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A way to play bankruptcy problems.

José-Manuel Jiménez-Gómez 1

Universitat Rovira i Virgili, Departament d’Economia, CREIP and GRODE.

Abstract

The commitment among agents has always been a difficult task, especially
when they have to decide how to distribute the available amount of a scarce
resource among all. On the one hand, there are a multiplicity of possible
ways for assigning the available amount; and, on the other hand, each agent
is going to propose that distribution which provides her the highest possible
award. In this paper, with the purpose of making this agreement easier, firstly
we use two different sets of basic properties, called Commonly Accepted Equity
Principles, to delimit what agents can propose as reasonable allocations.
Secondly, we extend the results obtained by Chun (1989) and Herrero (2003),
obtaining new characterizations of old and well known bankruptcy rules.
Finally, using the fact that bankruptcy problems can be analyzed from awards
and losses, we define a mechanism which provides a new justification of the
convex combinations of bankruptcy rules.
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1. Introduction.

Consider a group of agents who have deposited their savings in a bank.
How should the bank funds be distributed among these investors if bankruptcy?
Obviously, each agent is going to seek the highest amount of awards as possi-
ble, according to her savings. However, there are multiple possible allocations
that agents can propose. So that, an agreement about the way of sharing
the funds is not easily met. These kind of situations, where the resources are
not sufficient to satisfy the agents’ aggregate demand, are called bankruptcy
problems. Moreover, according to each bankruptcy problem, the way of ra-
tioning the endowment among the agents, taking into account their claims,
is prescribed by a bankruptcy rule.

Hereinafter, we analyze bankruptcy problems assuming that, as in the
example above, agents act strategically, i.e., in a non-cooperative way. In
this context, Chun (1989) and Herrero (2003) follow the bargaining model
introduced by van Damme (1986), who prospects Nash equilibria of a non-
cooperative game. Particularly, he defines a mechanism of successive con-
cessions, where agents’ strategies consist of the choice of a rule among a
reasonable set of them. Applying this idea in bankruptcy problems, Chun
(1989) proposed the Diminishing Claims procedure to solve bankruptcy sit-
uations where the allowed allocations are determined by the agreement of all
agents on a set of “basic” requirements. Later, Herrero (2003) modifies the
Unanimous Concessions mechanism, provided by Marco-Gil et al. (1995), for
its application to bankruptcy problems. Finally, and more recently, Garcia-
Jurado and Gónzalez-Villar (2006) propose an elementary game where each
agent’s strategy belong to a determined closed space of possible choices. With
this game, they show that any acceptable rule can be obtained as the unique
allocation of the corresponding Nash equilibria depending on its associated
closed interval of strategies.

This paper strengths the set of “Admissible” rules to those that fulfil some
reasonable or basic “Commonly Accepted Equity Principles”, P . Note that
it can be easily found everyday situations in which agents have some legal
restrictions on their proposals. See for instance, the law against dumping in
competitive markets where, roughly speaking, firms cannot offer a product
below its production costs; the different heritage laws; or, following the ex-
ample which introduces this section, each investors cannot get more funds
than her savings.

To this respect, we propose as basic properties the set P1 composed by
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Resource Monotonicity, Super-Modularity and Midpoint Property, and the
set P2, replacing on P1 Super-Modularity by Order Preservation. We find
out that, for every two-agents problem, in any Nash equilibrium of the game
induced by the Unanimous Concessions procedure, the Dual of Piniles’ and
the Dual Constrained Egalitarian rules are retrieved for P1 and P2, respec-
tively. Secondly, we generalize these results and show that the application
of these procedures do not always provide desirable distributions. In this
line, by applying the idea of duality, which we introduce in the next section,
we recover the Piniles’ and the Constrained Egalitarian rules for P1 and P2,
respectively, in any Nash equilibrium of the two-agents game induced by the
Diminishing Claims procedure.

Finally, using the fact that bankruptcy problems can be faced from a
double point of view: awards and losses, we define a new mechanism, called
Double Concessions procedure, which combines the philosophy of the Dimin-
ishing Claims and the Unanimous Concessions procedures. Then, we obtain
that if the set of “Admissible” rules is defined by only two dual rules, our
new procedure will correspond with the average of these two. This result
has two consequences. On the one hand, we provide a new justification of a
convex combination (the middle point) of two extreme and opposite ways of
distributing the endowment. On the other hand, we obtain a new method for
rationing the resources which is invariant to the point of view used (awards
and losses).

The paper is organized as follows: Section 2 introduces the preliminaries.
Sections 3 and 4 apply the Unanimous Concessions and the Diminishing
Claims procedures for two different set of principles. Section 5 presents
our new mechanism. Section 6 summarizes our conclusions. Finally, the
Appendices gather technical proofs.

2. Prelimaries.

A bankruptcy problem is a vector (E, c) ∈ R+ ×R
n
+, where E denotes

the endowment and c is the vector of each agents’ claim, ci, for each i ∈ N,
N = {1, ..., i, ..., n} , such that the agents’ aggregate demand is higher than
the endowment,

∑

i∈N

ci ≥ E.

For notational convenience, B will denote the set of all bankruptcy prob-
lems; C the sum of the agents’ claims, C =

∑

i∈N

ci; and L the total amount of

losses to distribute among the agents, L = C −E.
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Each bankruptcy problem can be faced from two points of views: awards
and losses. Thus, we have two focal positions, depending on whether we
worry about the awards we receive or the amount of our demand that is not
satisfied. In this latter case, we consider the dual bankruptcy problem,
which is the pair (L, c) ∈ R+×R

n
+, such that L will denote the total amount

of losses to distribute among the agents, L = C −E, and
∑

i∈N

ci ≥ L.

In this context, a rule is a function, ϕ : B → R
n
+, which associates for each

(E, c) ∈ B, a distribution of the endowment among the group of claimants,
such that (a)

∑

i∈N

ϕi(E, c) = E and (b) 0 ≤ ϕi(E, c) ≤ ci.

Given a rule ϕ, its dual rule shares out losses in the same way that ϕ
divides the endowment (Aumann and Maschler (1985)).

The dual of ϕ, denoted by ϕd, assigns for each (E, c) ∈ B and each
i ∈ N, ϕd

i (E, c) = ci − ϕi(L, c).

It is straightforward to check that for each rule, ϕ, its dual rule is well
defined, since given that (E, c) ∈ B, (L, c) ∈ B and given that ϕ satisfies
efficiency, non-negativity and claim-boundedness, the same will apply for ϕd.
It is also clear that (ϕd(E, c))d = ϕ(E, c).

Additionally, if a rule recommends the same allocation when dividing
awards and losses, it is called Self-Dual.

A rule ϕ is Self-Dual, if for each (E, c) ∈ B and each i ∈ N, ϕi(E, c) =
ci − ϕi(L, c).

