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Abstract

General signaling results in dynamic Tullock contests have been miss-
ing for long. The reason is the tractability of the problems. In this paper,
an uninformed contestant with valuation vx competes against an informed
opponent with valuation, either high vh or low vl. We show that; (i)When
the hierarchy of valuations is vh � vx � vl, there is no pooling. Sandbag-
ging is too costly for the high type. (ii) When the order of valuations is
vx � vh � vl, there is no separation if vh and vl are close. Sandbagging
is cheap due to the proximity of valuations. However, if vh and vx are
close, there is no pooling. First period cost of pooling is high. (iii) For
valuations satisfying vh � vl � vx, there is no separation if vh and vl
are close. Blu¢ ng in the �rst period is cheap for the low valuation type.
Conversely, if vx and vl are close there is no pooling. Blu¢ ng in the �rst
stage is too costly.
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1 Introduction

In the last two decades, the theory of contests and tournaments found in eco-
nomics a �eld of great development1 , R&D competition (see, e.g. Baye and
Hoppe (2003)), rent-seeking (see, e.g. Tullock (1980) and Nitzan (1994)), war,
disputes and con�icts resolution (see, e.g. Gar�nkel and Skaperdas (2007)),
sports competitions (see, e.g. Szymanski (2003)), and so on. However, dynamic
contests with incomplete information have experienced little progress (see below
for a literature review). The main obstacle has been the low tractability of the
problems. For that reason general signaling results in dynamic contests still an
open question.
In many economic situations of interest individuals compete for the same

good, prize or object. A critical feature is that typically individuals hold di¤er-
ent amounts of information about strategic relevant aspects of the competition.
Moreover, the same individuals may repeatedly compete between each other.
For example, lobby groups with opposed interest have to renew their in�u-

ence every time government changes. Heterogeneous individual with di¤erent
valuations and skills repeatedly dispute a given prize. In procurement, the same
�rms compete in a regularly basis to win a public or private project.
These individuals, institutions, or �rms, di¤er in many dimensions, which

are relevant for the �nal outcome of the competition. Some aspects are common
knowledge, but others do not. A �rm may develop a new product or technology
that gives a strategic advantage and some lobby or in�uence groups might have
better resources or a higher valuation for a particular issue.
While in a static setting, given his information, each individual should make

his best taking into account what the opponent can do, in dynamic settings other
incentives arise. In particular, the possibility of credible informs or misleads the
opponent through their actions, in order to obtain higher gains or increase their
winning likelihood.

This paper focus in two stages repeated Tullock (1980) contests with one-
sided incomplete information. The informed contestant has private information
about his valuation. The uninformed contestant valuation vx is public, but he
does not know his opponent valuation, which can be high vh or low vl.
The informed player might have incentives to reveal or hide his type from the

uninformed player. The incentives depend crucially on the valuation hierarchy.
When vh � vx � vl or vx � vh � vl, it is the high type of informed player
who has incentives to pool with the low type. In the terminology of Hörner and
Sahuguet (2007) this type would like to sandbag in the �rst period in order to
relax the uninformed player in the second period.
When vh � vl � vx; it is the low type who has incentives to pool. In this case,

he blu¤s in the �rst period, pretending to have a high valuation, discouraging
the uninformed player, which will provide less e¤ort in the second period.

1Konrad (2009) provides a recent and complete survey on the general contests theory. See
also Corchón (2007).
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We start by developing a general methodology to deal with this kind of prob-
lem. As in Münster (2009), we derived the second period equilibrium payo¤s
conditional on the observed �rst period e¤ort. Then we compute the �rst period
equilibrium payo¤s that depend on the chosen actions.
As pointed out by Münster (2009), Zhang (2008) and Zhang and Wang

(2009), when the two stages are modeled with a Tullock lottery, tractability is
the major di¢ culty to compute the perfect Bayesian equilibrium of the game.
Moreover, simplifying assumptions that preserve a reasonable level of generality
do not help that much. We go around this di¢ culty by asking what kind of
behaviors cannot be part of an equilibrium. The results are a set of impossibility
statements, that hold true for any prior belief of the uniformed player.
When the hierarchy of valuations is vh � vx � vl we show that there is

no pooling equilibria for any � � 1. Where � is a common discount factor.
Sandbagging is too costly for the high type. The loss in the �rst period can
never compensate the second period gain.
When the hierarchy of valuations is vx � vh � vl, there is no separating

equilibria if vh and vl are su¢ ciently close. In this case sandbagging becomes
cheaper due to the proximity of valuations. In other cases like vh and vx suf-
�ciently close, vl su¢ ciently small or vx su¢ ciently large, there is no pooling
equilibrium for any � � 1. In the former two cases, the intuition is again the
relative �rst period high cost of pooling. In the latter scenario, it is the unin-
formed player who is too strong, to worth any strategic manipulation from a
high valuation informed contestant.
When the hierarchy of valuations is vh � vl � vx, we show that there is no

separating equilibria if vh and vl are su¢ ciently close. The reason is that blu¢ ng
is cheap for the low type. On the other hand, if vx and vl are su¢ cient close,
there is no pooling equilibria for � � 1. Blu¢ ng in the �rst stage is too costly
for the low valuation type. In additionally, we show that if vx is su¢ ciently
small or vh is su¢ ciently large there is no pooling but only for small �.
The �ndings presented in this paper are the �rst general signaling results in

repeated Tullock contests. Their importance goes beyond Tullock contests, and
the approach developed in the present paper can be helpful in dynamic auctions
and other problems with similar structure.

Related literature - In the static setting, it is worth mentioning Malueg and
Yates (2004). They look at a two sided contest with incomplete information ,
they assume a particular speci�cation of the prior distribution that makes the
model, particularly tractable and allows to study the e¤ects of correlation on
the private valuations.2

The literature in signaling in dynamic contests considers two potentially
di¤erent situation; in the �rst, the same players repeatedly meet in each period,
in the second, at each stage some players are eliminated from the contest. The
present paper is in line with the former literature.

2Static incomplete information contests are also studied by Hurley and Shogren (1998a,b).
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Münster (2009) looks at a two stages contest where each player is uncer-
tainty about the existence of the other player. His model is very particular, but
extremely tractable and with interesting results. He shows that a semi-pooling
equilibrium in the �rst stage occurs when the probability of no contestant is
below a given cut-o¤. Otherwise, full separation is the equilibrium. The present
paper di¤ers in many aspects, in particular, we model one-sided incomplete
information, but we are more general. For the latter reason, we are not able
to state for a particular case what equilibria emerges, but we show in which
circumstances a speci�c strategic behavior cannot be an equilibrium.
Hörner and Sahuguet (2007) study two periods general auctions. They show

that two types of pooling equilibria can emerge; sandbagging, i.e. a high valu-
ation bidder pretends to be weak in order to relax the opponent, and blu¢ ng,
i.e. a low valuation bidder pretend to be strong to discourage the opponent. In
the present paper depending on the valuation hierarchy considered incentives
for pooling equilibria of these kinds emerge.3

Another connected paper on signaling in auctions is Goeree (2003). In the
�rst stage �rms compete in an auction for some technology that confers a second
period advantage in their core business. Strategic signaling in the auction stage
emerge because bidding high, signals to the opponent how much better they
will be on the aftermarket (only the winning bid is observed). He shows that
bidding is more aggressive in the second price auction relatively to the �rst price
auction, since bidders do no pay their actual bids. Separating equilibrium exist
when the strong bidders�incentives are to overstate their private information,
but fail to exist in the inverse case.
The incentives and intuitive arguments of the previous referred contributions

are also present and captured in this paper.
Signaling also occurs in elimination contests, where at each stage some play-

ers are eliminated from the contest.4 More closely to the present paper is Zhang
and Wang (2009) who study a two stage and two-sided incomplete information
elimination contest where both stages are modeled as all-pay auctions. They
show that symmetric separating equilibria fail to exist. In a subsequent work,
Zhang (2008) studies a problem with a similar structure, where the �rst stage
is an all-pay auction, while the second is a Tullock�s (1980) lottery. In this case
symmetric separating equilibria exist. The choice of all-pay auction in the �rst
or in both stages is motivated by tractability reasons. These papers highlight

3Netzer and Wiermann (2005) also study a dynamic contest with strategic signaling. They
assume that each contestant can only choose either high or low e¤ort. Such assumption makes
the problem very tractable, but constraints the generality of the results. There are similarities
between their dove (hawk) equilibrium and the sandbagging (blu¢ ng) equilibrium of Hörner
and Sahuguet (2007).

