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Industrial Location and Space: New Insights

Daniel Liviano ♠ ♣

Josep-Maria Arauzo-Carod ♠ �

Abstract

This paper tries to resolve some of the main shortcomings in the empirical literature of location de-

cisions for new plants, i.e. spatial effects and overdispersion. Spatial effects are omnipresent, being

a source of overdispersion in the data as well as a factor shaping the functional relationship be-

tween the variables that explain a firm’s location decisions. Using Count Data models, empirical

researchers have dealt with overdispersion and excess zeros by developments of the Poisson regres-

sion model. This study aims to take this a step further, by adopting Bayesian methods and models

in order to tackle the excess of zeros, spatial and non-spatial overdispersion and spatial dependence

simultaneously. Data for Catalonia is used and location determinants are analysed to that end. The

results show that spatial effects are determinant. Additionally, overdispersion is descomposed into

an unstructured iid effect and a spatially structured effect.
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1 Motivation 2

1 Motivation

What is the real importance of space in industrial location processes? This is

presumably a key issue, since industrial location takes place in specific geographic

areas with characteristics, together with those of the surrounding area, which

are surely taken into account by entrepreneurs when deciding their firms’ final

location. From an academic point of view, many significant breakthroughs were

made in the analysis of firm location behaviour in recent decades (McCann and

Sheppard 2003). These studies have highlighted the existence of a new group

of factors that have changed the patterns of firm location, such as the rise of

economic integration processes and free trade areas, as well as the growth in new

communication technologies1. However, a thorough and in-depth look at the role

of spatial factors in this field has yet to be undertaken. Indeed, as Arauzo-Carod

et al. (2010) argue, ”the scarce use of spatial econometric techniques may be due

to the lack of appropriate tools, while future developments in spatial econometrics

should shortly be followed by applications to industrial location”.

Industrial location data generally present several characteristics which ought

to be taken into account in the estimation of empirical models. Overdispersion

appears whenever the variance of the estimated model is greater than its mean, and

an excess of zero counts consists of an excessive number of zero values in the de-

pendent variable (the number of new located firms/establishments). Furthermore,

a key characteristic of industrial location data is that it is georeferenced, i.e. the

location of production units is distributed across the geography, and zones where

almost no locations take place coexist with highly agglomerated zones. In other

words, firm locations tend to take place in urban areas, which also tend to be close

to each other. It is also reasonable to assume that when making the decision about

where to locate, firms not only consider the characteristics of a single area, but also

the characteristics of other nearby areas. A consequence of all this is the high level

of spatial heterogeneity in the data as well as crossed effects between the different

spatial units2, which is called spatial dependence3.

1 This group of studies can be related to a discipline called New Economic Geography.
2 See Arauzo-Carod and Manjón-Antolı́n (2009) for a discussion about the spatial aggregation

problem in the context of industrial location literature.
3 In fact, how to deal with these effects in the context of applied research has led to the develop-

ment of spatial statistics and econometrics.
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In methodological terms, the approach used in this article focuses on the

territory, studying the effect of territorial characteristics on the number of new units

located in each spatial unit by estimating Count Data (CD) models4. In practice, the

main concern of empirical researchers has been the existence of both overdispersion

and excess of zero counts in the data, since these render the results of the basic

Poisson regression inefficient and biased. In fact, the existence of these problems

has triggered the use of Negative Binomial (NB) and With Zeros (WZ) models.

However, although the empirical evidence suggests that the location of new

units is linked with space, the explicit study of spatial factors has traditionally been

neglected in the empirical industrial location literature, most probably due to the

fact that spatial methods for Count Data models were not yet available. Fortunately,

there have been many methodological developments in the field of spatial statistics

and econometrics outside the framework of classical linear models in recent years.

Among these, models for generalized linear models (GLM) accounting for spatial

effects in different forms seem suitable for the empirical study of industrial location.

Nonetheless, although a few contributions trying to incorporate these effects in the

context of firm location studies have been proposed5, the exhaustive consideration

of these effects and the use of new methodological quantitative tools allowing such

analysis are still a matter pending.

However, why is the inclusion of spatial effects so important in the estimation

of CD models? In other words, what are the consequences of not modelling these

effects explicitly? On the one hand, it seems quite obvious that firms do not only

take into account the characteristics of the single spatial unit where they intend

to locate, but also the characteristics of the surrounding area. A straightforward

consequence of this is a violation of the assumption of data independence, i.e.

individual observations are no longer independent of each other. If such inter-

actions are not properly taken into account, the model is likely to suffer from

4 The other approach to the study of industrial location is the estimation of discrete choice models.

For a discussion and a comparison of both approaches in the context of industrial location literature,

see Arauzo-Carod, Liviano and Manjón-Antolı́n (2010).
5 These studies are reviewed in Section 2.
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misspecification6. On the other hand, the (uneven) distribution of data across space

is a source of overdispersion, and therefore the use of CD models accounting for

overdispersion partially captures such spatial effects. However, depending on the

data, model and phenomenon analysed, the omission of the spatial component in

the model is likely to render the estimations inefficient and inaccurate. This fact

should not be underestimated, since after all, the presence of spatial effects violates

the assumption of independently and identically distributed (iid) errors of most

statistical procedures, and they can even invert the slope of estimated coefficients

from non-spatial analysis (Kühn 2007), which may inevitably lead to false and

wrong conclusions. Nonetheless, this problem can be tackled using a Bayesian

approach in which the overdispersion can be modelled by specifying two random

effects: an unstructured iid effect and a spatially structured effect. This constitutes

an important step forward, because sources of overdispersion can help to explain

fims location decisions and consequently provide a better understanding of this

location process, which is a necessary condition for any firm entry promotion policy.

In addition, it should be noted that the detection of spatial effects in CD models

is not easy. According to the standard literature, a common procedure to do so is

post-estimation analysis of the estimated model’s residuals as a way to determine

the existence of omitted spatial effects in the model, i.e. residuals showing spatial

autocorrelation are the proof that the model has not been correctly specified, since

the spatial structure of the data is missing in the specification. However, as Lin and

Zhang (2007) demonstrate, the use of Moran’s I test for residuals in Generalised

Linear Models (GLM) is speculative, since the test tends to show that there is no

spatial autocorrelation in the residuals, even when such correlation in fact exists.

All in all, and in line with Jacqmin-Gadda et al. (1998), a great deal of work must be

done in order to reach a satisfactory spatial autocorrelation test for the residuals of

GLM.

As a result of all the above, the research presented in this article is intended

to shed some light upon this issue by proposing an alternative type of model and

estimation method. The primary aim of this approach is to propose an estimation

framework which is flexible enough to deal with the issues described above

simultaneously and to provide tools to select the final model for consideration.