2

Particularly, we focus on the following rules: the Constrained Equal
Awards, Piniles’ and the Constrained Egalitarian rules, and their dual rules.

The Constrained Equal Awards rule, CEA, (Maimonides 12th
Century, among others) recommends, for each (E, c) ∈ B, the vector
(min {ci, µ})i∈N , where µ is chosen so that

∑

i∈N

min {ci, µ} = E.

Piniles’ rule, Pin, (Piniles (1861)) provides, for each (E, c) ∈ B, the
vector (CEAi(E, c/2))i∈N , if E ≤ C/2; and (ci/2 + CEAi(E − C/2, c/2))i∈N ,
if E ≥ C/2.

The Constrained Egalitarian rule, CE, (Chun et al. (2001)) chooses,
for each (E, c) ∈ B, the vector (CEAi(E, c/2))i∈N , if E ≤ C/2; and

2That is, ϕd(E, c) = ϕ(E, c).
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(max{ci/2,min{ci, δ}})i∈N , if E ≥ C/2, where δ is chosen so that
∑

i∈N

CE i(E, c) = E.

Note that the Constrained Equal Losses rule, CEL, (Aumann and Maschler
(1985)) is the dual of the Constrained Equal Awards rule (Herrero and Villar
(2001)). Moreover, DPin and DCE will denote the Dual of Piniles’ and the
Dual of Constrained Egalitarian rules, respectively.

In this paper, we delimit the set of reasonable distributions with the
definition different sets of basic properties, called “Commonly Accepted Eq-
uity Principles” sets, on which society agrees that the distribution of the
resource must be made in base of. These extended problems, proposed by
Jiménez-Gómez and Marco-Gil (2008), are called Bankruptcy Problem with
Legitimate Principles, that is, these are problems where all the admissible
rules must satisfy the “Commonly Accepted Equity Principles” set. Formally,

A Bankruptcy Problem with Legitimate Principles is a triplet
(E, c, Pt) where (E, c) ∈ B and Pt is a fixed set of principles on which a
particular society has agreed.

So that, the allowed rules for this problem must satisfy the set of equity
principles, Pt. That is,

An Admissible rule, ϕ, is a rule satisfying all properties in Pt.
From now on, P denotes the set of all subsets of properties of rules. Each

Pt ∈ P represents a specific society which will always apply such principles
for solving its problems; BP denotes the set of all Problems with Legitimate
Principles, Φ the set of all rules and Φ(Pt) the subset of rules satisfying Pt.

3. The Unanimous Concessions procedure: restuls.

In this section we present the procedure with which we apply the previous
ideas, and we introduce some “basic” properties which define two “Commonly
Accepted Equity Principles” sets, P1 and P2. Then, we analyze the two-agents
problems, retrieving the Dual of Piniles’ and the Dual Constrained Egalitar-
ian rules. Finally, we study the general case, obtaining not so desirable
results for P2.

The Unanimous Concessions procedure (Herrero (2003)) says that, given
that agents have chosen their preferred Admissible rules, if at the initial step
there is no agreement, at the second step, each agent receives her minimal
amount among all the proposed. Now, we redefine the residual bankruptcy
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problem, in which the endowment is the leftover resource, the claims are
adjusted down by the amounts just given, and the same procedure is applied.
The solution will be the limit of the procedure if it is feasible, and zero
otherwise. Formally

Definition 1. Unanimous Concessions procedure, u, (Herrero (2003)):
Let (E, c, Pt) ∈ BP . At the first stage, each agent chooses a rule ϕi ∈

Φ(Pt). Let ψ = (ϕi) be the profile of rules selected. The division proposed by
the Unanimous Concessions procedure, u [ϕ, (E, c, Pt)] is obtained as follows:

[Step 1] If all agents agree on ϕ(E, c,Pt), then u [ϕ, (E, c,Pt)] =
ϕ (E, c,Pt) . Otherwise, go to next step.

[Step 2] Let us define si (E, c,Pt) = min
j∈N

ϕj
i (E, c,Pt) ,

c2 = c− s (E, c,Pt) , and E
2 = E −

∑

i∈N

si (E, c,Pt) .

Now, if all agents agree on ϕ(E2, c2,Pt), then
u [ϕ, (E, c,Pt)] = s (E, c,Pt) + ϕ (E2, c2,Pt) . Otherwise, go to next step.

[Step m+ 1] si (E
m, cm,Pt) = min

j∈N
ϕj
i (E

m, cm,Pt) ,

cm+1 = cm − s (Em, cm,Pt) , and E
m+1 = Em −

∑

i∈N

si (E
m, cm,Pt) .

Now, if all agents agree on ϕ (Em+1, cm+1,Pt) , then

u [ϕ, (E, c,Pt)] =
m
∑

k=1

s
(

Ek, ck,Pt

)

+ ϕ (Em+1, cm+1,Pt) . Otherwise, go to

next step.

[Limit case] Compute
∞
∑

k=1

s
(

Ek, ck,Pt

)

. If it converges to an allocation,

x, such that
∑

i∈N

xi ≤ E, u [ϕ, (E, c,Pt)] = x. Otherwise, u [ϕ, (E, c,Pt)] = 0.

From now on, let Γu
Pt

denote the game induced by the Unanimous Con-
cessions procedure when agents acts strategically, in which the set of players
is N, the strategies for each agent are rules in Φ (E, c, Pt) and the payoffs are
the sum of the amounts received by each agent in each step m ∈ N. That is,

Γu
Pt

=

{

N,
{

ϕi ∈ Φ(E, c, Pt)
}n

i=1
,

{

m
∑

k=1

si
(

Ek, ck, Pt

)

}n

i=1

}

,

where m denotes the step where the agreement is reached, and ∞ otherwise.
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Next, we introduce some properties of rules that have been understood
by many authors as minimal requirements of fairness (see for instance Thom-
son (2003)), and with which we consider two possible choices of “Commonly
Accepted Equity Prinicples” sets that a society could impose on the rules.
Moreover, we present the notion of duality and Self-Duality between proper-
ties.

Resource Monotonicity (Curiel et al. (1987), Young (1988), among others)
demands that if the endowment increases, then all individuals should get at
least what they received initially.

Resource Monotonicity: for each (E, c) ∈ B and each E ′ ∈ R+ such
that C > E ′ > E, then ϕi(E

′, c) ≥ ϕi(E, c), for each i ∈ N.

Order Preservation (Aumann and Maschler (1985)) requires respecting
the ordering of the claims: if agent i’s claim is at least as large as agent j’s
claim, he should receive and loss at least as much as agent j, does respectively.