4The literature in elimination contests with complete information is extensive, starting with
Rosen (1986). For example, Gradstein and Konrad (1999) discuss when sequential elimination
contests lead to a higher e¤ort than simultaneous contests. With incomplete information,
Moldovanu and Sela (2006) assume that contestants do not observe the �rst period e¤ort of
their opponents. Rather, ability is inferred from the fact that his still an active contestant,
restricting the potential for strategic signaling. Other papers also make speci�c assumptions
about the player behavior or information transmission in order to restrict or simplify signaling
e¤ects, see, for example, Amegashie (2006) or Lai and Matros (2006).
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the di¢ culties to derive general results when both periods are modeled with the
Tullock function.5 In the present paper, each stage contest is a Tullock lottery
and there is no elimination in the end of the �rst stage.
The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 presents the equilibrium payo¤s for the general case. Section 4 shows
a set of impossibility signaling equilibria for dynamic contests. All proofs are
relegated to an appendix.

2 The Model

There are two players. Let X denote the uniformed player and Y the informed
player. The uniformed player has a commonly known valuation vx 2 R+ for the
contested object. The informed player can be of two types. He can have a high
valuation vh 2 R+ for the contested object or a low valuation vl 2 R+; with
vl � vh. The common prior probability of a type h in the population is denoted
by p 2 (0; 1).
The uniformed and informed player e¤orts are denoted respectively as x 2

R+ and y 2 R+. In the �rst period, each player chooses simultaneously a non-
negative e¤ort; x1 for the player X, and y1h or y1l for player Y , with y1h �
y1l. The second period e¤orts are denoted as x2, and y2h or y2l, respectively.
Where y2h is exclusively chosen by a high valuation type, while y2l is the e¤ort
corresponding to a low valuation player Y . Further changes of notation will be
de�ned in their due time.
The probability that player Y of type t 2 fh; lg wins the stage � 2 f1; 2g

contested object, follows a Tullock (1980) lottery, i.e. y�t= (x� + y�t) when
x� + y�t > 0, where x� and y�t are player X and Y respective e¤orts. The
expected payo¤ of player Y of type t 2 fh; lg at stage � 2 f1; 2g is then

��t =
y�t

x� + y�t
vt � y�t:

Analogously, we can write for the player X the respective winning probabilities
and payo¤s.
Depending on the valuations� hierarchy, i.e. on whether vh � vl � vx,

vh � vx � vl or vx � vh � vl di¤erent incentives arise. In one case player h
may have an interest in replicate the player l e¤ort, or vice versa.
Players discount the second period with the common discount factor �.

In a static contest with asymmetric incomplete information, each type of
player Y plays according to his type, and an equilibrium is called Bayesian.
The same also happen in the second period of a two stage contest. Because
there is no further contest afterwards, conditional on the observed information,
player Y rationally chooses an e¤ort compatible with his type.

5There are connections with the Tullock contest function and all-pay auction, see Hillman
and Riley (1989) and Krishna and Morgan (1997). However, these are two di¤erent objects.
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An equilibrium of the two stages contest must be perfect Bayesian. The
strategy pro�le and the belief system is such that the strategies are sequentially
rational (optimal given the other players�strategies and the belief system) and
the belief system is consistent (the probabilities assigned to every reachable node
are computed using Bayes�s rule).
Information might be di¤erent but players�strategic interests are common

knowledge.

We now provide a short description of the equilibria and information reve-
lation that can arise in a two period dynamic contest:
In a full separating equilibrium one type of player Y must have incentives

to separate from the other. In this case, he plays an action that is pro�table
to him, but cannot be pro�table replicated by the opponent. The �rst period
e¤ort is commonly observed before players decide their second period e¤orts.
Information is precise about the identity of player Y . Consequently, in the
second stage, player X knows the type of player Y .
In a perfectly pooling equilibrium is not pro�table for the player with

incentives to separate, to do it behind a given e¤ort level. On the other hand, the
player with incentives to pool can pro�tably replicate such e¤ort. Consequently,
the observation of the second period action, provides no additional information
about the identity of player Y .
In a semi-separating equilibrium, the type of player Y that has incentives

to separate fully, �nd it non-pro�table behind a given e¤ort. On same time the
type with incentives to pool cannot perfectly replicate his e¤ort in a pro�table
way. However, the latter may �nd pro�table a partial replication, i.e. randomiz-
ing his play over the separating e¤ort and his own optimal e¤ort. In the second
period, the uniformed player X is expected to hold more precise information
about the identity of the opponent. Still not fully informed about the player Y
true type.

3 General Results

In this Section, we derive each player payo¤ function for each stage of the game.
The expressions are general and accommodate any potential scenario in two
players, two periods, two types setting with one-sided incomplete information.

3.1 The Second Stage

We start from the second and last period of the game. Given his prior p and
based on the observation of the e¤ort chosen in the �rst period, player X forms
beliefs about the type of player Y . The Bayesian posteriors about the probability
of a type h after observing respectively, high e¤ort y1h or low e¤ort y1l are

py1h �
p�

p�+ (1� p)� ;
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and

py1l �
p (1� �)

p (1� �) + (1� p) (1� �) :

Where � 2 [0; 1] denotes the intensity with which a type h chooses e¤ort y1h,
and � 2 [0; 1] the intensity with which a type l chooses an e¤ort y1h.
In an equilibrium player Y know that player X e¤ort is optimally with

respect to his beliefs and vice versa. The available information and common
knowledge of rationality determine players�behavior. In the second period, the
informed player Y always plays according to his type. There are no incentives
to misrepresent since it is the last period of the relation.
The following Lemma presents the players second period equilibrium payo¤s

for the general case.

Lemma 1 Depending on the commonly observed e¤ort y1t 2 fy1l; y1hg, the
second period equilibrium payo¤s are:
(i) For the player X

�y1t2 (py1t) = v
3
x

((1� pyt) vh + pytvl)
�
(1� pyt)

p
vh + py1t

p
vl
�2

((1� py1t) vhvx + py1tvxvl + vhvl)
2 :

(ii) For the high valuation player Y

�y1t2h (py1t) =

 
vh

p
vhvl + (1� py1t) vx

�p
vh �

p
vl
�

(1� py1t) vhvx + py1tvxvl + vhvl

!2
: (1)

(iii) For the low valuation player Y

�y1t2l (py1t) =

 
vl

p
vlvh � py1tvx

�p
vh �

p
vl
�

(1� py1t) vhvx + py1tvxvl + vhvl

!2
: (2)

The superscript y1t denotes the �rst period observed e¤ort.
The second stage equilibrium is equivalent to a static Bayesian equilibrium

where the prior is replaced by the posterior conditional on the observed e¤ort.
To keep the main text clear, notice that we have not written the second

period equilibrium e¤orts, they can be found on the Proof of Lemma 1. Clearly
these actions are not �xed. They depend on the available information and on
the players�strategies, through the posteriors that depend on � and �.
For similar reasons, we do not specify the o¤-equilibrium path posteriors,

they are not required for the results presented in the following Sections.

