the comparison of the model prediction under aggregation and the theoretical 

equivalence of the aggregated system. According to Theil (1957), the input-output 

aggregation bias concerns the difference between the predicted values of total output, 

primary demand and intermediate consumption, with respect to the values for all these 

variables that would have been obtained through the mathematical definition of the 

compacted model. 

 In this section, we apply Theil’s concept of income aggregation bias to the social 

accounting matrix framework. By taking into account the definition of the SAM model 

in equation (1) above, the prediction of the endogenous income after the aggregation is 

calculated as: 

GY = (I – A
*
)
-1
 GX,                   (8)  

where GY stands for the column vector of the endogenous income predicted after 

aggregation. On the other hand, the theoretical aggregation of the endogenous income is 

defined as: 

GY = G(I - A)
-1
X.            (9) 
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In the SAM database framework, the income aggregation bias or income 

aggregation error ( Yε ) can be obtained as the difference between the predicted 

endogenous income and the values obtained through the theoretical aggregation, that is, 

the difference between equations (8) and (9): 

Yε = GY - GY = (I – A
*
)
-1
GX - G(I - A)

-1
X, 

which is an N × 1 vector that contains the discrepancy in the endogenous income of the 

aggregated model regarding the theoretical endogenous income. By applying the power 

series expansion, it follows that: 

Yε = (I – A
*
)
-1
GX - G(I - A)

-1
X 

    = [(I + A
*
 + A

*2
 + ….)G – G(I + A + A

2
 + ….)]X 

    = [(A
*
G – GA) + (A

*2
G – GA

2
) +….]X.       (10) 

 Following Theil (1957), the N × 1 vector of first-order aggregation bias ( Y

f
ε ) is 

defined taking into account the first-order terms of equation (10): 

Y

f
ε = (A

*
G – GA)X.              (11) 

As Y

f
ε  is an approximation of the total aggregation error, it can lead to imprecise 

conclusions about the aggregation procedure. Olsen (2001) demonstrated that the first-

order aggregation bias may or may not be null regardless of whether the total 

aggregation bias is null or not. In consequence, the value of first-order bias is not related 

to the value of total aggregation bias. For this reason, the use of Y

f
ε  is not recommended 
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as it does not detect perfect aggregations and, consequently, does not give information 

about the goodness of the aggregations.
6
   

Expressions (10) and (11) are measures of the aggregation error in absolute 

terms, showing the difference in the endogenous income of the accounts. To obtain an 

indicator of the first-order aggregation bias in relative terms (Rf), we can apply the 

following calculation: 

Rf = [
∧

GY ]
-1 Y

f
ε  = [

∧
*Y ]

-1
 (A

*
G – GA)X.            (12) 

In this expression, the symbol ∧  represents a diagonal matrix containing the elements 

of vector GY, that is, the values of the endogenous income in the aggregated accounts 

(expression (9)). Note that Rf  is an N × 1 vector of the first-order bias regarding the 

total endogenous income in each compacted account. 

Similarly, the N × 1 vector of total bias in relative terms (R) can be obtained as: 

R = [
∧

GY ]
-1 Yε = [

∧

GY ]
-1
 [(A

*
G – GA) + (A

*2
G - GA

2
) + ….]X.      (13) 

The vectors Rf and R allow an immediate interpretation of the aggregation bias 

of income, since they measure the discrepancies of the aggregated model as percentages 

of the total endogenous income.  

Finally, we can calculate a total measure of the first-order bias of income (Tf) as 

follows: 

Tf = [e’GY]
-1
[e’ Y

f
ε ]  

                                                           

 
6
  For instance, section 4 shows an example of perfect aggregation (total aggregation bias null), in which 

the first-order aggregation bias is different from zero. 
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            = [e’G(I – A)
-1
X]

-1
[e’(A

*
G – GA)X ],            (14) 

where e’ is a unitary row vector, and Tf  is a scalar showing the total first-order bias of 

the endogenous income.  

According to expression (14), the total bias of endogenous income (T) can be 

obtained as: 

       T  = [e’GY]
-1
[e’ Yε ]  

        = [e’G(I – A)
-1
X]

-1
[e’[(A

*
G – GA) + (A

*2
G – GA

2
) + ….]X ],       (15) 

being a scalar of the total error in the endogenous income due to aggregation.  

Note that expressions (14) and (15) allow a unique value to be obtained, which is 

measured as a percentage of the endogenous income of the aggregated sets that 

synthesize the error in the endogenous income due to aggregation. These measures may 

be very useful to illustrate the goodness of aggregation procedures, because they are 

easily interpretable. 