Order Preservation: for each (E, c) ∈ B, and each i, j ∈ N , such that
ci ≥ cj , then ϕi(E, c) ≥ ϕj(E, c), and ci − ϕi(E, c) ≥ cj − ϕj(E, c), that is
li ≥ lj.

A Super-Modular rule (Dagan et al. (1997)) allocates each additional
dollar in an “order preserving” manner. In other words, when the endowment
increases, agents with higher claims receive a greater part of the increment
than those with lower claims.

Super-Modularity: for each (E, c) ∈ B, all E ′ ∈ R+ and each i, j ∈ N
such that C > E ′ > E and ci ≥ cj , then ϕi(E

′, c) − ϕi(E, c) ≥ ϕj(E
′, c) −

ϕj(E, c).

Midpoint Property (Chun et al. (2001)) requires that if the estate is equal
to the sum of the half-claims, then all agents should receive their half-claim.

Midpoint Property: for each (E, c) ∈ B and each i ∈ N, if E = C/2,
then ϕi(E, c) = ci/2.

The dual relation defined between rules has been carried to the concept
of property. In this sense, given two properties, we say that they are dual
of each other if whenever a rule satisfies one of them, its dual satisfies the
other.

Two properties, P and Pd, are dual if whenever a rule, ϕ, satisfies P, its
dual, ϕd, satisfies Pd.

7



It is worth noting that all the principles we have introduced are invariant
to the perspective from which the problem is thought, that is, they do not
change when dividing ”what is available” or ”what is missing”, so , they are
Self-Dual. Formally:

A property, P, is Self-Dual when it coincides with its dual.

Specifically, we consider the two following sets,

P1 ={Resource Monotonicity, Super-Modularity, Midpoint Property}
P2 ={Resource Monotonicity, Midpoint Property, Order Preservation}

Note that since Super-Modularity implies Order Preservation (Thomson
(2003)), we obtain P1 ⊆ P2.

Given P1, next propositions tell us that, on the hand, if some agent an-
nounces the DPin rule, then the Unanimous Concessions procedure converge
to this rule, and, on the other hand that, the DPin rule is a weakly dom-
inant strategy for the agent with the highest claimant. Then, as a direct
consequence of these two results, we show that in all noncooperative Nash
equilibria, each agent will receive the awards recommended by the DPin rule.

Proposition 2. For each (E, c, P1) ∈ BP , and each i ∈ N, if ϕi(E, c) ∈
Φ (BP1

) , and for some j ∈ N, ϕj(E, c) = DPin(E, c), then u [ϕ, (E, c, P1)]
= DPin(E, c).

Proof. See Appendix 2.

Proposition 3. In the game Γu
P1
, the DPin rule is a weakly dominant strat-

egy for the agent with the highest claim.

Proof. See Appendix 3.

Theorem 4. In any Nash equilibrium induced by the game Γu
P1
, each agent

receives the amount given by the DPin rule.

Proof. See Appendix 4.

Finally, we obtain similar results with P2. That is, if some agent an-
nounces the DCE rule, then the Unanimous Concessions procedure converge
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to this rule. Moreover, the DCE and the CE rules are a weakly dominant
strategy for the agents with the highest and the smallest claimant, respec-
tively. However, we show that, in general, the Nash equilibrium induced by
the application of the Unanimous Concessions procedure not only does not
provide one of the Admissible rules, but also the allocation proposed by it
fails one of “Commonly Accepted Equity Principles” on which the process is
based.

Proposition 5. For each (E, c, P2) ∈ BP , with |N | = 2, and each i ∈ {1, 2},
if ϕi(E, c) ∈ Φ (BP2

) , and for some j ∈ {1, 2} , ϕj(E, c) = DCE(E, c), then
u [ϕ, (E, c, P2)] = DCE(E, c).

Proof. See Appendix 5.

Proposition 6. In the game Γu
P2
, the DCE rule is a weakly dominant strat-

egy for the agent with the highest claim.

Proof. See Appendix 6.

Proposition 7. In the game Γu
P2
, the CE rule is a weakly dominant strategy

for the agent with the smallest claim.

Proof. See Appendix 6.

Theorem 8. For two-agents problems, in any Nash equilibrium induced by
the game Γu

P2
, each agent receives the amount given by the DCE rule.

Proof. See Appendix 7.

Theorem 9. There is a problem, (E, c, P2) ∈ BP , for which if ϕi(E, c) ∈
Φ (BP2

) , and for some j ∈ N, ϕj(E, c) = DCE(E, c), then u [ϕ, (E, c, P2)] 6=
DCE(E, c).

Proof. See Appendix 8.

Theorem 10. The Nash equilibrium induced by the game Γu
P2

does not fulfil
Resource Monotonicity.

Proof. See Appendix 8.
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4. Diminishing Claims procedure: results.

By using the idea of duality and the fact all the properties proposed are
Self-Dual, the previous results can be analyzed from the viewpoint of sharing
losses, i.e., we focus on the maximum awards that each agent can ensure.

In this sense, the Diminishing Claims procedure (Chun (1989)), denoted
by d, says that, given that agents have chosen their preferred rules, if at the
initial step there is no agreement, at the second step, we redefine the residual
bankruptcy problem, in which the endowment does not change, and each
agent’s claim is truncated by the highest amount among all the proposed at
step 1. Then, the procedure is again applied until an agreement is reached.
If this is not the case, the solution will be the limit of the procedure if is
feasible, and zero otherwise. Formally,

Definition 11. Diminishing Claims procedure, d, (Chun (1989)):
Let (E, c, Pt) ∈ BP . At the first stage, each agent chooses a rule ϕi ∈

Φ(Pt). Let ψ = (ϕi) be the profile of selected rules. The division proposed by
the Diminishing Claims procedure, d [ϕ, (E, c, Pt)] is obtained as follows:

[Step 1] If all agents agree on ϕ (E, c, Pt) , then d [ϕ, (E, c, Pt)] = ϕ(E, c, Pt).
Otherwise, go to next step.

[Step 2] Let us define cei(E, c, Pt) = max
j∈N

ϕj
i (E, c, Pt),

c2 = ce(E, c, Pt), and E
2 = E.

Now, if all agents agree on ϕ(E2, c2, Pt), then
d [ϕ, (E, c, Pt)] = ϕ (E2, c2, Pt) . Otherwise, go to next step.

[Step m+ 1] Let us define cei (E
m, cm, Pt) = max

j∈N
ϕj
i (E

m, cm, Pt) ,

cm+1 = ce (Em, cm, Pt) , and E
m+1 = E.

Now, if all agents agree on ϕ (Em+1, cm+1, Pt) , then
d [ϕ, (E, c, Pt)] = ϕ (Em+1, cm+1, Pt) . Otherwise, go to next step.