3.2 The First Stage

In the �rst period depending on the hierarchy of valuation; either player h has
incentives toward pooling the player l e¤ort, or vice versa. The payo¤s in both
cases can be accommodated in a same framework.
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Player X knows that there is a probability p of facing a type h and a proba-
bility (1� p) of a type l. But he also knows that such does not mean the played
action is y1h or y1l respectively. A type h chooses e¤ort y1h with probability
�, while a type l chooses e¤ort y1h with probability �. Similarly, e¤ort y1l is
played with probability 1� � by a h type and with probability of 1� � by a l
type. Consequently, in the �rst period the relevant information for the player
X is the frequency of the di¤erent observed actions, i.e.

q � Pr (y1hjp; �; �) = p�+ (1� p)�;

and 1� q � Pr (y1ljp; �; �).
Then the player�X �rst period problem for general p; � and � can be studied

knowing only the actions y1h and y1l: Moreover, we can isolate the �rst period
from the next one, because the player X �rst stage action plays no role in the
second period.
The uncertainty faced by player X is known to player Y , then according to

his type, he chooses the most convenient e¤ort that maximizes the two periods
payo¤. Nonetheless, player Y �rst period equilibrium e¤ort is always condi-
tioned by the uninformed player X behavior.

Lemma 2 (i) Player X �rst period equilibrium payo¤ is

�1 (q) =
v3x
�
(1� q)pvh + q

p
vl
�2
((1� q) vh + qvl)

((1� q) vhvx + qvxvl + vhvl)2
:

(ii) The high valuation player Y �rst period equilibrium payo¤ is

�1h (�; �; q) = ��
h
1h (q) + (1� �)�l1h (q) ;

where

�h1h (q) =

 
vh

p
vhvl + (1� q) vx

�p
vh �

p
vl
�

(1� q) vhvx + qvxvl + vhvl

!2
; (3)

and

�l1h (q) =
p
vh
p
vl

�p
vlvh � qvx

�p
vh �

p
vl
��

((1� q) vhvx + qvxvl + vhvl)2
(4)

� ((1� q) vx
p
vh (vh � vl) + qvxvl (

p
vh �

p
vl) + vh

p
vhvl) :

(iii) The low valuation player Y �rst period equilibrium payo¤ is

�1l (�; �; q) = ��
h
1l (q) + (1� �)�l1l (q) ;

where

�h1l (q) =
p
vh
p
vl

�p
vhvl + (1� q) vx

�p
vh �

p
vl
��

((1� q) vhvx + qvxvl + vhvl)2
(5)

� (pvlvhvl � (1� q) vxvh (
p
vh �

p
vl)� qvx

p
vl (vh � vl)) ;
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and

�l1l (q) =

 
vl

p
vlvh � qvx

�p
vh �

p
vl
�

(1� q) vhvx + qvxvl + vhvl

!2
: (6)

Some of the obtained expressions are lengthy. It�s the result of having a
general framework that accommodates any potential two players, two periods,
and two types setting with one-sided incomplete information.
The superscript t refers to the behavior of the corresponding player. For

example, �h1l (q) denotes the payo¤ that a low type of player Y obtains when
behaves has a high type, while if he behaves according to his type, we write
�h1h (q).
There are similarities in the structure of Lemma 1 and Lemma 2. For exam-

ple, expression (1) equals to expression (3) if we replace py1t for q or vice versa.
Similarly, for expression (2) and (6). This is not surprising, in both cases, the
player Y is behaving according to his type. The only di¤erence is the amount
of information available at each stage.
The reader can �nd the equilibrium e¤orts in the Proof of Lemma 2. They

depend on the prior and on the speci�c strategy through q; which depends on
�; � and p.

3.3 The Dynamic Contest

Depending on his type being high or low, on the incentives and on the infor-
mation released from the �rst period e¤ort choices, player Y wants to �nd the
optimal value of � (when his type is high) or the optimal value of � (when his
type is low). The full game expected payo¤ of the high valuation player Y is

�h (�; �; q; pyh ; pyl) = ��h1h (q) + (1� �)�l1h (q)
+� (��y1h2h (py1h) + (1� �)�

y1l
2h (py1l)) ;

and for the low valuation player Y is

�l (�; �; q; pyh ; pyl) = ��h1l (q) + (1� �)�l1l (q)
+� (��y1h2l (py1h) + (1� �)�

y1l
2l (py1l)) :

When the player h is the one that has incentives to pool the l type e¤ort, in
equilibrium � = 0, i.e. player l plays according to his type. Then the optimal
strategy of a player h is determined by the value

x� � argmax
x
�h (x; 0; q (x) ; pyh (x) ; pyl (x)) :

In equilibrium, if x� � 1 player h e¤ort must be compatible with his type, i.e.
� = 1, while if x� � 0 he perfectly replicates the l type e¤ort, i.e. � = 0. For
values x� 2 (0; 1) the equilibrium is semi-separating, i.e. � = x�.
The same reasoning applies when the pooling incentives are with player l.

In this case we have � = 1, because the high type has no incentives other than

9



playing according to his type. However, player l equilibrium e¤ort depends on
the value of

y� � argmax
y
�h (0; y; q (y) ; pyh (y) ; pyl (y)) :

Then, If y� � 1 player l optimal e¤ort is to pool player h e¤ort, i.e. � = 1, while
if y� � 0 he should play according to his type, i.e. � = 0. For values y� 2 (0; 1)
player l randomizes between low and high e¤ort, i.e. � = y�.

The problem of �nding the optimal value of x� (or y�) in a general setting,
requires to solve a polynomial of the sixth degree (sextic), for which we do not
know a general solution in close form. In fact, tractability has been one of the
main obstacles to the development of a signaling theory in dynamic contests.
For this reason, general result had been missing for long. Next Section goes
around this problem. We follow a negative approach, in the sense that given a
valuation hierarchy we ask, what are the potential equilibrium structures that
cannot be part of a signaling equilibrium? More speci�cally, can we say when
pooling or separating equilibria fail to exist for a given hierarchy of valuations
and discounting?

4 Impossibility Results

In a full separating equilibrium, the observation of the �rst period action reveals
the identity of player Y . In the second stage player X is perfectly informed
about the type of player Y . In a pooling equilibrium the type of player Y with
incentives to pool, replicates the e¤ort of the opponent. Player X in the second
period learns nothing new about the type of player Y . In either case, in the
second period, player Y always plays according to his type. The di¤erence is the
information available in each scenario, which a¤ects the second stage relative
gains of the informed player.
Since player Y second period behavior is known, the question is how he will

behave in the �rst period. Knowing that his e¤ort a¤ect not only his payo¤
in that period but also the information available in the subsequent stage, and
consequently, his payo¤ in the second period.
A crucial aspect is the hierarchy of valuation among the potential interve-

niens in the contest. For that reason, the discussion proceeds considering each
case in particular.

4.1 Case vh � vx � vl
This hierarchy of valuations is the most commonly found in application. Player
X is uncertain on whether player Y has a higher or lower valuation. In this
case, it is the high type that has incentives to pool with the low type.
To get a better intuition, suppose a static setting with no uncertainty. Player

X would choose a higher e¤ort when facing a type h and a lower e¤ort when
facing a l type. Now, suppose that there is uncertainty about the player Y type.

10



Then the player X optimally chooses an e¤ort in between the two complete
information e¤orts.
The type h of player Y is the one that gains with uncertainty. He can reduce

his e¤ort and increase his payo¤, because of the uniformed player�sX lower e¤ort
under uncertainty (relatively to the complete information case). Player l also
reduces his e¤ort but obtains a lower payo¤ because of the uniformed player X
high e¤ort under uncertainty (relatively to the complete information case).

In a dynamic setting with two periods, player l would like to destroy the
uncertainty by choosing in the �rst period an e¤ort that player h could not
pro�tably replicate, in this way perfectly signaling to the player X his type. On
the other hand, player h would like to preserve the uncertainty by replicating
player�s l e¤ort (sandbagging).
We will show that when vh � vx � vl, the strategy of perfectly replicate

player�s l e¤ort is not pro�table for player h. We depart from the pooling path
and then show that playing with probability one the same action as a player l
is a strictly dominated strategy for player h.