6 See Arauzo-Carod and Manjón-Antolı́n (2009) for an empirical exercise about the misleading

results obtained when such spatial interactions are not considered.
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To date, this analysis would be hard to carry out using purely frequentist estima-

tion methods such as maximum likelihood. Indeed, issues like overdispersion,

spatial effects and excess zeros are likely to occur simultaneously but with a

different intensity and different effects upon the estimation results. As a result,

alternative modelisations of these issues are likely to yield different results, and

as such a coherent framework of models estimation and selection appears necessary.

The development of Bayesian estimation techniques, combined with the

increasing availability of more powerful computers and specific software, has

made Bayesian methods a valuable alternative to classical frequentist methods,

especially when the models to be estimated are particularly complex. In specific

terms, a type of model called Integrated Nested Laplace Approximation (INLA,

Rue and Martino 2006) is proposed, which is a recent approach to statistical

inference for latent Gaussian Markov Random Fields (GMRF) and Bayesian Hierar-

chical models. The empirical analysis in this article has been carried out by usingR7.

The article is structured as follows. Section 2 reviews the main contributions to

the field of empirical industrial location, focusing specifically on the methods and

models used in order to tackle problems arising from the data. The data set (Catalan

municipalities) and the variables used in the empirical application are presented in

Section 3. Section 4 presents a previous univariate exploratory analysis of the main

variables, the aims of which are to study the spatial distribution of these variables,

and to detect the existence of spatial autocorrelation8. Section 5 covers the regres-

sion analysis carried out in this paper. Section 5.1 presents the empirical models

and the Bayesian methods used to estimate them, and Section 5.2 is devoted to pre-

senting the empirical results and comparing them with the results from standard,

classical non-spatial estimations of the model. Finally, Section 6 concludes the pa-

per, summarising the main results of the analysis and giving several hints for future

research.
7 This is open-source software which is available under http://www.r-project.org.
8 This analysis includes the computation of Moran’s I plots and Geary’s c correlograms and vari-

ograms. See Anselin (1988) for details.
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2 Literature Review

As stated above, one current in the empirical literature approaches industrial loca-

tion from the viewpoint of the territory, studying the effect of territorial characteris-

tics on the number of new firms located in each spatial unit by estimating CD mod-

els. In specific terms, changes in location characteristics can affect, ceteris paribus,

the conditional expectation of the number of firms created in the geographical loca-

tion i over a certain period of time. In more formal terms, the empirical framework

can be defined as

E(yi|xi) = f(xi, β), i = 1, ..., N. (1)

where yi is the dependent variable, xi is a set of regressors, E(yi|xi) is the condi-

tional expectation (or conditional mean) of the dependent variable (the number of

entries), f(·) is a certain function governing the relationship between the regressors

and the conditional mean, and β is a parameter vector. At this point, it is crucial

to choose the model and the estimation method used to analyse the effects of the

regressors on the dependent variable correctly9. In this case, the natural candidate is

the Poisson regression model, which assumes that yi, conditional on xi (henceforth

conditional distribution), follows a Poisson distribution, i.e. yi|xi ∼ Po(µi). The

Poisson model was thus the starting point for an important current of empirical re-

search on industrial location10. However, the Poisson regression model is restrictive

in practice and has several drawbacks, including (a) overdispersion, which occurs

when the data is overdispersed, and the variance in the data therefore exceeds

the variance assumed by the model; and (b) excess zeros, which occurs when the

number of zero counts exceeds the number of zero counts expected by the model

(see Cameron and Trivedi, 1998).

From a methodological point of view, several solutions to tackle these two

problems have been implemented. One of the most popular alternatives has been

the mixture Poisson model as a way to extend the basic Poisson regression model,
9 Because of the count nature of the dependent variable (yi = 0, 1, 2, . . .), a linear model would

not be appropriate, since the dependent variable (and therefore the error term) would not follow a

normal distribution.
10 Among these contributions are Smith and Florida (1994), Wu (1999), List (2001), Arauzo-Carod

and Manjón-Antolı́n (2004), Barbosa et al. (2004), Gabe and Bell (2004), Arauzo-Carod (2005, 2008),

Autant-Bernard et al. (2006), Alañón et al. (2007) and Arauzo-Carod and Viladecans (2009).
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which consists of adding some distributions to the underlying distribution, thus

adding flexibility by improving the fit of the resulting distribution to the observed

data. These models can be grouped into continuous and finite mixture models.

Continuous mixed models control for the unobserved heterogeneity by including

an unobserved heterogeneity term for each observation, extending the specified

distribution from (yi|xi) to (yi|xi, νi), where νi is an idd term that denotes the

unobserved heterogeneity and is independent of the covariates, which is regarded

as a location-specific random effect in the firm location literature. A very popular

and frequently used mixture model is the Negative Binomial (NB) model, which

arises as a mixture of a Poisson distribution for the dependent variable and a

Gamma distribution for the unobserved heterogeneity term. In the firm location

literature, the NB model has been used by Arauzo-Carod and Viladecans (2009),

Wu (1999), Cieślik (2005) and Manjón-Antolı́n and Arauzo-Carod (2010), among

others.

The other alternative to the overdispersion and excess zeros problems are the

finite mixture models, which are especially suited to handling the excess of zeros.

These models outperform continuous mixture models in some cases, because con-

tinuous mixtures, despite controlling for heterogeneity, may not properly account

for the excess of zero counts11. In the context of firm location literature, a class of

finite mixture models called with zeros (WZ) models12 has been used, which assumes

a discrete representation of the unobserved locational heterogeneity by modifying

the probability of the zero outcome by a mixing parameter, which is parametrised

using Logit or Probit models. Two specific WZ models have been used in the

context of the firm location literature: Zero Inflated Poisson (ZIP) models and Zero

Inflated Negative Binomial (ZINB) models. ZIP models have been used by List

(2001), Gabe (2003), Basile (2004) and Manjón-Antolı́n and Arauzo-Carod (2010),

whereas ZINB models have been used by Manjón-Antolı́n and Arauzo-Carod

11 The reason lies in the fact that since the excess zeros may stem from two sources, i.e. unobserved

heterogeneity and an underlying selectivity process, continuous mixture models such as NB are only

likely to account for the excess of zeros stemming from the unobserved heterogeneity. Furthemore,

data sometimes displays heterogeneity by an excess of zero counts, the number of which exceeds the

number of zeros expected by the continuous mixture model.
12 The excess zeros can be dealt with using two approaches in the context of finite mixture models:

hurdle (or conditional) models, which are interpreted as two-part models, and with zeros (or zero

inflated models), which are models in which the heterogeneity is introduced in a binary form.



2 Literature Review 8

(2010) and Arauzo-Carod (2008).