[Limit case] Compute lim
k→∞

ϕ
(

Ek, ck, Pt

)

. If it converges to an allocation,

x, such that
∑

i∈N

xi ≤ E, d [ϕ, (E, c, Pt)] = x. Otherwise, d [ϕ, (E, c, Pt)] = 0.

From now on, let Γd
Pt

denote the game induced by the Diminishing Claims
procedure when agents act strategically, in which the set of players is N , the
strategies for each agent are rules in Φ (E, c, Pt) and the payoffs are the
amount recommending to each agent by the accorded rule. That is,
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Γd
Pt

=
{

N,
{

ϕi ∈ Φ(E, c, Pt)
}n

i=1
, {ϕi (E

m, cm, Pt)}
n

i=1

}

.

It can be easily checked that the Diminishing Claims and the Unanimous
Concessions procedures are dual, since the maximum amount that each agent
can receive in the former mechanism can be interpreted as the minimal losses
in which each agent can incur applying the latter mechanism.

Therefore, next results come straightforwardly by duality.

Corollary 12. In any Nash equilibrium induced by the game Γd
P1

each agent
receives the amount given by the Pin rule.

Corollary 13. For two-agents problems, in any Nash equilibrium induced by
the game Γd

P2
each agent receives the amount given by the CE rule.

Corollary 14. There is a problem (E, c, P2) ∈ BP , for which if ϕi(E, c) ∈
Φ (P2) and for some j ∈ N,ϕj(E, c) = CE (E, c) , then u [ϕ, (E, c, P2)] 6=
DCE(E, c).

Corollary 15. The Nash equilibrium induced by the game Γd
P2

does not fulfil
Resource Monotonicity.

5. The solution is “in the middle”.

In this section, we define a new mechanism which combines the philoso-
phy of the Diminishing Claims and the Unanimous Concessions procedures,
using the fact that they are dual each other.

This new method, named the Double Concessions procedure, says that,
given that agents have chosen their preferred rules, if at the initial step
there is no agreement, at the second step, each agent receives the smallest
amount among all the proposed at step 1. Now, we redefine the residual
problem, in which the endowment is the leftover resources, and the claims
are truncated by the maximum amount recommended by all the suggested
rules and adjusted down by the amounts just given. Then, the procedure
is again applied until an agreement is reached. If this is not the case, the
solution will be the limit of the procedure if it is feasible, and zero otherwise.
Formally:
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Definition 16. Double Concessions procedure, du:
Let (E, c, Pt) ∈ BP . At the first stage, each agent chooses a rule ϕi ∈

Φ(E, c, Pt). The proposal of the Double Concessions procedure,
du [ϕ, (E, c, Pt)] is obtained as follows:

[Step 1] If all agents agree on ϕ(E, c, Pt), then du [ϕ, (E, c, Pt)] =
ϕ(E, c, Pt). Otherwise, go to next step.

[Step 2] Let us define
si (E, c, Pt) = min

j∈N
ϕj
i (E, c, Pt) ,

cei (E, c, Pt) = max
j∈N

ϕj
i (E, c, Pt) ,

c2 = ce (E, c, Pt)− s (E, c, Pt), and
E2 = E −

∑

i∈N

si (E, c, Pt).

Now, if all agents agree on ϕ(E2, c2, Pt), then du [ϕ, (E, c, Pt)] =
s (E, c, Pt) + ϕ (E2, c2, Pt) . Otherwise, go to next step.

[Step m+ 1] Let us define
si (E

m, cm, Pt) = min
j∈N

ϕj
i (E

m, cm, Pt) ,

cei (E
m, cm, Pt) = max

j∈N
ϕj
i (E

m, cm, Pt) ,

cm+1 = ce (Em, cm, Pt)− s (Em, cm, Pt) , and
Em+1 = Em −

∑

i∈N

si (E
m, cm, Pt).

Now, if all agents agree on ϕ (Em+1, cm+1, Pt) , then

du [ϕ, (E, c, Pt)] =
m
∑

k=1

s
(

Ek, ck, Pt

)

+ϕ (Em+1, cm+1, Pt) . Otherwise, go to

next step.

[Limit case] Compute lim
m→∞

m
∑

k=1

s
(

Ek, ck, Pt

)

. If it converges to an alloca-

tion, x, such that
∑

i∈N

xi ≤ E, du [ϕ, (E, c, Pt)] = x. Otherwise, du [ϕ, (E, c, Pt)]

= 0.

From now on, let Γdu
Pt

denote the game induced by the Double Concessions
procedure when agents acts strategically, in which the set of players is N,
the strategies for each agent are rules in Φ (E, c, Pt) and the payoffs are the
sum of the amounts received by each agent in each step m ∈ N. That is,
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Γdu
Pt

=

{

N,
{

ϕi ∈ Φ(E, c, Pt)
}n

i=1
,

{

m
∑

k=1

si
(

Ek, ck, Pt

)

}n

i=1

}

,

where m denotes the step where the agreement is reached, and ∞ otherwise.

Next theorem takes as starting point situations where discrepancy for
sharing the estate is considered by means of the existence of two fixed fo-
cal rules representing two prominent proposals. Such approach was intro-
duced by Gadea-Blanco et al. (2010) in a more general framework from
a cooperative point of view, under the name of Bifocal distribution prob-
lems. Particularly, we consider two rules, f and g, called Focal rules,
which mark out the area of all the admissible paths of awards, ϕi, satis-
fying properties for Pt, that is, for each (E, c, Pt) ∈ BP , and each i ∈ N
min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤ max{fi(E, c, Pt), gi(E, c, Pt)}.
Then, the next result shows that the Double Concessions procedure for Pt

will coincide with the average of the two Focal rules if they are dual to each
other.

Theorem 17. In any Nash equilibrium induced by the game Γdu
Pt
, such that

for each i ∈ N , any Admissible rule, ϕ, fulfils that:
min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤ max{fi(E, c, Pt), gi(E, c, Pt)},
and f(E, c, Pt) = c− g(L, c, Pt), then,

du [ϕ, (E, c, Pt)] =
f(E, c, Pt) + g(E, c, Pt)

2
.

Proof.- See Appendix 9.

A direct consequence of the above results is that our mechanism provides
the same allocation of the endowment when distributing awards or losses, i.e.,
is Self-Dual. Moreover, we recover the midpoint between the two rules which
represent extreme and opposite ways of sharing awards among claimants
according to the imposed requirements. So, in other words, it could be said
that the allocation so obtained neither favour nor hurts to any agent in
particular. Following Thomson and Yeh (2008),

‘When two rules express opposite points of views on how to solve
a bankruptcy problem, it is natural to compromise between them
by averaging.