3.4. Aggregation bias of multipliers 

The literature of input-output aggregation has focused on analysing the resulting 

error in income when sectorial information concerns large accounts. However, another 

important question in any aggregation procedure is the resulting error in the multipliers, 

that is, the resulting error in the income effects of the accounts per unit of exogenous 

shocks. In other words, the bias of income captures the total error in the endogenous 

income of each account, and the bias of multipliers will capture the error in the income 

effects of the accounts when these accounts receive unitary and exogenous shocks of 

income. In this section, we propose a method to quantify the bias of the SAM 
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multipliers due to aggregation. This extension allows the effects of using aggregated 

data and aggregated accounts in the SAM framework to be individually shown.    

  The starting point in the analysis of the multipliers aggregation bias is the 

comparison of the multipliers prediction under aggregation and the theoretical 

equivalence of the aggregated system. Taking this idea into account, the prediction of 

the SAM multipliers after aggregation is equal to (I - A
*
)
-1 

= [GM
-1
H’]

-1
. On the other 

hand, the theoretical aggregation is equal to G(I - A)
-1
H’. Thus, the multipliers 

aggregation bias or multipliers aggregation error ( Mε ) can be obtained as the difference 

between the predicted values and the values obtained through the mathematical 

aggregation, that is: 

Mε = [GM
-1
H’]

-1
 - G(I - A)

-1
H’

 
,             (16) 

which is an N × N  matrix that contains the discrepancy between the multipliers of the 

aggregated SAM model regarding the theoretical multipliers that are obtained by 

aggregating the original detailed model.  

 Similarly, we can obtain a measurement of the aggregation error of the 

partitioned matrices of multipliers. Specifically, the bias in the first block of multipliers, 

1M
ε , is calculated as: 

1M
ε = [I – 

*
A ]

-1
 – [G(I – A )H’]

-1
,            (17) 

being an N × N  matrix, showing the difference between the predicted own effects and 

the corresponding theoretical equivalence of the aggregated own effects. Similarly, the 

N × N matrix of the bias in the open effects, 2M
ε , is equal to: 
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   2M
ε = (I +

•

A
*
+

•

A
*2

) –  

                                 [I + [(GM1
-1
H’)

-1
G( AA− )H’] + [(GM1

-1
H’)

-1
G( AA − )H’]

2
].    (18) 

Finally, the bias in the aggregated circular effects, 3M
ε , is obtained as: 

3M
ε = (I –

•

A
*3

)
-1
– [(I – ([GM1

-1
H’]

-1
G(A– A )H’)

3
)
-1
]              (19) 

which is an N × N matrix containing the differences in the third block of the SAM 

multiplier decomposition.  

Expressions (16) to (19) allow measurements of the multipliers bias due to 

aggregation of accounts in the SAM framework to be obtained. These calculations 

complete the information about the differences in the income effects of the individual 

accounts due to the exogenous shocks received, and this provides helpful knowledge of 

the goodness of the aggregation procedures applied to a social accounting model of 

multipliers.  

3.5. Consistency in aggregation 

 The concept of consistency in input-output aggregation, which has been widely 

analysed in the literature, suggests reasonable criteria to ensure a “good” aggregation of 

a given input-output table. The idea of consistent aggregation refers to the degree of 

relation between the disaggregated model and the aggregated one. Ideally, the 

aggregated model should give the same results as those obtained through the 

aggregation of the original disaggregated model. This property of aggregation is known 

in the input-output literature by different terms, such as “perfect aggregation”, 

“consistent aggregation”, “exact aggregation”, “acceptable aggregation”, and “intrinsic 

aggregation”.  
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Taking into account the definition of aggregation bias described above, a perfect 

aggregation of a SAM model should imply a null error in equation (10). This can be 

accomplished in different ways:  

• First, as it is stated in the theorem of Hatanaka (1952), the total 

aggregation bias will be zero for any vector X of exogenous income, if and only if A
*
G 

= GA. Note that (A
*2

G - GA
2
) = A

*
A

*
G – GAA = A

*
(GA) – (A

*
G)A = 0, and, similarly, 

the higher order terms of equation (10) will be zero as well. This property suggests that 

if two or more accounts have the same column coefficients in matrix A, the aggregation 

of these accounts will result in a null total aggregation bias. 

• Second, de Mesnard and Dietzenbacher (1995) demonstrated that the 

condition A
*
G = GA  is equivalent to M

*
G = GM, that is (I – A

*
)
-1
G = G(I - A)

-1
. Then, 

the aggregation biais in equation (10) will be zero. This result suggest that if the direct 

influences (captured in matrices A and A
*
) show a null aggregation biais, then the global 

influences (captured in matrices M  and M
*
) will show a null aggregation biais as well. 