In the pooling path, in the �rst period we must have � = 0 and � = 0,
and consequently q = 0. In the second period low e¤ort y1l is observed with
probability one, player X receives no extra information and py1l = p. Player
h expected payo¤s in the �rst and second period are respectively �l1h (0) and
�y1l2h (p).
In case of a deviation by player h from y1l, to his type e¤ort y1h, in the �rst

period we have � = 1, while � and q remains unchanged (by the de�nition of
Nash equilibrium). An observed high (low) e¤ort perfectly informs the player X
that player Y has a high (low) valuation. The second stage posterior changes to
py1h = 1 and py1l = 0. Player h expected payo¤ in the �rst and second period
are �h1h (0) and �

y1h
2h (1), respectively.

Separating behavior always return a relatively higher payo¤ for the h type
player in the �rst period (relatively to pool), i.e. �h1h (0) � �l1h (0). On the
other hand, revealing his type to the player X should return a relative loss in
the second period, i.e. �y1l2h (p) � �y1h2h (1). When vx �

p
vhvl, incentives to

deviate from the pooling path are higher when � is small, because the second
period relative loss becomes less important.
However, the inequality �y1l2h (p) � �y1h2h (1) fails when vx �

p
vhvl. In this

case, there is no relative loss in the second period, pooling must be dominated
by the full separating e¤ort for any �.
The following result formalizes the previous discussion and states when pool-

ing cannot be an equilibrium.

Proposition 3 In a two players contest with one-sided incomplete information,
there are no pooling equilibria if vh � vx � vl and � � 1.
Moreover, if vx �

p
vhvl there is no pooling equilibria for any � � 0.
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The result states that it is too costly for a h type contestant to pretend to
be a l type (sandbagging) when vh � vx � vl and � � 1. This is an impossibility
result, and typically has a negative connotation. However, contest theory and in
particular, the Tullock function has been applied in multiple economic problem,
as R&D competition, war and con�icts, sports competitions, and so on, where
parties may have the incentive to hide their types and mislead their opponents.
Without assuming more structure, i.e. a truthtelling mechanism or a social
planner, players tend to behave according to their type.
The previous comment stress the importance of the result of Proposition 3,

but is somehow loose in its content, because semi-separation might be payo¤
superior to full separation. If that is the case, then the h type may successfully
mislead the playerX with positive probability. In fact, for � � 1 semi-separation
occurs for vx close to vh and far from vl, with large p.
The results of Proposition 3 hold for any prior p. This is an important

robustness property that we want to stress.
Notice that if � > 1, the second contest outcome becomes more impor-

tant, perfectly pooling can emerge as an equilibrium. Clearly, in such case the
strength of the incentives will be dictated by the distribution of valuations, in
terms of distance, and the values of p and �.
However, assuming � > 1, requires a di¤erent interpretation than the usual

discount factor. In this case � represents the importance of the second period
outcome for both players. In some applications, the outcome of the second
contest may be the most important one. Then, strategic signaling in the �rst
contest becomes more likely. Player h has more incentives to sacri�ce the �rst
prize in order to gain on the second one.

4.2 Case vx � vh � vl
Proposition 3, relies on the fact that moving from y1h to y1l is too costly for
player h. The result is less clear cut and does not generalize in a straightforward
way when vx � vh � vl. The reason is that now is less expensive to replicate a
low type behavior.
Again, it is the high type that has incentives to pool with the low type, but

now player�s X valuation for the contest is the highest. In the static setting,
uncertainty makes the playerX choose an action that is higher (lower) than if he
knew that player Y had a low (high) valuation. Player h gains with it, because
his chances of winning the contest increase, as well as his payo¤. Because of the
higher e¤ort of the player X (relatively to the complete information case), the
type l reduces his e¤ort and on same time obtains a lower payo¤.
In the dynamic setting player h might have incentives to pool his e¤ort with

type l (sandbagging), in order to obtain a relative gain in the second period.
We want to investigate when perfect pooling or full separation cannot be an
equilibrium.

Similarly, to the previous Section, perfectly pooling equilibrium, requires in
the �rst stage � = 0 and � = 0, and consequently, q = 0. While, in the second
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stage, a low action y1l is observed with probability one, and player X learns
nothing new about the identity of player Y . The equilibrium path posterior is
py1l = p. Player h expected payo¤s in the �rst and second period are respectively
�l1h (0) and �

y1l
2h (p).

In case of a deviation in the �rst period from y1l to y1h, we have � = 1.
On same time � and q remain unchanged and equal to 0. Consequently, in
the second period, player X observes the action associated with each type, and
becomes informed about the identity of the opponent. The posteriors become
py1h = 1 and py1l = 0. Player h expected payo¤ in the �rst and second stages
when deviating are respectively �h1h (p) and �

y1h
2h (1).

For a player h, the full separation deviation has associated a relative gain
(loss) in the �rst (second) period, i.e. �h1h (0) � �l1h (0) (�

y1l
2h (p) � �

y1k
2h (1)). On

the contrary to the previous Section, now with vx � vh � vl, these inequalities
always hold true. Then, incentives to deviate are higher when � is small, second
period losses becomes less important.

We are also interested in knowing when separation cannot be an equilibrium.
In this case, we start assuming a separating path, i.e. � = 1, � = 0 and
q = p. Consequently, the posteriors become fully informative, i.e. py1h = 1 and
py1l = 0. Player h expected payo¤s in the �rst and second period are �h1h (p)
and �y1h2h (1), respectively.
The question is whether a deviation to the perfectly pooling action is prof-

itable or not for player h. In such a case, � = 0 and the posterior is not
informative, i.e. py1l = p. Player h expected payo¤s in the �rst and second
period are �l1h (p) and �

y1l
2h (p), respectively.

Player h faces a �rst (second) period relative loss (gain), when he plays
di¤erently than his type in the initial stage, i.e. �h1h (p) � �l1h (p) (�

y1l
2h (p) �

�y1h2h (1)). Then incentives to deviate to perfectly pool increase with �, because
the second period gains become more important.

The previous discussion describes in great detail the incentives around each
kind of equilibrium, when the valuation hierarchy satis�es vx � vh � vl. The
question is then whether by deviating in the �rst period from a particular equi-
librium, can a player h increase his overall payo¤?
The following result builds on this intuition and states a set of impossibility

results for two players, two types contests with one-sided incomplete informa-
tion.

Proposition 4 In a two players contest with one-sided incomplete information,
when vx � vh � vl :
(i) There is no separating equilibria for any � � 0; when vh and vl are

su¢ ciently close to each other.
(ii) There is no pooling equilibrium for any � � 1; when vh and vx are

su¢ ciently close to each other.
(iii) There is no pooling equilibrium for any � � 1; when vl is su¢ ciently

small.
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(iv) There is no pooling equilibrium for any � � 1; when vx is su¢ ciently
large.

When compared with Proposition 3 the results presented are much less gen-
eral. However, notice again the independence of the results to the prior value
p.
In Part (i) we guarantee the inexistence of a separating equilibrium for values

of vh and vl not far from each other. The intuition is that the cost of pooling
is not too high, since both types are similar, the h type will pool with positive
probability the e¤ort of the l type (sandbagging).
Similarly Part (ii) guarantees the non-existence of pooling equilibrium for

vh close to vx. This is the case for � � 1 because the limit cut-o¤ is larger
than the unit. As vh becomes closer to vx, it goes further way from vl. Perfect
pooling becomes relatively expensive and cannot emerge in equilibrium. Similar
reasoning applies to the case where vl goes to zero.
The connection between the non-separating result of Part (i) and the non-

pooling result of Part (ii), implies the existence of semi-separating equilibrium
in some interval when we vary vh 2 [vl; vx]. In the next Section we discuss this
issue.
In the last Part, when vx becomes arbitrary large with respect to the other

valuations pooling cannot be an equilibrium. The reason is that the great val-
uation of the player X causes a discouragement e¤ect on a h player. The latter
feels that player X is much more likely to win both periods�contests, then the
optimal strategy is to play close to his own type in the �rst period. Misleading
the player X would not lead to a signi�cant decrease on his second period e¤ort.
Notice also that typically separating equilibrium fails to exist for � su¢ -

ciently larger than the unit.