13



5.1. Applications.

Now, following Arin (2007), Dutta and Ray (1989), Cowell (2000) and
Lambert (2001), and with the aim of determining the two Focal rules which
represent the discrepancy for sharing the resources, we considered the Lorenz
(equity) criterion (Lorenz (1905)). That is, we combine the two focus, awards
and losses, that ‘naturally’ arises in bankruptcy problems, with the two most
egalitarian rules according to these points of views, i.e., the Lorenz-Gains
Maximal and the Lorenz-Losses Maximal for each (E, c, Pt). Therefore, now
we consider the two following sets,

P1 ={Resource Monotonicity, Super-Modularity, Midpoint Property, Lorenz
criterion}

P2 ={Resource Monotonicity, Midpoint Property, Order Preservation,
Lorenz criterion}

Lorenz comparisons of bankruptcy rules from the awards point of view
can be found in Bosmans and Lauwers (2011) and Thomson (2007). These
results together with duality define the Focal rules that mark out the region
of the Admissible rules for P1, and P2. So, Bankruptcy Problems with Legiti-
mate Principles for each of these principles sets are well-defined, being their
elements triplets, such that, for each (E, c) ∈ B,

(E, c, P1) with Focal rules Pin and DPin,
(E, c, P2) with Focal rules CE and DCE.

Consequently, next results are straightforwardly obtained by applying The-
orem 17.

Corollary 18. In any Nash equilibrium induced by the game Γdu
P1
, each agent

receives the amount given by the average of Piniles’ and the Dual of Piniles’
rules.

Corollary 19. In any Nash equilibrium induced by the game Γdu
P2
, each agent

receives the amount given by the average of the Constrained Egalitarian and
the Dual Constrained Egalitarian rules.

Moreover, if we define P3 ={Lorenz criterion}, then, we have a problem
(E, c, P3) ∈ BP with Focal rules CEA and CEL. So,

14



Corollary 20. In any Nash equilibrium induced by the game Γdu
P3
, each agent

receives the amount given by the average of the Constrained Equal Awards
and the Constrained Equal Losses rules.

Finally, note that the convex combination of rules preserves Resource
Monotonicity, Super-Modularity and the Midpoint properties (Thomson and
Yeh Thomson and Yeh (2008)). Hence, as theses corollaries show, our
new procedure is Admissible for Pt ∈ {P1, P2, P3} , while applying indepen-
dently the Diminishing Claims and the Unanimous Concessions fails Re-
source Monotonicity.

6. Conclusions.

In this paper we offer the understanding of old bankruptcy rules from
a new angle. Specifically, we particularize the methodology of the Unani-
mous Concessions procedure to different sets of “Commonly Accepted Equity
Principles” by a society.

On the one hand, we have retrieved the DPin rule when applying the
Unanimous Concessions procedure with the set P1. However, this result can-
not be generalized to any equity principle set Pt, as we have shown with P2,
in which we recover the DCE rule for the two-agents case, but not for the
general one.

Therefore, we have shown that the allocation obtained when applying the
Unanimous Concessions and the Diminishing Claims procedures, may lead
“not desirable” results. Particularly, if a society agreed on choosing those
rules which satisfies a determined set of equity principles, the final allocation
could not satisfy the initial agreed properties.

Finally, we observe that in contexts where two Focal positions appear,
the application of our new mechanism, which combines both procedures,
retrieves the midpoint between these two focus. This fact, apart from its
own logic, allows to anticipate the result. Moreover, whenever the average
of these Focal rules fulfils the properties on which the context is based, then
the Double Concessions procedure leads to an Admissible allocation.

APPENDIX 1. General Facts

Next we present one remark, two definitions and two facts which are used
in the proofs provided in the following appendices. Moreover, from now on,
m ∈ N will denote the m-th step of the Unanimous Concessions procedure
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(see Definition 1), and we consider, without loss of generality, (E, c) ∈ B0,
where, B0 denotes the set of problems in which claims are increasingly or-
dered, that is problems with c1 ≤ c2 ≤ ... ≤ cn

The remark establishes, for each Pt ∈ {P1, P2} , that the order of the
agents’ claims is fixed along the different steps of the procedure.

Remark 1. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c, Pt) ∈ BP

with Pt ∈ {P1, P2} , if c
m
i ≤ cmj ⇒ cm+1

i ≤ cm+1
j .

The following definitions and facts provide the P-Safety for P1 and P2.

Definition 21. (Jiménez-Gómez and Marco-Gil, 2008) Given (E, c, P1) in
BP , the P-Safety, s, is for each i ∈ N,

si(E, c, P1) = inf {ϕ∗
i (E, c),DPini(E, c)},

where ϕ∗ denotes an Admissible rule in P1, such that, ϕ∗(E, c) 6=
DPin(E, c).

Definition 22. (Jiménez-Gómez and Marco-Gil, 2008) Given (E, c, P2) in
Bp, the P-Safety, s, is for each i ∈ N,

si(E, c, P2) = inf {ϕ∗
i (E, c),DCE i(E, c)},

where ϕ∗ denotes an Admissible rule in P2, such that, , such that,
ϕ∗(E, c) 6= DCE(E, c).

Fact 1. Given (E, c, P1) in Bp and for each m ∈ N, s1(E
m, cm, P1) =

DPin1(E
m, cm) and sn(E

m, cm, P1) =Pinn(E
m, cm).

Fact 2. Given (E, c, P2) in Bp and for each m ∈ N, s1(E
m, cm, P2) =

DCE1(E
m, cm) and sn(E

m, cm, P2) =CEn(E
m, cm).

APPENDIX 2. Proof of Proposition 2.

The proof of this result is based on Remark 1, Definition 21, Fact 1 and
three lemmas, in which ϕ∗ denotes an Admissible rule in P1, different of the
Dual Piniles’ one, ϕ∗(E, c) 6= DPin(E, c).

Lemma 23. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c) ∈ B0,
if there is m ∈ N such that si(E

m, cm, P1) =DPini(E
m, cm) then,

si(E
m+h, cm+h, P1) = 0, for each h ∈ N.

16



Lemma 24. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c) ∈ B0

and each i ∈ N, if si(E
m, cm, P1) = ϕ∗

i (E
m, cm) for each m ∈ N, then

∞
∑

k=1

si(E
k, ck, P1) ≤ DPin i(E, c).

Lemma 25. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c) ∈ B0

and each i ∈ N, if there is m∗ ∈ N, m∗>1, such that si(E
m∗

, cm
∗

, P1) =
DPini(E

m∗

, cm
∗

) and
si(E

m∗−1, cm
∗−1, P1) = ϕ∗

i (E
m∗−1, cm

∗−1),then
m∗

∑

k=1

si(E
k, ck, P1) = DPin i(E, c).

Proof of Proposition 2.
[Step 1] If all agents agree on ϕ (E, c, P1) = DPin(E, c), then

u [ϕ, (E, c, P1)] = DPin(E, c). Otherwise, go to next step.