In recent years, several contributions have included spatial effects in their

location studies in different ways. Lambert et al. (2006) study manufacturing

investment location using Spatial Poisson Models. Specifically, they estimate a

geographically weighted regression (GWR) as well as a spatial generalized linear

model (SGLM) to study spatial correlations between observations, thus obtain-

ing evidence of spatial dependency between countries and the manufacturing

investment decisions of firms. For the case of Spain, Alañón et al. (2007) study

the relationship between accessibility and industrial location by estimating spatial

Probit models with spatially lagged dependant variables, spatially lagged explana-

tory variables and spatially autocorrelated error terms. Blonigen et al. (2007)

study spatial autoregressive relationships in empirical foreign direct investment

(FDI) models using data on US outbound FDI activity. They estimate a gravity

model and find that both the traditional determinants of FDI and the estimated

spatial interdependence are quite sensitive to the sample of countries examined.

Basile et al. (2010) estimate a semi-parametric spatial autoregressive negative

binomial model using data on the number of inward greenfield FDI in European

regions. Their results show that multinational firms’ location choices are spatially

dependent, even controlling for a large number of regional characteristics, and also

show that controlling for spatial dependence in the error term yields significant

changes in the magnitude of some estimated coefficients.

These contributions notwithstanding, study of the spatial dimension is not yet

generalised in the empirical industrial location literature. However, many method-

ological contributions proposing methods accounting for spatial effects in models

with non-normally distributed response variables have recently been proposed and

adopted, mostly in the natural sciences13. All of them depart from the notion of

Generalized Linear Models (GLM), which enable a flexible generalisation of classi-

cal linear models, allowing the distribution of the dependent variable to belong to

a broad collection of distributions called the exponential family, including the Pois-

son and count data related distributions. In this sense, GLM stand for a unified
13 An up-to-date review of these models and a comparison between them is provided by Dormann

et al. (2007).
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framework in which several models can be fitted14 and detailed in McCullagh and

Nelder (1989). They assume that the simple regression model yi = E(yi|xi) + εi,

where E(yi|xi) = x
′
iβ can be extended so that E(yi|xi) = h(x

′
iβ), with h(·) being a

function allowing for a broad collection (or family) of distributions.. In the context

of GLM count data models, many efforts have been made to explicitly incorporate

the spatial structure of the data in the model’s specification15. Besag (1974) stud-

ied the consequences of the dismissal of the data’s spatial structure in the model,

thus leading to the model’s misspecification and autocorrelated residuals. In re-

cent decades, many contributions have therefore proposed and estimated a variety

of methods, mainly in the ecological, biological and medicine fields (Keitt et al.,

2002; Dormann 2007 and Miller et al., 2007 are reviews of these methodological

contributions). These contributions notwithstanding, there has always been a prob-

lem regarding the specification of these models: how to specify the complex spatial

structure of the data analytically, and even more importantly, how to estimate it.

Classical estimation methods such as maximum likelihood (ML) or quasi-ML have

been shown to have certain limitations regarding the computation of such spatial

structures. One of the solutions that has been proposed and that has been gaining

popularity (mostly due to the increasing availability of faster computers as well as

the development of statistical packages such as R and OpenBugs) is the Bayesian

methodology16. Specifically, Bayesian Hierarchical Models are a framework appro-

priate for the development of spatially structured models, with the model specified

in different layers, each of which accounts for different sources of variation. In the

context of georeferenced count data, the key is to decompose the variability of the

model into two components: (a) a spatially correlated variable accounting for the

neighbourhood relationship between the geographical areas, and (b) a classic area-

independent effect17.

14 GLM were first described by Nelder and Weddebrurn (1972)
15 For a comprehensive manual of GLM developments accounting for spatial effects, see Schaben-

berger and Gotway (2005).
16 See Gelman (2004) for a gentle introduction to Bayesian models and its application to CD models.
17 Besag et al. (1991) stands for the seminal article that introduced this decomposition, and

Gschlössl and Czado (2008) present regression models for count data allowing for both overdisper-

sion and spatial effects in a Bayesian framework.
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3 Data and Variables

The data used in this article refer to local units (municipalities) in Catalonia, and

consist of two datasets: data on firm entries and data on municipal characteristics.

The database on entries is the REIC (Catalan Manufacturing Establishments Reg-

ister), which is a compulsory register with plant-level micro data on the creation

and location of new manufacturing establishments. The REIC provides data on

both new and relocated establishments, and since these may be attracted to the

territory by the same variables, here they are used together without distinction18.

Furthermore, only selected establishments with codes 12 to 36 (NACE-93 classi-

fication) are considered. All in all, the analysis includes the aggregated entries

of manufacturing establishments in 941 municipalities between 2002 and 2004.

The database on territorial characteristics comes from the Trullén and Boix (2004)

database on Catalan municipalities, the Catalan Statistical Institute (IDESCAT) and

the Catalan Cartographic Institute (ICC). The data cover almost all the Catalan

municipalities, and refer to the year 200119.

The dependent variable of the analysis is the aggregated number of entries over

the period 2002-2004, which has a count nature (yi = 0, 1, 2, . . .). The regressors are

territorial characteristics classified into the following categories and shown in Table

120.

A) Agglomeration economies

Agglomeration economies are one of the main determinants of firm location,

in the sense that firms consider the presence of population, other firms and eco-

nomic activity in general when deciding where to locate. Because agglomeration

economies is a multidimensional concept that cannot be reduced to a single

variable, several variables to proxy it have been considered in the literature to

date. Specifically, agglomeration economies have been divided into two types:

urbanisation economies and localisation economies. The former involves a city’s

18 See Manjón-Antolı́n and Arauzo-Carod (2010) for details.
19 Data for five new municipalities (Gimenells i el Pla de la Font, Riu de Cerdanya, Sant Julià de

Cerdanyola, Badia del Vallès and La Palma de Cervelló) have been left out due to lack of data.
20 See Arauzo-Carod et al. (2010) for a detailed review on firm location determinants and the type

of variables used in this literature.
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population and employment levels and the diversity of its productive structure,

whereas localisation economies involve a city’s specialisation in a certain sector.

There is no clear evidence as to whether urbanisation or localisation economies are

more important for the location of new firms, as the empirical evidence is mixed

and inconclusive21.

Agglomeration economies are proxied using three variables. EMP stands for the

log of employment density, where the area of urbanised land in square kilometres is

the denominator, and EMP2 is its squared value, which aims to show the existence

of diseconomies of agglomeration due to congestion effects. HHI is the Herfindahl-

Hirschman Index, which is intended to reflect the diversity of the productive

structure of each municipality, and can therefore be regarded as a manufacturing

diversification index.Urbanisation economies have been regarded as a location de-

terminant in many studies in the literature. Guimarães et al. (2004), Arauzo-Carod

(2005) and Cieślik (2005b) included specifically urbanisation economies in their

studies. Furthermore, Arauzo-Carod and Manjón-Antolı́n (2004), Holl (2004a,b),

Arauzo-Carod (2005) and Manjón-Antolı́n and Arauzo-Carod (2010) include a

measure proxying for industrial/sectoral diversity; Bade and Nerlinger (2000), List

(2001), Papke (2001), Egeln et el. (2004) and Arauzo-Carod and Viladecans (2009)

consider the population density as a covariate; Manjón-Antolı́n and Arauzo-Carod

(2010) control for the density of the economic activity, and Kogut and Chang (1991)

include firm density as a regressor.