4.3 Case vh � vl � vx
In this valuation hierarchy, both the low and the high type of player Y value
more the contested object than player X.
In the static problem with uncertainty, player X chooses an e¤ort that is

lower (higher) than the one he would provide if he knew that player Y has
low (high) valuation. If the player X would be sure of facing a high valuation
type he would provide less e¤ort (relatively to the incomplete information case).
There is a discouragement e¤ect, in a sense player X acknowledges player�s h
higher willingness to win the contest. On the other hand, if the player X would
be sure of facing a low valuation type, he would feel that his winning chances
are higher, entering in the contest with a greater e¤ort.
Because the player X provides less e¤ort, uncertainty favors the player l

which obtain a higher expected payo¤ in this context. On the other hand,
player h has to provide a higher e¤ort to compensate the relatively higher e¤ort
of a hopeful player X. Consequently, his payo¤ is lower than in the perfect
information scenario.
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In the dynamic setting, in order to bene�t from a discouragement e¤ect,
player h would like to credibly inform the player X that he is a high valuation
individual. On the other hand, player l prefers that the true valuation stays
unknown, to bene�t from a lower e¤ort of player X. Player l is the one that
has incentives to pool on player h. In this case, he blu¤s pretending a high
valuation.

Likewise, in previous Section, we depart from the separating equilibrium and
see when a player l can pro�tably pool on player�s h e¤ort. When such is the
case, there is no separating equilibrium. On same time, we assume a pooling
equilibrium and check if a player l can pro�tably deviate from it.
In the separating or in the pooling equilibrium path � = 1; i.e. player h

behaves according to his type. While � = 0 when the player l e¤ort choice is
according to his type, and � = 1 when l perfectly replicates player�s h e¤ort.
A deviation by player l from the separating equilibrium, changes the second

stage information structure from the full revealing posteriors py1h = 1 and
py1l = 0, to py1h = p (when the deviation is a perfect pool). A deviation from
the �rst period separating path leads to a relative loss, i.e. �l1l (p) � �h1l (p).
Incentives to pool exist if �y1h2l (p) � �y1l2l (0). Since deviating gains are in the
second period, larger is �, larger are the incentives to deviate.
Similarly, a deviation from the pooling equilibrium a¤ects the second period

information structure in the opposite order, i.e. from py1h = p, to py1h = 1 and
py1l = 0 (when the deviation is full revealing). A deviation from the �rst period
pooling path leads to a relative gain in that stage, i.e. �l1l (1) � �h1l (1), but a
second period relatively loss, i.e. �y1h2l (p) � �

y1l
2l (0). Deviation gains are in the

�rst period, then incentives to deviate are higher when � is small.
Following the previous discussion, we state, which signaling behaviors cannot

be part of a perfect Bayesian equilibrium.

Proposition 5 In a two players contest with one-sided incomplete information,
when vh � vl � vx :
(i) There is no separating equilibria for any � � 0; when vh and vl are

su¢ ciently close to each other.
(ii) There is no pooling equilibria for � � 1; when vx and vl are su¢ cient

close to each other.
(iii)There is no pooling equilibrium for � �

�p
vh �

p
vl
�
=2
p
vh; when vx is

su¢ ciently small.
(iv) There is no pooling equilibria for � � (vl + vx)2 =vl (2vl + vx) ; when vh

is su¢ ciently large.

The results of Part (i) and (ii) are of more general interest and application.
Typically, vh is bounded and vx is away from zero. Part (i) guarantees the
inexistence of a separating equilibrium when the values of vh and vl are not far
from each other. The intuition relies on the low pooling costs, making blu¢ ng
possible.
Similarly, the Part (ii) guarantee non-existence of pooling equilibrium for vx

close to vl. When vl approaches vx, the pooling costs increase, because vl gets
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further way from vh. Replicate the e¤ort of a h player becomes more costly for
a l player.

These results help us to understand the structure of equilibria for vl 2
[vx; vh], as for example the existence of semi-separating equilibria. Notice that
by Part (ii) at vl = vx, we must have �l 2 [0; 1), i.e. no pooling equilibrium.
On the other extreme, by Part (i) at vl = vh there is no separating equilibrium,
i.e. �h 2 (0; 1]. By monotonicity there might be a region inside [vx; vh] that
neither pooling nor separating equilibria are possible, i.e. � 2 (0; 1).
To �x ideas suppose that � � 1; �l = 0; and �h = 1, and progressively

increase vl on the interval [vx; vh], starting from the non-pooling equilibrium
of Part (ii). As vl increases there is a point in (vx; vh), call it vl, where �
changes smoothly from 0 to � > 0. Then as vl keeps increasing, � > 0 and
increases monotonically until the point vl, where the optimal action changes
discretely from some � 2 (0; 1) to � = 1. The previous exercise points out
that semi-separating equilibria need not �ll all the interval � 2 (0; 1), there is a
discontinuity at some point.
A similar analysis extends to the previous Section for vh varying in [vx; vl].

In Part (iii) letting vx # 0 is equivalent to say that player�s X valuation is
almost irrelevant. Nevertheless, player l may still have incentives to mislead the
player X, creating a discouragement e¤ect. However, pooling cannot emerge
in equilibrium, if the di¤erence between vh and vl is large, i.e. high pooling
costs, and the second period is of little importance. It is also worth noticing
that

�p
vh �

p
vl
�
=2
p
vh 2 (0; 1=2). This is the main message of Part (iii) of

Proposition 5.
Part (iv) describes a situation where the player Y of type h has a great

relative valuation. A type l of player Y , acknowledges that to replicate the
e¤ort of a high valuation type h is extremely costly. Then for a player l is
better to play according to his type, in particular, if � is small. The cut-o¤
threshold is large when vx is close to vl. Incentives to pool are lower when the
player X has a strong valuation and close to player l.
Notice that since (vl + vx)

2
=vl (2vl + vx) 2 (1=2; 4=3), we can guarantee

the non-existence of pooling equilibrium for any � � 1=2. If in addition v2l �
vx (vl + vx), we can say that there is no pooling for � � 1.
In Part (iii) and (iv) of Proposition 5, behaving according to his type is the

most intuitive and expected equilibrium. However, for large � pooling equilib-
rium cannot be excluded.
Again, we stress the independence of the stated results to the prior value p.
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A Appendix

Proof of Lemma 1. After observing the e¤ort y1h player X updates his
beliefs about the identity of player Y . He believes that with probability py1h
player Y has a high valuation. In the second period player X solves

max
x2
py1h

x2
x2 + y2h

vx + (1� py1h)
x2

x2 + y2l
vx � x2: (7)

Similarly, after observing the low e¤ort y1l, player X posterior is py1l . In the
second period player X solves

max
x2
py1l

x2
x2 + y2h

vx + (1� py1l)
x2

x2 + y2l
vx � x2: (8)

In the second period Y plays according to his type, but constrained by the
observed e¤ort, i.e. he knows whether x2 maximizes (7) or (8). Then in the
second period player Y of type t 2 fh; lg solves

max
y2t

y2t
x2 + y2t

vt � y2t: (9)

Rearrange the �rst order conditions from (9), and plug them into the �rst order
conditions obtained from (7) and (8). Solve for x2 each equality. The solution
gives a general expression for the second period player X e¤ort (conditional on
the observed e¤ort y1t 2 fy1h; y1lg), i.e.

xy1t2 (py1t) =
vhvlv

2
x

�
(1� py1t)

p
vh + py1t

p
vl
�2

((1� py1t) vhvx + py1tvxvl + vhvl)
2 :

Replace this expression on the �rst order conditions obtained from (9) for
t 2 fh; lg, after some algebra. We obtain the general second period equilib-
rium e¤ort for the low and high valuation type of player Y (conditional on the
observed �rst period e¤ort y1t), i.e.

yy1t2l (py1t) =

p
vh
p
vlvxvl

�
(1� py1t)

p
vh + py1t

p
vl
�

((1� py1t) vhvx + py1tvxvl + vhvl)
2

� (pvlvh + py1tvx (
p
vl �

p
vh)) ;
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and

yy1t2h (py1t) =

p
vh
p
vlvhvx

�
(1� py1t)

p
vh + py1t

p
vl
�

((1� py1t) vhvx + py1tvxvl + vhvl)
2

� (pvhvl + (1� py1t) vx (
p
vh �

p
vl)) :

Finally, replace the equilibrium e¤orts xy1t2 (py1t), y
y1t
2l (py1t) and y

y1t
2h (py1t) into

the objective functions in (7), (8) and (9), to obtain the desired results.