• Third, the aggregation bias also depends on the characteristics of vector X 

of exogenous income. If some accounts are not aggregated, and vector X only has 

positive entries for these unaggregated accounts, being zero the exogenous income for 

the aggregated ones, the first-order aggregation bias will be zero.
7
 However, it has to be 

taken into account that a null first-order aggregation bias does not ensure a null total 

aggregation bias.
8
 

                                                           
7
  See Miller and Blair (1985). 

 
8
  Olsen (2001). 
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To sum up, the concept of consistency in aggregation refers to the characteristics 

that must be present in the economy being analysed to ensure a null aggregation error. 

At empirical level, however, consistency may not be accomplished as it depends on the 

specific data and the specific features of the economy. Keeping this limitation in mind, 

the input-output literature has provided methods to ensure a minimum error in the 

aggregation procedures applied to a given input-output model.
9
 This knowledge is very 

useful from a practical point of view, mainly when the data restrictions prevent a perfect 

aggregation. 

4. AN ILLUSTRATIVE EXAMPLE 

 This section shows an example of a social accounting matrix model of 

multipliers, consisting in reducing the number of sectors of production, the number of 

factors, and the number of consumers.
10

 Specifically, we compare two different 

representations for the same hypothetical economy: a model with two activities of 

production, two factors and two households as endogenous components, regarding a 

model with one activity, one factor, and one household as endogenous components. 

Given that the data requirements for a detailed SAM model are often difficult to obtain 

and that the statistical agencies does not publish annually the complete SAM databases, 

our example could be very useful for understanding the implications of the usual 

practice of using reduced information in empirical SAM modelisation.    

[PLACE TABLE 2 HERE] 

                                                           
9
  See, for instance, Fisher (1966). 

 
10
 Our example follows the conventional endogeneity assumption of Stone (1978) and Pyatt and Round 

(1979). 
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 Table 2 shows a disaggregated SAM database, in which we distinguish seven 

accounts: two activities of production, two factors, two consumers and an exogenous 

account (that contains the income relations of government, capital account, and foreign 

agents). Table 3 shows the income flows for the same hypothetical economy, in which 

sectors, factors and households have been aggregated each one into a compacted 

account.  

[PLACE TABLE 3 HERE] 

 By using the information from the two SAMs, the matrices of structural 

coefficients are given as: 

A = 



























005.0583.000

005.0417.000

00001.015.0

00003.02.0

066.07.0001.015.0

066.03.00045.025.0

,  and A
*
 = 

















010

00375.0

480.00475.0

. 

 The aggregation of sectors, factors and consumers is carried out by using the 

following aggregation matrices: 

G = 

















110000

001100

000011

, and H’ = 



























6.000

4.000

04.00

06.00

005.0

005.0

, 

which allow the aggregated matrix of coefficients to be obtained through the following 

calculation: 
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   A
*
 = GAH’ = 

















010

00375.0

480.00475.0

. 

 In the disaggregated SAM model, the matrix of total multipliers is equal to:  

M = 



























080.1625.0853.0891.0662.0540.0

064.0501.1783.0663.0527.0439.0

050.0378.0214.1187.0381.0369.0

095.0749.0422.0367.1808.0610.0

167.0470.1818.0710.0795.1712.0

222.0538.1880.0770.0347.1984.1

,  

and the decomposition into different income channels yields: 

M1
11

 = 



























100000

010000

001000

000100

0000235.1247.0

0000741.0481.1

,  

M2 = 



























10500.0583.0225.0192.0

01500.0417.0175.0158.0

032.0238.010100.0150.0

059.0474.001300.0200.0

099.0938.0519.0499.010

148.0963.0556.0488.001

,  

                                                           
11
  Note that as Table 3 does not reflect transfers between households, there are no own multiplier’ effects 

in the consumers’ accounts. 
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M3 = 



























080.1625.00000

064.0501.10000

00214.1187.000

00422.0367.100

0000295.1265.0

0000319.0286.1

.  

 In the aggregated model, the matrices of multipliers are equal to: 

M
*
 = 

















522.1522.1087.1

522.0522.1087.1

391.1391.1899.2

, 

M1
*
 = 

















100

010

00905.1

, M2
*
 = 

















11375.0

343.01375.0

914.0914.01

, M3
*
 = 

















522.100

0522.10

00522.1

. 

 The total income aggregation bias is null, given that we have complete 

information of the income relations of the accounts, that is, we have the entire detailed 

database. On the other hand, the first-order bias shows values different from zero in two 

accounts: 

Yε = GY - GY = 

















−

















125

100

200

125

100

200

= 

















0

0

0

. 

Y

f
ε = (A

*
G – GA)X = 

















−

0

625.0

458.2

, 

and the relative first-order bias being equal to: 
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Rf =

















−

0

001.0

006.0

. 