[Step 2] Let si (E, c, P1) = min
j∈N

ϕj
i (E, c, P1) , c

2 = c − s (E, c, P1) , and

E2 = E −
∑

i∈N

si (E, c, P1) . By Lemma 23, for each agent i such that

si (E, c, P1) = DPini(E, c), si (E
2, c2, P1) = 0. If all agents agree on

ϕ (E2, c2, P1) , by Lemma 25, DPin(E, c) ≡ u [ϕ, (E, c, P1)] = s (E, c, P1)
+ϕ (E2, c2, P1) . Otherwise, go to next step.

[Step m+1] Let sm+1
i (Em, cm, P1) = min

j∈N
ϕj
i (E

m, cm, P1) , E
m+1 = Em−

∑

i∈N

smi , and c
m+1 = cm − s (Em, cm, P1) . By Lemma 23, for each agent i such

that si (E
m, cm, P1) = DPini(E

m, cm), si (E
m+1, cm+1, P1) = 0. If all agents

agree on ϕ (Em+1, cm+1, P1) , by Lemma 25, DPin(E, c) ≡ u [ϕ, (E, c, P1)] =
m
∑

k=1

s
(

Ek, ck, P1

)

+ ϕ (Em+1, cm+1, P1) . Otherwise, go to next step.

[Limit case] Compute
∞
∑

k=1

si
(

Ek, ck, P1

)

. Let us note that, by Lemmas

23 and 25 and the definition of the DPin rule, for each agent i ∈ N : ci 6=

cn,
∞
∑

k=1

si
(

Ek, ck, P1

)

= DPini(E, c). Moreover, for the rest of agents, l, by

Lemma 24,
m
∑

k=1

sl(E
k, ck, P1) ≤ DPin l(E, c). Furthermore, by Fact 1 and the

definition of the DPin rule,

sl(E, c, P1) ≥ E/n ≥
DPinl(E, c)

n
;
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sl(E
2, c2, P1) ≥ DPinl(E, c)−

sl(E, c, P1)

n
;

thus,
m
∑

k=0

sl
(

Ek, ck, P1

)

≥ DPinl(E,c)
n

(

n−1
n

)m
, i.e.,

∞
∑

k=1

sl
(

Ek, ck, P1

)

≥ DPinl(E, c).

Therefore,
∞
∑

k=1

sl
(

Ek, ck, P1

)

= DPinl(E, c). q.e.d.

APPENDIX 3. Proof of Proposition 3.

By Remark 1, for each m ∈ N, cm1 ≤ cm2 ≤ ... ≤ cm+1
n .

Moreover, let us note that for each (E, c, P1) in BP and each ϕ ∈ Φ(P1),

DPinn(E, c) ≥ ϕn(E, c).

Finally, by Lemmas 23, 24 and 25,
∞
∑

k=1

sn(E
k, ck, P1) ≤ DPinn(E, c).

Therefore, DPinn (E, c, P1) ≥ un [ϕ, (E, c, P1)] , i.e., the DPin rule is a
weakly dominant strategy for the agent with the highest claim. q.e.d.

APPENDIX 4. Proof of Theorem 4.

Let us consider (E, c, P1) ∈ BP . Then, each agent’s outcome in any
Nash equilibrium of Γu

P1
satisfies DPini (E, c) ≤ ui [ϕ, (E, c, P1)] , for each

i ∈ N. Otherwise if for some i ∈ N, DPini (E, c) > ui [ϕ, (E, c, P1)] then,
by Proposition 2, agent i could deviate to choose DPin, which gives her
more awards, contradicting the Nash equilibrium. Finally, if for each i ∈ N,
DPini (E, c) ≤ ui [ϕ, (E, c, P1)] , then, u [ϕ, (E, c, P1)] = DPin (E, c) , since
∑

i∈N ui [ϕ, (E, c, P1)] ≤ E.

APPENDIX 5. Proof of Proposition 5.

The proof of this result is based on Remark 1, Definition 22, Fact 2 and
the following three lemmas, in which ϕ∗ denotes an Admissible rule in P2,
different of the Dual Constrained Egalitarian one ϕ∗(E, c) 6= DCE (E, c).
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Lemma 26. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c, P2) ∈
BP , and each i ∈ {1, 2}, if si (E, c, P2) = DCEi(E, c), then for m ≥ 2,
si (E

m, cm, P2) = DCEi(E
m, cm) = 0.

Lemma 27. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c) ∈ B0

and each i ∈ N, if si(E
m, cm, P2) = ϕ∗

i (E
m, cm) for each m ∈ N, then

∞
∑

k=1

si(E
k, ck, P2) ≤ DCE i(E, c).

Lemma 28. (Jiménez-Gómez and Marco-Gil, 2008) For each (E, c) ∈ B0

and each i ∈ N, if there is m∗ ∈ N, m∗>1, such that si(E
m∗

, cm
∗

, P2) =
DCEi(E

m∗

, cm
∗

) and
si(E

m∗−1, cm
∗−1, P2) = ϕ∗

i (E
m∗−1, cm

∗−1),then
m∗

∑

k=1

si(E
k, ck, P2) = DCE i(E, c).

Proof of Proposition 5.
[Step 1] If the two agents agree on ϕ (E, c, P2) = DCE(E, c), then

u [ϕ, (E, c, P2)] = DCE(E, c). Otherwise, go to next step.

[Step 2] Let si (E, c, P2) = min
j∈N

ϕj
i (E, c, P2) , c

2 = c − s (E, c, P2) and

E2 = E −
∑

i∈N

si (E, c, P2) . In this case, by Definition 22, s1 (E, c, P2) =

DCE1(E, c), and by Lemma 26, s1 (E
2, c2, P2) = 0. So that, if all agents

agree on ϕ (E2, c2, P2) , then, by Lemma 28, u [ϕ, (E, c, P2)] = s (E, c, P2) +
ϕ (E2, c2, P2) = DCE(E, c). Otherwise, go to next step.

[Step m+1] Let sm+1
i (Em, cm, P2) = min

j∈N
ϕj
i (E

m, cm, P2) , E
m+1 = Em−

∑

i∈N

smi , and cm+1 = cm − s (Em, cm, P2) . By Lemma 26, s1 (E
m, cm, P2)

= 0. So that, if all agents agree on ϕ (Em, cm, P2) , then, by Lemma 28,

u [ϕ, (E, c, P2)] =
m
∑

k=1

s
(

Ek, ck, P2

)

+ ϕ (Em+1, cm+1, P2) = DCE(E, c). Oth-

erwise, go to next step.