Proof of Lemma 2. We are looking for the values of x1; y1h and y1l, that can
be expressed in terms of q and the players�valuations. Player X is uncertainty
not only about the type of player Y but also on the frequency in which each
type plays each action. Player X solves

max
x1
q

x1
x1 + y1h

vx + (1� q)
x1

x1 + y1l
vx � x1: (10)

In equilibrium the high e¤ort choice y1h must be optimal to the player h, simi-
larly the low e¤ort choice y1l must be optimal to player l. Then, depending on
his type t 2 fh; lg, player Y solves

max
y1t

y1t
x1 + y1t

vt � y1t: (11)

The �rst order condition of (10) and the two �rst order conditions of (11),
together form a system of three equations and three unknowns. After some
algebra, we obtain the �rst period e¤orts as a function of q and the valuations,
i.e.

x1 (q) =
vhvlv

2
x

�
(1� q)pvh + q

p
vl
�2

((1� q) vhvx + qvlvx + vlvh)2
;

y1l (q) =

p
vlvl

p
vhvx

�
(1� q)pvh + q

p
vl
� �p

vlvh � qvx
�p
vh �

p
vl
��

((1� q) vhvx + qvxvl + vhvl)2
;

and

y1h (q) =

p
vhvh

p
vlvx

�
(1� q)pvh + q

p
vl
� �p

vhvl + (1� q) vx
�p
vh �

p
vl
��

((1� q) vhvx + qvxvl + vhvl)2
:

Notice that q is a function of �, � and p. Plug x1 (q), y1l (q) and y1h (q) in
player�s X objective function (10), we obtain the expression in Part (i).
Player�s Y �rst period payo¤ depends on whether he is of the h or l type.

For player h we have

�1h (�; �; p) = ��
h
1h (�; �; p) + (1� �)�l1h (�; �; p) ;

where

�h1h (�; �; p) �
y1h (q)

x1 (q) + y1h (q)
vh � y1h (q) ; (12)

19



and

�l1h (�; �; p) �
y1l (q)

x1 (q) + y1l (q)
vh � y1l (q) : (13)

For player l we have

�1l (�; �; p) = ��
h
1l (�; �; p) + (1� �)�l1l (�; �; p) ;

where

�h1l (�; �; p) �
y1h (q)

x1 (q) + y1h (q)
vl � y1h (q) ; (14)

and

�l1l (�; �; p) �
y1l (q)

x1 (q) + y1l (q)
vl � y1l (q) : (15)

Now plug x1 (q), y1l (q) and y1h (q) in expressions (12), (13), (14) and (15). To
obtain, after some algebraic manipulations, respectively (3), (4), (5) and (6),
which depend on q.

Proof of Proposition 3. When vh � vx � vl player h is the one that has
incentives to pool with player l. A perfectly pooling behavior implies; in the �rst
period, � = 0, � = 0 and q = 0, the second period equilibrium path posterior is
py1l = p. (py1h is o¤-the-equilibrium path) Player h pooling payo¤ is,

�h (0; 0; 0; py1h ; p) = �
l
1h (0) + ��

y1l
2h (p) ;

with

�l1h (0) =
vl (vxvh � vxvl + vhvl)

(vx + vl)
2 ; (16)

given by (4) in Lemma 2, and

�y1l2h (p) =

 
vh

p
vhvl + (1� p) vx

�p
vh �

p
vl
�

(1� p) vhvx + pvlvx + vlvh

!2
; (17)

given by (1) in Lemma 1. If the player h deviates in the �rst period, to the full
separating e¤ort y1h, we have � = 1. The value q remains unchanged and equal
to 0. The posteriors change to py1h = 1 and py1l = 0. Player h payo¤ associated
with a full separating deviation is

�h (1; 0; 0; 1; 0) = �
h
1h (0) + ��

y1h
2h (1) ;

with

�h1h (0) =

�p
vhvl + vx

�p
vh �

p
vl
��2

(vx + vl)
2 ; (18)

given by (3) in Lemma 2, and

�y1h2h (1) =
v3h

(vx + vh)
2 ; (19)
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given by (1) in Lemma 1. We have �h1h (0) � �l1h (0), i.e. separating behavior
should return a higher payo¤ in the �rst period. While, in the second period we
should expect the deviating player h to obtain a relative loss from revealing his
type to the playerX, i.e. �y1l2h (p) � �

y1h
2h (1). However, the latter inequality fails,

for any non-negative vx �
p
vhvl. In this case, since there is no relative loss in

the second period, the pooling equilibrium is dominated by the full separating
e¤ort for all � � 0.
Outside this case, incentives to deviate are higher when � is small. Then for

0 � � � ��, there is no pooling equilibrium. The value of �� is given by

�� � �h1h (0)� �l1h (0)
�y1l2h (p)� �

yh
2h (1)

=
vx
�p
vh �

p
vl
�2

v2h (vx + vl)
2

 �p
vhvl+(1�p)vx(

p
vh�

p
vl)

(1�p)vhvx+pvlvx+vlvh

�2
� vh

(vx+vh)
2

! : (20)

The expression for �� is general and gives a cut-o¤ discount factor value below
which deviations from pooling to perfect separation are pro�table. Since p can
take any value in (0; 1) and the relation vh � vx � vl may appear in di¤erent
forms, it is hard to establish general conclusions. We will look at the asymptotics
of expression (20). The highest and lowest incentives for deviating must be at
the extreme values. Our goal is to show when pooling cannot be an equilibrium.
The function �� has a vertical asymptote at vx =

p
vhvl, i.e. �

� ! �1 when
vx "

p
vhvl, and �

� ! 1 when vx #
p
vhvl, being monotonically decreasing in

vx 2
�p
vhvl; vh

�
. Then the highest incentives must be when vx and vh are close

to each other. For completeness let�s look at all cases.
The limit of �� when vl " vx or vx # vl must be negative since vx �

p
vhvx.

In this case the pooling equilibrium is dominated by the full separating action,
because there is no relative loss in the second period. Then for any � � 0 there
is no pooling equilibrium.
Now let�s look at the case when (20) reaches the minimum value in the

interval vx 2
�p
vhvl; vh

�
, i.e. when vh # vx or vx " vh to obtain

�� !
�p
vx �

p
vl
�2

(vx + vl)

 �
vl+(1�p)

p
vx(

p
vx�

p
vl)

(1�p)vx+pvl+vl

�2
� 1

4

!

where vx = vh. This limit expression has a vertical asymptote at p = 1 which
does not depend on the values of vx and vl; it goes to 1 when p " 1 and to
�1 when p # 1. Moreover, it is monotonically increasing in p 2 (0; 1). Then its
lowest value on the interval

�p
vhvl; vh

�
must be obtained at p # 0, and equals

to
4 (vx + vl)

2(vx + vl) +
�p
vx +

p
vl
�2 ;
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which is always larger than one, since
�p
vx �

p
vl
�2 � 0. Then we conclude

that for any p 2 (0; 1) there is no perfectly pooling equilibrium for � � 1.
The limit of �� when vl # 0 gives (vx + vh)2 =vx (vx + 2vh) which is always

larger than one for any vx � vh. Analogously, we could show that the vertical
asymptote of (20) moves to vx = 0, and (20) is now monotonically decreasing
in vx 2 (0; vh]. Then pooling cannot be an equilibrium for � � 1.
Finally take the limit of �� when vh " 1. In this case we have again �yh2h (p) �

�yh2h (1) because vx < 1. The denominator of (20) becomes negative, there is
no relative loss in the second period, the pooling equilibrium is dominated by
full separation. Then, for any � � 0 there is no pooling equilibrium.