The interpretation of Rf is as follows. The first-order error in sectors of production is 

about 0.6 per cent of the endogenous income, in factors of production is about -0.1 per 

cent, and in consumers is about 0 per cent.  

In order to synthesize the bias of income into a unique value, we can calculate 

the total measurements of expressions (14) and (15). Specifically, the total first-order 

bias of aggregation is Tf = 0.004, meaning that the first-order error is about 0.4 per cent 

of the total endogenous income in the aggregated SAM model, and the total bias T is 

equal to zero. 

 Additionally, we can calculate the aggregation bias of multipliers due to the 

aggregation of accounts as follows: 

Mε  = (I - A
*
)
-1
 - [G(I - A)H’]

-1 
=  

     = 

















522.1522.1087.1

522.0522.1087.1

391.1391.1899.2

-

















522.1522.1087.1

522.0522.1087.1

391.1391.1899.2

= 

















000

000

000

. 

Given that we have complete information of the detailed database, the multipliers error 

is equal to zero. Similarly, it can be checked that the bias of the partitioned matrices of 

multipliers are equal to null matrices, meaning that the error in all the block multipliers 

is zero. 

 Let us now assume that the data of vector X does not coincide with the values 

that appear in the original information. This situation is very common in applied 
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research, given that the complete SAM databases are not annually published and only 

partial information is known for the periods not covered by the official statistics. Then, 

the values of X could correspond to other periods different from the base year. For 

instance, if the values of X are now 10% greater than those corresponding to the base 

year, the initial vector X and the new vector (X’) are given by: 

X = 



























20

5

15

10

35

10

, and X’ = 



























22

5.5

5.16

11

5.38

11

. 

By using the new values of exogenous income, it can be checked that the total 

aggregation biais is now different from zero: 

Yε = GY - GY = 

















−

















125

100

200

5.137

110

220

= 

















5.12

10

20

, 

and the relative total bias is equal to: 

R =

















029.0

024.0

047.0

. 

These values show that the total error in sectors of production is about 4.7 per cent of 

the endogenous income, in factors of production is about 2.4%, and in consumers is 

about 2.9 per cent of endogenous income. The total measure of the income biais is equal 

to T = 0.100, meaning that the error is about 10 per cent of the total endogenous income. 
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5. CONCLUSIONS 

In this paper we extended the conceptual tool of linear input-output aggregation 

to the social accounting matrix framework. After defining the aggregation in a SAM 

database context, we showed the aggregation of the partitioned matrices of multipliers 

that are characteristic of the social accounting matrix model. We also extended the 

analysis to other related concepts, such as aggregation bias of income and aggregation 

bias of multipliers. Finally, we presented a numerical example that illustrates the 

usefulness of the conceptual set developed in the paper. Our example, which is very 

frequent in applied research, concerns the aggregation of sectors of production, factors 

of production, and households in a SAM model of multipliers. 

The study of aggregation is very important for empirical work. The aggregation 

of agents and institutions into large accounts is a usual practice in the social accounting 

matrix framework, as it allows the information deficiencies that commonly characterise 

the empirical sources to be overcome. This paper extends the theory of linear 

aggregation which is extremely valuable for establishing the consequences of the 

information problems and the data deficiencies that frequently characterise the SAM 

database context. This extension can help to clarify the consequences of not using detail 

in the description of the income generation process of the economy.  
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Table 1. Structure of a Social Accounting Matrix 

 Activities Factors Households Rest of Accounts Total 

Activities T11 0 T13 T14 Y1 

Factors T21 0 0 T24 Y2 

Households 0 T32 T33 T34 Y3 

Rest of accounts T41 T42 T43 T44 Y4 

Total Y1 Y2 Y3 Y4  
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Table 2. A Disaggregated Social Accounting Matrix 

  Activities Factors Households  

  
Activity

1 

Activity 

2  
Factor 1 Factor 2 Household 1 Household 2 

Exogenous 

Account 
Total 

Activity 1 25 45 0 0 15 5 10 100 

A
ct

iv
it
ie

s 

Activity 2 15 10 0 0 35 5 35 100 

Factor 1 20 30 0 0 0 0 10 60 

F
ac

to
rs

 

Factor 2 15 10 0 0 0 0 15 40 

Household 1 0 0 25 20 0 0 5 50 

H
o
u
se

h
o
ld

s 

Household 2 0 0 35 20 0 0 20 75 

Exogenous 

Account 
25 5 0 0 0 65 0 95 

 

Total 100 100 60 40 50 75 95 520 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

Table 3. An Aggregated Social Accounting Matrix 

 Activities  Factors Households Exogenous 

Account 
Total 

Activities 95 0 60 45 200 

Factors 75 0 0 25 100 

Households 0 100 0 25 125 

Exogenous 

Account 
30 0 65 0 95 

Total 200 100 125 95 520 
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