B) Industrial Mix

These variables (SIZE, ACT, SME and SSE) are intended to reflect the industrial

composition of each municipality. SIZE stands for the average establishment size,

and is computed as total employment divided by the number of establishments.

ACT is intended to capture the activity rate, and is computed as total employment

divided by population. SME is the share of manufacturing employment over total

employment and SSE is the share of services employment over total employment.

These two latter variables have been considered in the empirical literature by Smith

and Florida (1994), Blonigen (1997) and Arauzo-Carod (2005).

21 Combes (2000) provides a discussion on this topic.
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C) Spatial Effects

The variables W-EMP, W-HHI, and W-SME reflect the possible influence of

agglomeration economies and industrial mix in neighbouring municipalities on the

number of locations in a municipality 22. These variables are spatial lags computed

by means of the product of a neighbourhood (or weights) matrix W with certain

regressors, representing the average value of regressor values in neighbouring mu-

nicipalities. In this analysis a distance matrix is considered such that wij = (1/dij),

where dij is the distance between municipalities i and j, reflecting the idea that the

closer these two municipalities are, the stronger the relationship between them. The

final choice of spatial lag comes from a multicollinearity analysis, whereby several

spatial lags have been discarded.

D) Human Capital

Human capital is proxied by EDU, which stands for the average years of

schooling of the population over 25 years old. Human capital measures have been

considered in the literature by Coughlin and Segev (2000), Arauzo-Carod and

Manjón-Antolı́n (2004), Egeln et el. (2004), Holl (2004a,b), Cieślik (2005a), Alañón et

al. (2007) and Arauzo-Carod and Viladecans (2009).

E) Geographical Position

This set of variables controls for the geographical position of each municipality.

ALT is the average municipality’s altitude with respect to sea level, which controls

for accessibility. TMC is the average transport time to the largest cities23, CC is a

dummy variable with a value of one if the municipality is a county capital, CL is a

dummy variable with a value of one if the municipality is coastal, and MAB, MAG,

MAT, MAL, and MAM take a value of one if the municipality is within one of the

five biggest metropolitan areas in Catalonia (Barcelona, Girona, Lleida, Tarragona

and Manresa).

22 For a similar approach, see Viladecans (2004).
23 The criterion for a city to be considered large is having at least 100.000 inhabitants.
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[TABLE 1]

At this point, it is worth analysing the characteristics of the dependent vari-

able, which ought to be taken into account in the subsequent inference process.

Table 2 shows the basic statistics of ENT. As can be seen, the sum of zero counts

outnumbers the counts where at least one entry takes place in each year. The

proportion of zero counts is somewhat lessened when entries are aggregated over

the period 2002 - 2004, since there are some municipalities where entries do not

take place every year. Furthermore, the percentile information shows that the

distribution of entries is heavily skewed, i.e. there is a small group of municipalities

that account for the largest number of entries, while more than a half receive no

entries at all. These distributional features can be seen in Figure 1, in which both

the histogram and a kernel density estimation of the dependent variable are plotted.

[TABLE 2]

[FIGURE 1]

So far, these characteristics justify the use of models accounting for overdis-

persion and an excess of zeros. But what about the spatial distribution of entries?

Figure 2 shows a map of Catalonia displaying the number of entries in intervals

(above) and the corresponding histogram (below). Graphics like these depict how

entries tend to be concentrated in the metropolitan area of Barcelona and to a

lesser extent, in coastal or urban regions. Furthermore, entries are very scarce in

some areas of Catalonia. This result is to be expected, since municipalities are very

dissimilar to each other, ranging from small isolated villages in rural areas to huge

and densely populated cities. Of course, this piece of evidence points towards the

existence of spatial effects, which is addressed in the next section.

[FIGURE 2]
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4 Spatial Exploratory Analysis

The first part of the empirical analysis is a close examination of the spatial structure

of the main variables under study. Whether the variables are evenly distributed

across the space or on the contrary show specific spatial patterns ought to be

taken into account, since it may be a sign of either spatial dependence or spatial

heterogeneity. The spatial correlation is estimated by using Moran’s I statistic

(Moran 1948,1950), which has been computed under randomisation of the analysed

variable, since it is not distributed normally. Figure 3 plots the value of Moran’s I

statistic, under the k−nearest neighbours criterion, which considers as neighbours

the k−nearest spatial units, for the range of values k ∈ [2, 499]24. Due to the

number of variables under study and for sake of clarity, the analysis is presented

in two figures. The upper one plots the statistic’s value for the activity rate (ACT),

establishment size (SIZE), share of manufacturing employment (SME) and the share

of services employment (SSE). A first interesting result from it is the comparison

of SME and SSE, which leads to the conclusion that manufacturing activity shows

a greater spatial concentration than services activity, the spatial concentration is

highly reduced and fades quickly as k increases. Besides, ACT shows a value for the

statistic of slightly above 0.4 with k = 2 and this value fades slowly and smoothly as

k rises, which shows that the activity rate shows a moderately high spatial concen-

tration in a broad area. Lastly, SIZE shows only a small spatial concentration (over

0.1). On the other hand, the lower figure plots the statistic’s value for the number

of entries (ENT), employment density (EMP) and the Herfindahl-Hirschman Index

(HHI). First, ENT shows a positive spatial correlation (over 0.2) with a low number

of neighbours, and such correlation fades gradually away as k increases. Second,

EMP and HHI show a very similar spatial structure, in that spatial correlation is

rather high (0.3) in relatively small areas (that is, low k), and then it decreases

quickly as k grows. This evidence indicates that agglomeration economies take

place in spatially bounded areas, which is a common result found in the literature.

[FIGURE 3]

24 This analysis has been also carried out considering the neighbours distance criterion, yielding

similar results.
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5 Regression Analysis

The aim of this section is to estimate different models and to discuss the details of

the estimates. In the literature dealing with CD including overdispersion and excess

of zeros, four models are considered: Poisson (PO), Negative Binomial (NB), Zero

Inflated Poisson (ZIP) and Zero Inflated Negative Binomial (ZINB). Each of these

models is specified accounting for either (a) no random effects, (b) just an unstruc-

tured random iid effect and (c) both an unstructured and a spatial effect. This mul-

tiple specification will show to what extent the overdispersion in the model is ran-

dom, or on the contrary, has a spatial structure. Moreover, the effect of the inclusion

of a spatial component upon the different estimation results is to be investigated. A