Proof of Proposition 4. When vx � vh � vl player h is the one that has
incentives to pool on the player l e¤ort. We start by checking whether there are
pro�table (full separating) deviations from the pooling path. Perfectly pooling
behavior implies, in the �rst period, � = 0, � = 0 and q = 0. The equilibrium
path posterior is py1l = p. Player h pooling payo¤ is

�h (0; 0; 0; py1h ; p) = �
l
1h (0) + ��

y1l
2h (p) ;

with �l1h (0) given by (16) and �
y1l
2h (p) given by (17).

If h deviates in the �rst period to the separating e¤ort y1h, we have � = 1,
while q remains unchanged and equal to 0. The posteriors become py1h = 1 and
py1l = 0. Player h payo¤ associated with a deviation to the full separating e¤ort
is

�h (1; 0; 0; 1; 0) = �
h
1h (0) + ��

y1h
2h (1) ;

with �h1h (0) given by (18) and �
h
1h (0) given by (19).

We have �h1h (0) � �l1h (0), i.e. separating behavior returns a higher payo¤
in the �rst period. While in the second period the deviating player h obtains
a relative loss from revealing his type to the player X, i.e. �y1l2h (p) � �

y1k
2h (1).

Since vx � vh � vl, on contrary to the Proof of Proposition 3, these inequalities
always hold true.
Incentives to deviate are higher when � is small. Then if � � ��, there is no

pooling equilibrium. The value of �� is given by (20).
Contrary to the Proof of Proposition 3, the expression �� is not always

monotonic in vh 2 [vl; vx]. Moreover, p can take any value in (0; 1), and vx �
vh � vl may appear in di¤erent forms. We look at asymptotic impossibility
results that hold for any p. Expression (20) is strictly positive. Its lowest value
occurs always at an extreme point, but not its maximum.
(ia) Let�s start by taking the limits of �

� when vl " vh and vh # vl to obtain
the value 0. Then, independently of the prior p, deviations to the full separation
e¤ort are not pro�table for any feasible �, i.e. no pooling only if � � 0.
(iia) Now, take the limits of �

� when vh " vx or vx # vh to obtain

�� !
�p
vx �

p
vl
�2

(vx + vl)
2

 �
vl+(1�p)

p
vx(

p
vx�

p
vl)

(1�p)vx+pvl+vl

�2
� 1

4

! ; (21)
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where vx = vh. This limit expression has a vertical asymptote at p = 1 which
does not depend on the values of vx and vl; it goes to1 when p " 1 and to �1
when p # 1. Moreover, (21) is monotonically increasing in p 2 (0; 1). Then its
lowest value on this interval must be obtained at p # 0, and equals to

4 (vx + vl)

2(vx + vl) +
�p
vx �

p
vl
�2 ;

which is always larger than one for any positive vx and vl. Then for any p 2 (0; 1)
and vh and vx are su¢ ciently close, there is no perfectly pooling equilibrium for
� � 1.
(iiia) The limit of �

� when vl # 0 gives the value (vx + vh)2 =vx (vx + 2vh)
which is always larger than one. More speci�cally, there is no pooling equilib-
rium for � � 1 when vl is close to zero 0.
(iva) Finally let�s take the limit of �

� for vx " 1 to obtain

�� ! ((1� p) vh + pvl)2

(1� p)2 v2h
;

which is always larger than one for any p 2 (0; 1). Then, there is no pooling
equilibrium for � � 1.

Now, we look for pro�table (perfectly pooling) deviations from the full sep-
arating path. The separating path implies, in the �rst period, � = 1, � = 0
and q = p. The second period posteriors are py1h = 1 and py1l = 0. Player h
separating equilibrium payo¤ is

�h (1; 0; p; 1; 0) = �
h
1h (p) + ��

y1h
2h (1) ;

with

�h1h (p) =

 
vh

p
vhvl + (1� p) vx

�p
vh �

p
vl
�

(1� p) vhvx + pvxvl + vhvl

!2
given by (3) in Lemma 2, and

�y1h2h (1) =
v3h

(vx + vh)
2

given by (1) in Lemma 1. If h deviates, by pooling on l �rst period e¤ort y1l,
we have � = 0. The deviation path posterior is now py1l = p. Then player�s h
associated payo¤ is

�h (0; 0; p; pyh ; p) = �
l
1h (p) + ��

y1l
2h (p) ;

with

�l1h (p) =
p
vh
p
vl

�p
vlvh � pvx

�p
vh �

p
vl
��

((1� p) vhvx + pvxvl + vhvl)2

� ((1� p) vx
p
vh (vh � vl) + pvxvl (

p
vh �

p
vl) + vh

p
vhvl) :
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given by (4) in Lemma 2, and

�y1l2h (p) =

 
vh

p
vhvl + (1� p) vx

�p
vh �

p
vl
�

(1� p) vhvx + pvxvl + vhvl

!2
given by (1) in Lemma 1.
Notice that we have; �1h (p) = �

y1l
2h (p), and �

h
1h (p) � �l1h (p), i.e. a relative

loss in the �rst stage from deviating, and �y1l2h (p) > �
y1h
2h (1), i.e. a relative gain

in the second period due to the �rst period deviation. The incentives to deviate
(pooling) increase with �. We want to know when separating equilibria fails to
exist, i.e. when

� � �� � �h1h (p)� �l1h (p)
�y1l2h (p)� �

y1h
2h (1)

=

1�
p
vh
p
vl(

p
vlvh�pvx(

p
vh�

p
vl))((1�p)vx

p
vh(vh�vl)+pvxvl(

p
vh�

p
vl)+vh

p
vhvl)

v2h(
p
vhvl+(1�p)vx(

p
vh�

p
vl))

2

1� vh((1�p)vhvx+pvlvx+vlvh)2

(vx+vh)
2(
p
vhvl+(1�p)vx(

p
vh�

p
vl))

2

:(22)

Again, we look at extreme values of Expressions (22).
(ib) The limits of �

� when vl " vh or vh # vl takes the value 0 in both cases.
Together with (ii), independently of the prior p, full separation cannot be an
equilibrium for any � � 0.
(iib) Now, take the limit of �

� when vh " vx to obtain

�� !
1�

p
vl(

p
vl�p(

p
vx�

p
vl))((1�p)

p
vx(vx�vl)+pvl(

p
vx�

p
vl)+

p
vxvl)

p
vx(vl+(1�p)

p
vx(

p
vx�

p
vl))

2

1� ((1�p)vx+pvl+vl)2

4(vl+(1�p)
p
vx(

p
vx�

p
vl))

2

:

Similarly, to the limit found in (21), the previous expression has a vertical
asymptote at p = 1 which does not depend on the values of vx and vl, and it is
monotonically increasing in p 2 (0; 1). Then its lowest value on this interval is
obtained at p # 0, and it is equal to

4 (vx + vl)

2(vx + vl) +
�p
vx �

p
vl
�2 ;

which is always larger than one. Then for any p 2 (0; 1) there is no separating
equilibrium for � � �� � 1.
(iiib) The limit of �

� when vl # 0 gives again the value (vx + vh)2 =vx (vx + 2vh)
which is always larger than one. Then there is no separating equilibrium for
� � �� � 1.
(ivb) Finally, take the limit of �

� for vx " 1 to obtain

�� !
�
(1� p)pvh + p

p
vl
�
((1� p) vh + pvl)

(1� p)2pvhvh
;
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which is always larger than one for any p 2 (0; 1). There is no separating
equilibrium for � � �� � 1.
Some of the limits obtained in the �rst and second parts of the proof are

similar. Since the general cuto¤s (20) and (22) are di¤erent, the proof would
not be complete without looking at all cases. Placing together the asymptotic
inequalities, the results stated in (i), (ii), (iii) and (iv) obtain.