[Limit case] Compute
∞
∑

k=1

si
(

Ek, ck, P2

)

. Let us note that, by Lemmas

26 and 28 and the definition of the DCE rule, for agent 1,
∞
∑

k=1

s1
(

Ek, ck, P2

)

=

DPin1(E, c).
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Moreover, by Lemma 27,
m
∑

k=1

s2(E
k, ck, P2) ≤ DCE 2(E, c). Furthermore,

by Fact 2 and the definition of the DCE rule,

s2(E, c, P2) ≥ E/2 ≥ DCE 2(E, c)/2,

s2(E
2, c2, P2) ≥

DCE 2(E, c)− s2(E, c, P2)

2
;

thus,

m
∑

k=0

s2
(

Ek, ck, P2

)

≥
DCE 2(E, c)

2

(

1

2

)m

,

i.e.,
∞
∑

k=1

s2
(

Ek, ck, P2

)

≥ DCE2(E, c).

Therefore,
∞
∑

k=1

s2
(

Ek, ck, P2

)

= DCE2(E, c). q.e.d.

APPENDIX 6. Proofs of Propositions 6 and 7.

These proofs are based on Remark 1, and Lemmas 26, 27 and 28.
By Remark 1, for each m ∈ N, cm1 ≤ cm2 ≤ ... ≤ cmn .

Proof of Proposition 6.
Let us note that for each (E, c, P2) in BP and each ϕ ∈ Φ(P2), DCEn(E, c)

≥ ϕn(E, c).

By Lemmas 26, 27 and 28,
∞
∑

k=1

sn(E
k, ck, P2) ≤ DCEn(E, c).

Therefore, DCEn (E, c, P2) ≥ un [ϕ, (E, c, P2)] , i.e., the DCE rule is a
weakly dominant strategy for the agent with the highest claim.

Proof of Proposition 7.
Let us note that for each (E, c, P2) in BP and each ϕ ∈ Φ(P2), CE 1(E, c) ≥

ϕ1(E, c).

By Lemmas 26, 27 and 28,
∞
∑

k=1

s1(E
k, ck, P2) ≤ DCE 1(E, c) ≤ CE 1(E, c).

Therefore, CE1 (E, c, P2) ≥ u1 [ϕ, (E, c, P2)] , i.e., the CE rule is a weakly
dominant strategy for the agent with the smallest claim. q.e.d.
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APPENDIX 7. Proof of Theorem 8.

Let us consider (E, c, P2) ∈ BP . Then, each agent’s outcome, in any Nash
equilibrium of Γu

P2
satisfies DCEi (E, c) ≤ ui [ϕ, (E, c, P2)] for each i ∈ N,

with |N | = 2. Otherwise if for some i ∈ {1, 2}, DCEi (E, c) > ui [ϕ, (E, c, P2)]
then, by Proposition 5, agent i could deviate to choose DCE, which gives
her more awards, contradicting the Nash equilibrium. Finally, if for each i ∈
{1, 2}, DCEi (E, c) ≤ ui [ϕ, (E, c, P2)] , then, u [ϕ, (E, c, P2)] = DCE (E, c) ,
since

∑

i∈N ui [ϕ, (E, c, P2)] ≤ E.

APPENDIX 8. Proof of Theorems 9 and 10.

First of all, let us note the following fact.

Fact 3. (Jiménez-Gómez and Marco-Gil, 2008) By the definition for the
DCE rule, we know that it can be written as follows,

given (E, c) ∈ B0, i ∈ N,

DCE i(E, c) ≡

{

ci − γi if E ≤ C/2

ci − γi if E ≥ C/2
,

where γi is chosen such that
∑

i∈N

DCEi(E, c) = E.

Therefore,

Case a: E ≤ C/2. We can compute γi as:

γi =

{

ci ∀ i < l
max {ci/2, αi} ∀ i ≥ l

,

where agent l is that one such that
∑

j>l

min {cj − cl; cj/2} < E, and

either
∑

j>l−1

min {cj − cl−1; cj/2} ≥ E, either l = 1. Otherwise, l = n.

Then, ∀i ≥ l,

αi =

L−
k−1
∑

j=1

cj −
∑

j>i

γj

i− l + 1
.

Note also that we should compute α from the highest claimant to the
smallest one.

Case b: E ≥ C/2. Then, γi will denote the losses incurred by agent i
when the losses from the claim vector are equal to all agents subject to no-one
obtaining less than her half-claim.
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Proof of Theorem 9.
Let us consider the following problem (E, c) ∈ B = (21, (5; 19.5; 20)), by

Propositions 6 and 7, for each step m ∈ N,

ψ (Em, cm, P2) = (CE (Em, cm) ,ϕm
2 (Em, cm) ,DCE (Em, cm)) .

Thus, given the definitions of the CE rule and its dual and Fact 3, we get
at step m = 1, (E1, c1) = (21, (5; 19.5; 20)), CE (E1, c1) = (2.5; 9.25; 9.25) ,
and DCE (E1, c1) = (1.25; 9.75; 10) .

[Step 1] Since there is no agreement, go to next step.

[Step 2] s(E, c, P2) = (1.25; 9.25; 9.25) , and E2 = 1.25. So, (E2, c2) =
(1.25, (3.75; 10.25; 10.75)) , CE (E2, c2) = (0.416; 0.416; 0.416) , and
DCE (E2, c2) = (0; 0.375; 0.875) , and since there is no agreement, go to next
step.

[Step 3] s(E2, c2, P2) = (0; 0.375; 0.416) , and E3 = 0.459. So, (E3, c3) =
(0.459, (3.75; 9.875; 10.334)) , CE (E3, c3) = (0.153; 0.153; 0.153) , and
DCE (E3, c3) = (0; 0; 0.459) , and since there is no agreement, go to next
step.

[Step 4] s(E3, c3, P2) = (0; 0; 0.153) , and E4 = 0.306. So, (E4, c4) =
(0.306, (3.75; 9.875; 10.181)) , CE (E3, c3) = (0.102; 0.102; 0.102) , and
DCE (E3, c3) = (0; 0; 0.306) , and since there is no agreement, go to next
step.

[Limit case] Let us note that, since Em ≤ cm3 − cm2 , and c
m
i ≥ Em/3, for

each step m ≥ 3, DCE (Em, cm) = (0; 0;Em) and CE (Em, cm) =
(Em/3;Em/3;Em/3) . Thus, s(Em, cm, P2) = (0; 0;Em/3) . Therefore,

u [ϕ, (E, c, P2)] =
∞
∑

k=1

s
(

Ek, ck,P2

)

= (1.25; 9.625; 10.125) 6= DCE (E, c) =

(1.25; 9.75; 10) . q.e.d.

Proof of Theorem 10.
Let us consider the two following Problems with Legitimate Principles:

(E, c, P2) = (21, (5; 19.5; 20), P2),

(E ′, c, P2) = (22.25; (5; 19.5; 20), P2).