Bayesian methodology called Integrated Nested Lagrange Approximation (INLA) is

implemented in the estimation of these models25. Using Bayesian terminology, the

aim of the analysis is to study the distributional characteristics of a set of parame-

ters θ given the observed data y. In other words, the aim is to calculate and interpret

the posterior density p(θ|y) conditional on the distribution of the parameters under

study p(θ) as well as on the empirical distribution of the observed data conditional

on the set of parameters p(y|θ)26. In Bayesian methodology, the models presented in

this section are called Hierarchical Bayesian (HB) models. This category of models

assumes that in addition to the distributional model f(y|θ) for the observed data y

given the vector of parameters θ, the latter vector θ is a ransom quantity sampled

from a prior distribution π(θ|λ), where λ is a vector of hyperparameters. Since these

are often unknown, apart from specifying priors (information regarding the prior

distribution of θ), hyperpriors (information regarding the prior distribution of λ)

will also be needed. In order to give a coherent nomenclature and not to create con-

fusion, the vector of parameters of the model θ is hereinafter denoted as β, and the

remaining hyperparameters (overdispersion, zero-inflation parameter, random and

spatial effects) will be introduced as required. The four Bayesian regression mod-

els (PO, NB, ZIP, ZINB), the random effects (spatial and non-spatial) and the main

results of the ten estimated specifications are introduced and commented on below.

25 For technical details, see Rue et al. (2009).
26 The Methodological Appendix introduces the basics of Bayesian regression.
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5.1 Count Data Models

The general notation of GLM is adopted in the definition of the regression models.

The conditional mean is thus denoted as µi = E(yi|xi) = h(x
′β)
i , where ηi = x

′β
i is the

index or linear predictor, g(µi) = ηi the link function and h(·) the response function.

5.1.1 Poisson

The Poisson regression model takes the form yi|ηi ∼ Po(µi), assuming that the de-

pendent variable y follows a Poisson distribution with mean and variance µ, with

this distribution being

p(y|β) =
n∏
i=1

1

yi!
e−exp(ηi)(exp(ηi))

yi , (2)

where µi = exp(ηi), with ηi = x
′β
i being the linear predictor and log(µi) = ηi the

link function. As mentioned above, a characteristic of the Poisson distribution is

that its mean is equal to its variance, which is problematic when overdispersion and

excess of zeros are present. In the Bayesian framework, the overdispersion can be

taken into account within the Poisson regression model by specifying a hierarchical

Poisson, which is done by introducing a random effect. Three different specifica-

tions are presented in the analysis presented in this section: (a) Poisson without

random effects, (b) Poisson with random iid effects and (c) Poisson with both iid and

spatial effects.

5.1.2 Negative Binomial

The Negative Binomial regression model is based on a mixture of Gamma and Pois-

son distributions, and is intended to capture the overdispersion of the model by in-

cluding a Gamma-distributed random variable in the model. This regression model

takes the form yi|ηi ∼ NB(r, µi), and the likelihood of the model is defined as

Prob(y) =
Γ(r + y)

y!Γ(r)
(1− p)rpy, (3)

where µ = r(1 − p)p = exp(η) and σ2 = µ + µ2/r. In this model, r is intended

to capture overdispersion. Regarding the Bayesian estiamtion, overdispersion is

captured by the hyperparameter log(r), for which a flat prior is set.
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5.1.3 Zero Inflated Models

Zero Inflated (ZI) regression models are a type of mixture models in which the het-

erogeneity is introduced in a binary form, distinguishing zero from non-zero counts.

Specifically, assuming that y is distributed either as a Poisson or a Negative Bino-

mial, and that y = 0 with probability π, the ZI mixture model consists of a mixture

of a degenerate distribution with mass at zero and a distribution function:

y ∼ πIπ + (1− π)f(y| . . .), (4)

where Iπ is the degenerate distribution taking the value zero with a probability of

one and f(y| . . .) is either a Poisson or a Negative Binomial probability mass function

associated with y. In this expression, π is a hyperparameter where

π =
exp(λπ)

(1 + λπ)
, (5)

where λπ is the internal representation of π and the value of the initial prior,

which is a flat prior in the estimated models. The resulting models are the Zero

Inflated Poisson (ZIP) and the Zero Inflated Negative Binomial (ZINB).

5.1.4 Random Effects

As mentioned above, these three regression models are specified by including

overdispersion in two ways. The first is the inclusion of a random term u, which is a

vector of unstructured random effects with iid Gaussian priors with precision λu, so

that u|λu ∼ (0, λuI). This effect is to be included in the PO and ZIP models, but not

in the NB and ZINB. This is because NB models already account for the unobserved

(and unstructured) dispersion, and if an extra random effect was included, this

would be a redundancy as well as an overparametrisation of the model. The

precision hyperparameter is given a Gamma prior with the values λu ∼ Γ(1, 0.01).

The second way to include overdispersion is by considering and specifying the

spatial structure of the data. Each observed data yi is linked to a spatial region

s, so that si indicates the region the ith observation belongs to. A neighbourhood

criterion must be specified in order to introduce a spatially correlated effect. In this

article, it is assumed that the sites si and sj are neighbours if they share a common

border. In this case, the site j belongs to the neighbourhood of si, which is expressed
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analytically as j ∈ υi. Moreover, bi is assumed to be the number of neighbours of

si. Given this terminology, fs(si) is the spatial effect for the ith observation. The

prior model for fs is a Conditional Autoregressive (CAR) model27, so that the spatial

process intensity fs(si) follows a conditional Gaussian distribution, defined as

fs(si)|fs(sj)j∈υi ∼ N

(
1

bi

∑
j∈υi

fs(sj),
1

biλs

)
, (6)

where λs is an unknown precision parameter. In order to ensure identifiability

of µ, a sum-to-zero restriction on
∑N

i=1 fs(si) = 0 is imposed. The precision hyper-

parameter is given a Gamma prior with the values λs ∼ Γ(1, 0.01). The effect fs(si)

is to be included in the four regression models, i.e. PO, NB and ZIP and ZINB.

5.2 Estimation and Results

Summing up the models and effects described above, there are ten resulting

specifications to be estimated. In all of them, the vector of unknown parameters β

is given a zero-mean Gaussian prior with a known and fixed precision parameter,

so that β|λβ ∼ (0, (1/λβ)I) with λβ = 0.01. Table 4 shows the diagnostics of the

estimation of all specifications, including hyperparameter posteriors. In addition,

two measures of fit are computed and reported. On the one side, Spiegelhalter

et al. (2002) suggest the use of the Deviance Information Criterion (DIC) for

comparison of Bayesian hierarchical models. Assuming a probability model p(y|β),

this indicator is defined as DIC = E[D(β|y) + pD, where E[D(β|y) is the mean

of the Bayesian deviance and pD is the effective number of parameters, which

is proportional to the deviance variance and is regarded as a measure of model

complexity. According to DIC, the smallest value is to be preferred. On the other

hand, the marginal likelihood is useful because it can be used to rank, select

and average different models28. Analytically, the marginalized likelihood is the

probability of the data given the model type, not assuming any particular model

27 This model was first introduced and developed by Besag (1974) and Besag et al. (1991). In addi-

tion, Banerjee et al. (2004) analyse the CAR model in the context of Hierarchical Bayesian modelling

for spatial data, and Rue and Held (2005) do the same in the context of Gaussian Markov Random

Fields (GMRF) and call this model an intrinsic GMRF model.
28 Han and Carlin (2001) give a very comprehensive review of the computation of the marginal

likelihood, and Nandram and Kim (2002) use this indicator to investigate the improvement in the

goodness of fit of hierarchical Poisson regression models.
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parameters. For a specific model M , the marginal likelihood therefore takes the

form p(x|M) =
∫
p(x|β,M) p(β|M) dβ. As in the case of DIC, a value closer to zero

is to be preferred when comparing models.