Proof of Proposition 5. When vh � vl � vx player l is the one that has
incentives to pool with a player h e¤ort. In a separating equilibrium, in the �rst
period we have � = 1, � = 0 and q = p. Because the �rst period actions are
full revealing the posteriors are py1h = 1 and py1l = 0. Player l payo¤ is

�l (1; 0; p; 1; 0) = �
l
1l (p) + ��

y1l
2l (0) ;

with

�l1l (p) =

 
vl

p
vlvh � pvx

�p
vh �

p
vl
�

(1� p) vhvx + pvlvx + vlvh

!2
;

given by (6) in Lemma 2, and

�y1l2l (0) =
v3l

(vx + vl)
2 ;

given by (2) in Lemma 1. In case of a deviation to the perfectly pooling e¤ort,
in the �rst stage, we have � = 1, while � = 1 and q = p stay unchanged. In the
second period we have the posterior py1h = p. Player l payo¤ is

�l (1; 1; p; p; py1l) = �
h
1l (p) + ��

y1h
2l (p) ;

with

�h1l (p) =
p
vh
p
vl

�p
vhvl + (1� p) vx

�p
vh �

p
vl
��

((1� p) vhvx + pvlvx + vlvh)2

� (pvlvhvl � (1� p) vxvh (
p
vh �

p
vl)� pvx

p
vl (vh � vl)) ;

given by (5) in Lemma 2, and

�y1h2l (p) =

 
vl

p
vlvh � pvx

�p
vh �

p
vl
�

(1� p) vhvx + pvlvx + vlvh

!2
;

given by (2) in Lemma 1.
A deviation from the �rst period separating path leads to a relative loss,

i.e. �l1l (p) � �h1l (p). Incentives to pool exist when �
y1h
2l (p) � �y1l2l (0). Both
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inequalities hold true for vh � vl � vx. The cut-o¤ discount factor �
� is non-

negative and is given by

�� � �l1l (p)� �h1l (p)
�y1h2l (p)� �

y1l
2l (0)

=

1�
p
vh
p
vl(

p
vhvl+(1�p)vx(

p
vh�

p
vl))(

p
vlvhvl�(1�p)vxvh(

p
vh�

p
vl)�pvx

p
vl(vh�vl))

v2l (
p
vlvh�pvx(

p
vh�

p
vl))

2

1� vl((1�p)vhvx+pvlvx+vlvh)2

(vx+vl)
2(
p
vlvh�pvx(

p
vh�

p
vl))

2

:

When � � �� there in no separating equilibrium. This expression has nice
properties; it is monotonically decreasing in vl 2 [vx; vh] and monotonically
increasing for vx 2 [0; vl] and vh 2 [vl;1).
(ia) The limits of �

� when vl " vh or vh # vl takes the value 0, i.e. when vl
and vh are close to each other, there is no separating equilibrium for all � � 0.
(iia) The limit of �

� when vx " vl or vl # vx, takes the value

�� !
1�

p
vh
p
vx(

p
vh+(1�p)(

p
vh�

p
vx))(

p
vxvh�(1�p)vh(

p
vh�

p
vx)�p

p
vx(vh�vx))

vx(vh�p
p
vx(

p
vh�

p
vx))

2

1� ((1�p)vh+pvx+vh)2

4(vh�p
p
vx(

p
vh�

p
vx))

2

;

where vx = vl. We are interested to know when this limit is smaller than
one, because in that situation, there will be values of � � lim �� 2 [0; 1] where
separation is impossible. Solving for p, we obtain two roots

p =
2
p
vh

�
3vh �

p
vh
p
vx � vx �

p
v2h + v

2
x � vhvx

�
4
p
vhvh � 3vh

p
vx � 2

p
vhvx +

p
vxvx

:

Their shape is similar, but one root is smaller than the other. For �x vx both
roots decrease monotonically with vh. With maximum when vh # vx and mini-
mum when vh " 1. The limit when vh " 1 converges to 1 and 2 for the smaller
and the larger root respectively. Then if vx and vl are close to each other, there
is no separating equilibrium for � � 1.
(iiia) Take the limit of �

� when vx # 0 to obtain

�� ! vh (1� p)� vlp� (1� 2p)
p
vhvl

2p
p
vhvl

;

This expression decreases monotonically with p 2 (0; 1). Then when p # 0 we
have a maximum value �� ! 1, and for p " 1 we obtain the minimum value
�� !

�p
vh �

p
vl
�
=2
p
vh 2 (0; 1). Then there is no separating equilibrium

for � � 1, i.e. we can say nothing about the non-existence of separating
equilibrium.
(iva) Finally, when vh " 1, we have �� ! 1. Again, we cannot conclude

anything about the non-existence of a separating equilibrium.
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Now, suppose that there is a pooling equilibrium, then in the �rst stage we
have � = 1, � = 1 and q = 1. The �rst period actions provide no information.
The posterior is py1h = p. Player l payo¤ is

�l (1; 1; 1; p; py1l) = �
h
1l (1) + ��

y1h
2l (p) ;

with

�h1l (1) =
vh (vhvl � vxvh + vxvl)

(vx + vh)
2 ;

given by (5) in Lemma 2, and

�y1h2l (p) =

 
vl

p
vlvh + pvx

�p
vl �

p
vh
�

(1� p) vhvx + pvlvx + vlvh

!2
;

given by (2) in Lemma 1. In case of a deviation to the full separating action, in
the �rst period we have � = 0, while � = 1 and q = 1 remain the same. In the
second period, we have the posteriors py1h = 1 and py1l = 0. Player l payo¤ is

�l (1; 0; 1; 1; 0) = �
l
1l (1) + ��

y1l
2l (0) ;

with

�l1l (1) =

�p
vlvh �

p
vhvx +

p
vlvx

�2
(vx + vh)

2 ;

given by (6) in Lemma 2, and

�y1l2l (0) =
v3l

(vx + vl)
2 ;

given by (2) in Lemma 1. A deviation from the �rst period pooling path leads
to a relative gain in the �rst period, i.e. �l1l (1) � �h1l (1). However, the second
period pooling payo¤ must be relatively larger, i.e. �y1h2l (p) � �y1l2l (0). Both
inequalities are always true. The cut-o¤ discount factor �� is non-negative and
is given by

�� � �l1l (1)� �h1l (1)
�yh2l (p)� �

yl
2l (0)

=

�p
vlvh �

p
vhvx +

p
vlvx

�2 � vh (vhvl � vxvh + vxvl)
v2l (vx + vh)

2

 �p
vlvh+pvx(

p
vl�

p
vh)

(1�p)vhvx+pvlvx+vlvh

�2
� vl

(vx+vl)
2

! :

When � � �� there in no pooling equilibrium. �� is monotonically decreasing in
vl 2 [vx; vh] and monotonically increasing for vx 2 [0; vl] and vh 2 [vl;1).
(ib) The limits of �

� when vl " vh or vh # vl takes the value 0. Then for vl
and vh close to each other there is no perfectly pooling for all � � 0. With (ia) ;
we conclude that for any � � 0 there is no separating equilibrium.
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(iib) The limit of �
� when vx " vl or vl # vx, takes the value

�� !
�
vh �

p
vh
p
vx + vx

�2 � vhvx
(vx + vh)

2

 �
vh+p

p
vx(

p
vx�

p
vh)

(1�p)vh+pvx+vh

�2
� 1

4

! ;

where vx = vl. We can equate this limit to one and then solve for p to obtain

p =
8vh

5vh � 3vl �
q
(vh + vx)

�
5vh � 8

p
vh
p
vx + 5vx

� :
Both roots decrease monotonically with vh. The smaller and the larger root
limits when vh " 1 are respectively 8=

�
5 +

p
5
�
> 1 and 8=

�
5�

p
5
�
. Then we

conclude, for � � 1 there in no pooling equilibrium.
(iiib) Take the limit of �

� when vx # 0 to obtain

�� !
�p
vh �

p
vl
�

2p
p
vh

;

This expression depends on the prior p 2 (0; 1), and decreases monotonically
with p. Then at p # 0 we have the maximum value �� ! 1, and for p " 1 we
obtain the minimum value �� !

�p
vh �

p
vl
�
=2
p
vh 2 (0; 1). Independently

of the value that p can take, when vx approach zero there is no pooling for
� �

�p
vh �

p
vl
�
=2
p
vh.
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