In this case,

u [ϕ, (E, c, P2)] = (1.25; 9.625; 10.125) ,
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and
u [ϕ, (E ′, c, P2)] = (2.5; 9.75; 10) .

Obviously, these two distributions contradict Resource Monotonicity since
the highest claimant receives less when the endowment increases. q.e.d.

APPENDIX 9. Proof of Theorem 17.

The proof of this result is based on a fact, two lemmas and a remark.

Fact 4. By the definition of the Double Concessions procedure, it can be eas-
ily see that, if any Admissible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)}
≤ ϕi (E, c, Pt) ≤ max{fi(E, c, Pt), gi(E, c, Pt)}, and f(E, c, Pt) = c−
g(L, c, Pt), then, the weakly dominant strategies for the smallest and the high-
est claimant are dual. In other words, if the weakly dominant strategy for
the smallest claimant is f , then, the weakly dominant strategy for the highest
agents will be g, and vice verse.

The first lemma shows that, whenever there are two Focal rules, which
are dual to each other, in any step m ∈ N, m > 1, the sum of minimum and
the maximum amounts recommended by these two focus coincides with the
sum of the claims.

Lemma 29. For each (E, c, Pt) ∈ BP , such that for each i ∈ N , if any Ad-
missible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, and f(E, c, Pt) = c − g(L, c, Pt), and m ∈
N, m > 1,

∑

i∈N

[cei(E
m, cm, Pt) + si(E

m, cm, Pt)] = Cm.

Proof. Let each (E, c, Pt) ∈ BP , such that for each i ∈ N , any Ad-
missible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, f(E, c, Pt) = c−g(L, c, Pt), andm ∈ N, m > 1.
Then,

si(E, c, Pt) = min {fi (E, c, Pt) , gi (E, c, Pt)} , and
cei(E, c, Pt) = max {fi (E, c, Pt) , gi (E, c, Pt)}.
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By duality, for each agent we are adding the two Focal rules. So next
expression comes straightforwardly.

∑

i∈N

[

cei(E
m, cm, Pt) + si(E

m, cm, Pt)

2

]

= Em.

Finally, we know that

Em = Em−1 −
∑

i∈N

si(E
m−1, cm−1, Pt) =

=
∑

i∈N

[

cei(E
m−1, cm−1, Pt) + si(E

m−1, cm−1, Pt)

2

]

−

−
∑

i∈N

si(E
m−1, cm−1, Pt) =

=
∑

i∈N

[

cei(E
m−1, cm−1, Pt)− si(E

m−1, cm−1, Pt)

2

]

= Cm/2,

by the definition of the Double Concessions procedure. q.e.d.

The following remark is a direct consequence of Lemma 29 and it says that
for each Bankruptcy Problem with Legitimate Principles, whenever there are
two Focal rules, which are dual to each other, and at any step m ∈ N, m > 1,
the half of the claims sum at every step of the Double Concesions procedure
coincides with both the endowment and the total loss at every step of the
process.

Remark 2. For each (E, c, Pt) ∈ BP , such that for each i ∈ N , if any Ad-
missible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, and f(E, c, Pt) = c − g(L, c, Pt), and m ∈
N, m > 1, Em = Lm = Cm/2.

Proof. Let each (E, c, Pt) ∈ BP , such that for each i ∈ N , any Ad-
missible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, f(E, c, Pt) = c − g(L, c, Pt), and m > 1 ∈ N.
We know that, Lm = Cm − Em. By Lemma 29, Em = Cm/2. Therefore,
Lm = Cm − Cm/2 = Cm/2. q.e.d.
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Finally, next lemma says that, whenever there are two Focal rules, which
are dual to each other, each agent’s claim at each step different of the initial
one coincides with sum of both the minimum and the maximum amounts
recommended by these two focus.

Lemma 30. For each (E, c, Pt) ∈ BP , such that for each i ∈ N , if any
Admissible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, and f(E, c, Pt) = c− g(L, c, Pt), and m > 1 ∈
N,

cmi = cei(E
m, cm, Pt) + si(E

m, cm, Pt).

Proof. Let each (E, c, Pt) ∈ BP , such that for each i ∈ N , any Ad-
missible rule, ϕ, fulfils that: min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤
max{fi(E, c, Pt), gi(E, c, Pt)}, f(E, c, Pt) = c − g(L, c, Pt), and m > 1 ∈ N,
by Remark 2 we know that for m > 1 ∈ N, Lm = Em, so, si(E

m, cm, Pt) =
si((L

m, cm, Pt)
d). By duality cei(E

m, cm, Pt) = cmi − si((L
m, cm, Pt)) = cmi −

si(E
m, cm, Pt), then, c

m
i = cei(E

m, cm, Pt) + si(E
m, cm, Pt). q.e.d.

Proof of Theorem 17.

Let (E, c, Pt) ∈ BP , such that for each i ∈ N ,
min{fi(E, c, Pt), gi(E, c, Pt)} ≤ ϕi (E, c, Pt) ≤ max{fi(E, c, Pt), gi(E, c, Pt)},
f(E, c, Pt) = c− g(L, c, Pt), for each i ∈ N , and each m ∈ N,

dui [ϕ, (E, c, Pt)] = lim
m→∞

m
∑

k=1

s(Ek, ck, Pt)) = si(E, c, Pt) +
∞
∑

m=2

si(E
m, cm, Pt).

By the definition of the Double Concessions procedure,

∞
∑

m=2

cmi =
∞
∑

m=2

[

cei(E
m−1, cm−1, Pt)− si(E

m−1, cm−1, Pt)
]

=

= cei(E
m, cm, Pt) +

∞
∑

m=2

cei(E
m, cm, Pt)− si(E

m, cm, Pt)−

−

∞
∑

m=2

si(E
m, cm, Pt).
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By Lemma 30,

∞
∑

m=2

cmi =

∞
∑

m=2

[cei(E
m, cm, Pt) + si(E

m, cm, Pt)] .

So,

cei(E, c, Pt) +
∞
∑

m=2

cei(E
m, cm, Pt)− si(E, c, Pt)−

∞
∑

m=2

si(E
m, cm, Pt)

=

∞
∑

m=2

[cei(E
m, cm, Pt) + si(E

m, cm, Pt)] .

Thus,

∞
∑

m=2

si(E, c, Pt) = (cei(E
m, cm, Pt)− si(E, c, Pt)) /2, and

si(E, c, Pt) +
cei(E, c, Pt)− si(E, c, Pt)

2
=
si(E, c, Pt) + cei(E, c, Pt)

2
.

Therefore, by Fact 4

du [ϕ, (E, c, Pt)] =
s(E, c, Pt) + ce(E, c, Pt)

2

=
f(E, cPt) + g(E, c, Pt)

2
. q.e.d.
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