[TABLE 3]

Several conclusions can be drawn when comparing the different estimations

shown in Table 4.. First, all general models (PO, NB, ZIP and ZINB) improve the

fit when random and spatial effects are taken into account. Second, of all these

models, surprisingly the best fit is obtained with a simple PO model. The most

likely explanation is that once random iid and spatial effects are properly specified,

then overdispersion and excess of zeros are properly taken into account and thus

neither the overdisperion parameter nor the zero-inflated parameters included in

NB and zero-inflated models seem necessary. In other words, NB and ZINB models

with random iid and spatial effects suffer from overparametrization, since the slight

improvement in the Marginal Likelihood is not offset by the penalization due to

the increasing number of parameters, and this is shown in a higher DIC value. For

this reason, only the results of the three PO model estimations are shown in Table

5, i.e. estimations considering i) no effects, ii) random iid effects and iii) random iid

and spatial effects. Although these three possibilities are presented, the results from

DIC show that model improves greatly from i) to ii) and, to a lesser extent, from ii)

to iii).Random iid and spatial effects should therefore be taken into account and,

the analysis consequently only focuses on model iii). In any case, the results from

model iii) of Zero Inflated Poisson are quite similar and could also be considered

for the analysis, but for the sake of simplicity we have decided to concentrate our

discussion on only one estimation (i.e., the one with the best fit).

[TABLE 4]

As usual in empirical location literature agglomeration economies are a strong

locational determinant29, although this effect has been measured in many different

ways (see Arauzo-Carod et al. 2010 for a review on several variables that proxy

this phenomena). In this paper, agglomeration economies are proxied using

29 See Arauzo-Carod (2005), Coughlin and Segev (2000) and Guimarães et al. (2000), among others.
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employment density. Specifically, local (municipal) employment density (EMP) has

a positive effect on the location of new manufacturing plants but if this density is

so high (EMP2) the effect becomes negative due to congestion costs associated to

densely populated areas. This result fits perfectly with an inverted U-shape profile

related to the effect of concentration of economic activity over site attractiveness:

initially it is positive but after a certain threshold is crossed it becomes negative.

Industrial diversity (HHI) has a negative effect on the location of new plants as

shown in previous research for Catalonia (Arauzo-Carod 2005) but these results

are in contrast to those obtained for Portugal (Holl 2004a, 2004b). The structure of

firms at a local level also influences location decisions. In this regard, new plants

are favoured by areas where average establishment size is lower (SIZE). This results

confirms previous empirical evidence (Bade and Nerlinger, 2000) regarding the

positive effects of networks of SMEs on the location of new plants. New entrants

are also positively influenced by activity rate (ACT) at a local level, which means

that a positive local economic climate helps to attract additional activity. This latter

result is confirmed by the positive effect of the share of manufacturing employment

(SME)30, but the existence of service activities (SSE) do not seem to have any effect

over entries.

The geographical position of sites also matters since it implies important

differences in terms of infrastructures, accessibility, site availability and markets.

Although there are several ways to proxy these differences, one of them refers to

altitude above sea level (ALT). In specific terms, the higher the altitude, the less

flat the potential sites, and the lower the level of accessibility, which implies fewer

entries. Sites located at higher altitudes are therefore less convenient for new plants

and are chosen less often than other areas at sea level. Another way to proxy

geographical position is to consider the time distance to main cities (TMC). Since

firms prefer to be located close to economic and administrative centres, the greater

the distance to these areas, the lower the levels of entry of new plants, as other

scholars point out (see, for instance, Arauzo-Carod, 2008; Cieślik, 2005b; Holl, 2004b

and List, 2001). Good accessibility is therefore an important issue to be taken into

account when choosing a site, as demonstrated by most of the empirical literature

for different types of areas. As well as good accessibility, new plants also prefer to

30 The results of Arauzo-Carod (2005) and Smith and Florida (1994) point in the same direction.
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be located in county capitals (CC) where they can access main facilities and markets

and also in areas with higher quality of life standards, such as coastal areas (CL).

Although this is a surprising result, the negative effect of education level of

individuals (EDU) on the entry of new firms fits the characteristics of new plants

(most of which have medium-low technology levels and consequently, a low

dependence on skilled labour) and with previous empirical evidence regarding

Catalonia (Arauzo-Carod, 2005). In any case, the effect of human capital on firm

entries is still unclear, since scholars have provided contradictory results: positive

(Coughlin and Segev, 2000; Smith and Florida, 1994 and Woodward, 1992) negative

(Cieślik, 2005a and Bartik, 1985) and mixed (Arauzo-Carod and Viladecans, 2009).

Apart from previous comments regarding the effect of explanatory variables

over the location of new plants, we have descomposed the extant overdispersion

into an unstructured iid effect and a spatially structured effect. The values of the hy-

perparameters therefore show that overdispersion is mainly explained in terms of

a random process (roughly 66% of the effect) than by spatial issues (roughly 33% of

the effect), although standard deviation is higher for the random process. We have

thus ”identified” about 33% of the overdispersion as being caused by the spatial po-

sition of the municipalities and their interaction with neighbours, while there is still

room for further research about the origins of the remaining 66% of the effect. In

any case, the spatial parameter has been estimated according to a very simple spa-

tial weight matrix (contiguous neighbours) due to computational constraints (i.e.,

the number of neighbours is lower than if another distance-based criterion is used),

so it is possible that the spatial effect would be higher with more ”real” neighbours.

6 Summary and Future Research

In this article, several Count Data models have been specified and estimated in or-

der to study industrial location determinants in Catalonia. In specific terms, Pois-

son, Negative Binomial and Zero Inflated models have been specified and estimated

by means of Bayesian estimation techniques. Furthermore, additional iid and spatial

random effects are included in the models in order to account for unobserved spatial

heterogeneity in the data, thus allowing for structured and unstructured overdisper-

sion as well as spatial correlations between observations. The results obtained here
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show a close relationship between the industrial location and space, and they are

summarised as follows:

a) A common characteristic for all the variables is the huge range between the

minimum and maximum values, which is due to the enormous heterogene-

ity present in the data. This result is to be expected, since the municipalities

are very dissimilar to each other, ranging from small isolated villages in the

mountains to densely populated cities. This factor suggests that when indus-

trial location phenomena are analysed, spatial aggregation level of the analysis

should be carefully taken into account. Municipality-level data are used here,

but whether other spatial units could be more appropriate (e.g. counties or

travel-to-work areas) is an issue that has been postponed for future research.

b) Regarding the characteristics of firm locations, the sum of zero counts out-

numbers the number of positive counts each year. Furthermore, the percentile

information shows that the distribution of entries is heavily skewed, i.e. there

is a small group of municipalities that accounts for the largest number of en-

tries, and more than half have no entries at all, which supports the previous

comments regarding data heterogeneity. In addition, the entries tend to be

grouped, i.e. they are mostly along the Catalan coast and there are territories

in the rural part of the region with few entries, as entries tend to be concen-

trated in the Barcelona metropolitan area and to a lesser extent, in regions close

to the coast and belonging to urban areas.

c) Following a spatial exploratory analysis consisting of estimation of the

Moran’s I for the dependent variable as well as the main covariates, it can be

concluded that the spatial distribution of such variables is not random at all.

Considering different neighbourhood criteria, i.e. k-nearest neighbours crite-

rion, distance neighbours criterion (including those territorial units within a

circle with a previously specified radius) and the contiguous neighbours cri-

terion (considering those units with which the unit shares a border as neigh-

bours), a positive and significant Moran’s I estimation is found for all of them.

d) The results of the various econometric models estimated show that the best

fit is achieved by a simple Poisson model allowing for two random effects,

i.e. an iid and a spatial random effect. As a result, according to the Bayesian

indicators Deviance Information Criterion (DIC) and Marginal Likelihood
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(ML)indicators, this way of modelling overdispersion is to preferable to Neg-

ative Binomial and Zero Inflated models.

e) The results show that spatial effects are determinant and must consequently be

taken into account. Likewise, overdispersion is descomposed into an unstruc-

tured iid effect and a spatially structured effect, while the former is stronger

than the later, although there is still room for further research into this issue

(e.g. using alternative settings of neighbour criteria).

A Methodological Appendix: Bayesian Inference

Bayesian inference tools represent an alternative to classical frequentist methods,

and it is specifically suitable for the setting and study of complex models for which

classical quantitative tools are not appropriate. In fact, it is not just a question of how

the model is estimated from a numerical point of view: Bayesian analysis proposes

a completely different way of approaching the phenomenon under study31. The

essential characteristic of Bayesian methods is their explicit use of probability for

quantifying uncertainty in inferences based on statistical data analysis. Let θ be the

vector of parameters of interest which is the object of the study (for instance, the

coefficients of an econometric specification), and let y denote the observed data for

the dependent variable and x a set of explanatory variables. The goal of the analysis

is to make an inference, i.e. to draw conclusions about θ. This analysis is made

in terms of probability statements conditional on the observed value of y, i.e. the

posterior distribution p(θ|y). However, how can this be done? The starting point

is the definition of a full probability model, which consists of the modelling of the

joint probability distribution for θ and y, i.e. p(θ, y), which is the main framework of

the analysis because it bounds together all observable and unobservable quantities.

The results of the inference largely depend on the model specified, and as a result

it should be consistent with knowledge of the phenomenon being studied as well

as the nature and characteristics of the data to be used. The density function of this

model can be written as a product of two components:

♠ Prior distribution p(θ): refers to the distribution of the parameters under

study.

31 See Gelman et al. (2004) for a complete textbook on Bayesian data analysis.
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♠ Sampling distribution p(y|θ): the empirical distribution of the observed data

conditional on the set of parameters θ.

The joint probability distribution thus has the expression p(θ, y) = p(θ)p(y|θ). In

order to make an inference from this expression, we use Bayes’ rule. The posterior

density is therefore expressed as the joint probability distribution conditioned on

the known value of y, i.e.:

p(θ|y) =
p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

. (7)

Since p(y) does not depend on θ, it can be considered a constant and equation (7)

can be expressed as

p(θ|y) ∝ p(θ)p(y|θ), (8)

which is called unnormalised posterior density, and constitutes the technical

core of Bayesian inference: first a full model is specified, and then depending on

this model as well as on the observed data, the appropriate posterior distribution is

calculated, interpreted and its fit evaluated. In fact, an important step to be taken

after the inference is to ask the following questions: does the model fit the data?

Are the results sensitive to the assumptions made while setting the full model? Are

the conclusions reasonable?

The empirical estimation of Bayesian models relies on simulation processes. The

basic idea is to generate samples from a probability distribution and study their

histogram. With a large enough sample, the histogram provides accurate informa-

tion about many features of the distribution of : moments, percentiles and other

summary statistics. The generation of samples from the probability distribution is

achieved by using (pseudo)random number sequences. In fact, this tricky process

has been troublesome to implement for many years, since it is based on complex

numerical calculations. Fortunately, in recent years both new estimation algorithms

and new specific software have contributed to the increasing availability of Bayesian

tools for empirical researchers32. These algorithms can be easily implemented by

32 The most used simulation method in the empirical Bayesian literature is the Markov Chain Monte

Carlo (MCMC) simulation, which can be implemented using algorithms such as the Gibbs sampler

and the Metropolis-Hastings algorithm (see Gelman, 2004 for technical details).
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using the Bayesian package BUGS, , for instance, operating within the general sta-

tistical package R. Likewise, the INLA estimation package considered in this article

can also be operated within the R environment, and the University of Munich has

created the BayesX package. All these packages enable estimation of a wide array

of models, and are thus very flexible.

B Figures and Tables
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tion (right).
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Tab. 1: Description of variables

Variable Description Source

Dependent Variable

ENT Number of entries (2002 - 2004) REIC

A) Agglomeration Economies

EMP Employment Density IDESCAT

EMP2 Squared of Employment Density IDESCAT

HHI Hirschman-Herfindahl Index IDESCAT

B) Industrial Mix

SIZE Average Establishment Size Own

ACT Activity Rate Own

SME Share of Manufacturing Employment IDESCAT

SSE Share of Services Employment IDESCAT

C) Spatial Effects

W-EMP Spatial Lag of EMP own

W-HHI Spatial Lag of HHI own

W-SME Spatial Lag of SME own

D) Human Capital

EDU Average Years of Schooling IDESCAT

E) Geographical Position

ALT Altitude ICC

TMC Transport time to Main Cities ICC

CC County Capital ICC

CL Coast Location ICC

MAB Metropolitan Area of Barcelona T & B

MAG Metropolitan Area of Girona T & B

MAT Metropolitan Area of Tarragona T & B

MAL Metropolitan Area of Lleida T & B

MAM Metropolitan Area of Manresa T & B

Sources: Catalan Manufacturing Establishments register (REIC), Catalan Statistical Institute

(IDESCAT), Catalan Cartographical Institute (ICC) and Trullén and Boix (2004), (T & B).
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Tab. 2: Descriptive statistics of establishment entries 2002 - 2004

Years

2002 2003 2004 2002− 2004

Mean 1.420 1.484 1.453 4.359

Std. Dev. 4.889 5.222 4.800 14.590

Zero counts 614 609 612 461

Positive counts 327 332 329 480

Sum. 1337 1397 1368 4102

Min. 0 0 0 0

Max. 87 91 80 258

5th percentile 0 0 0 0

10th percentile 0 0 0 0

25th percentile 0 0 0 0

50th percentile 0 0 0 1

75th percentile 1 1 1 3

90th percentile 4 4 4 11

95th percentile 7 7 7 20

Source: own elaboration.
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Tab. 3: Main Estimation Results
Poisson (PO) Zero Inflated Poisson (ZIP)

A) No effects
Measures of fit

DIC 4659.12 4385.73

Marginal Likelihood 0.00 −2219.24
Hyperparameters

Mean Std. Dev. (2.5%, 97.5%) quant

Zero probability λ̂π 0.270 0.024 (0.223, 0.319)

B) Random iid effect
Measures of fit

DIC 2491.33 2497.56

Marginal Likelihood −1472.60 −1478.17
Hyperparameters

Mean Std. Dev. (2.5%, 97.5%) quant Mean Std. Dev. (2.5%, 97.5%) quant

iid parameter log(λ̂u) 1.005 0.100 (0.816, 1.223) 1.019 0.106 (0.829, 1.246)

Zero probability λ̂π 0.006 0.005 (0.002, 0.020)

C) Random iid and spatial effects
Measures of fit

DIC 2453.17 2455.09

Marginal Likelihood −2140.20 −2145.86
Hyperparameters

Mean Std. Dev. (2.5%, 97.5%) quant Mean Std. Dev. (2.5%, 97.5%) quant

iid parameter log(λ̂u) 1.840 0.346 (1.293, 2.654) 1.846 0.347 (1.299, 2.667)

Spatial parameter log(λ̂s) 1.010 0.317 (0.555, 1.800) 1.010 0.324 (0.552, 1.817)

Zero probability λ̂π 0.001 0.003 (0.000, 0.010)

Negative Binomial (NB) Zero Inflated Negative Binomial (ZINB)

A) No effects
Measures of fit

DIC 2913.27 2913.40

Marginal Likelihood −1463.68 −1463.96
Hyperparameters

Mean Std. Dev. (2.5%, 97.5%) quant Mean Std. Dev. (2.5%, 97.5%) quant

Overdispersion log(r̂) 0.931 0.086 (0.773, 1.112) 0.932 0.086 (0.773, 1.114)

Zero probability λ̂π 0.0006 0.002 (0.000, 0.006)

B) Spatial effect
Measures of fit

DIC 2912.52 2913.59

Marginal Likelihood −2143.90 −2138.16
Hyperparameters

Mean Std. Dev. (2.5%, 97.5%) quant Mean Std. Dev. (2.5%, 97.5%) quant

Spatial parameter log(λ̂s) 3431.95 1833.45 (796.66, 7865.94) 69832 36943 (17014, 159160)

Overdispersion log(r̂) 0.928 0.085 (0.771, 1.108) 0.931 0.087 (0.773, 1.114)

Zero probability λ̂π 0.002 0.005 (0.000, 0.017)
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Tab. 4: Poisson Models Estimations
No effects Random effects Random and spatial effects

Mean St. Dev. 2.5% quant 97.5% quant Mean St. Dev. 2.5% quant 97.5% quant Mean St. Dev. 2.5% quant 97.5% quant
Parameters

CONST −15.559 1.468 −18.462 −12.702 −16.970 3.747 −24.416 −9.619 −15.404 3.863 −22.833 −7.713

HHI −2.172 0.306 −2.779 −1.577 −2.798 0.656 −4.104 −1.530 −2.388 0.638 −3.656 −1.152

EMP 2.908 0.282 2.364 3.470 2.628 0.609 1.452 3.846 2.253 0.592 1.113 3.438

EMP2 −0.155 0.018 −0.191 −0.121 −0.153 0.040 −0.233 −0.075 −0.133 0.039 −0.211 −0.058

SIZE −0.132 0.006 −0.143 −0.121 −0.105 0.012 −0.129 −0.081 −0.096 0.012 −0.120 −0.073

ACT 1.326 0.696 −0.040 2.691 6.666 1.598 3.547 9.822 5.414 1.606 2.271 8.578

SME 3.892 0.323 3.259 4.526 4.173 0.742 2.724 5.637 3.904 0.754 2.429 5.389

SSE 0.595 0.138 0.323 0.865 −0.233 0.299 −0.823 0.349 −0.434 0.295 −1.016 0.140

W-HHI −1.226 1.093 −3.386 0.899 −3.730 2.861 −9.374 1.855 −0.805 3.292 −7.292 5.625

W-EMP 0.721 0.124 0.479 0.966 0.839 0.414 0.029 1.656 0.481 0.410 −0.316 1.295

W-SME 8.503 1.307 5.917 11.045 9.533 3.429 2.810 16.277 −0.267 4.416 −9.048 8.373

ALT −0.001 0.000 −0.001 0.000 −0.001 0.000 −0.002 −0.001 −0.002 0.000 −0.003 −0.001

EDU −0.171 0.027 −0.224 −0.117 −0.168 0.067 −0.299 −0.038 −0.179 0.066 −0.309 −0.050

TMC −0.023 0.002 −0.027 −0.019 −0.021 0.004 −0.030 −0.012 −0.027 0.008 −0.042 −0.011

CC 0.959 0.052 0.857 1.062 1.685 0.202 1.290 2.085 1.645 0.188 1.277 2.016

CL 0.402 0.056 0.291 0.512 0.527 0.190 0.155 0.901 0.591 0.202 0.195 0.989

MAB 0.897 0.066 0.768 1.026 0.663 0.167 0.334 0.990 0.239 0.209 −0.174 0.645

MAG −0.309 0.113 −0.533 −0.090 −0.528 0.222 −0.966 −0.097 −0.449 0.304 −1.051 0.145

MAT 0.049 0.116 −0.181 0.273 −0.264 0.256 −0.771 0.234 −0.037 0.380 −0.789 0.702

MAL 0.892 0.132 0.629 1.148 0.854 0.274 0.313 1.390 0.274 0.384 −0.486 1.019

MAM 0.521 0.096 0.332 0.706 0.621 0.253 0.122 1.116 0.230 0.327 −0.415 0.868

Hyperparameters

iid parameter log(λ̂u) 1.005 0.100 0.816 1.223 1.840 0.345 1.294 2.654

Spatial parameter log(λ̂s) 1.010 0.317 0.555 1.800

DIC 4659.12 2491.33 2453.17

Marg. Like. 0.00 -1472.60 -2142.20
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