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Abstract

This paper studies frequent monitoring in an in�nitely repeated game with imperfect public in-

formation and discounting, where players observe the state of a continuous time Brownian process

at moments in time of length �. It shows that a limit folk theorem can be achieved with im-

perfect public monitoring when players monitor each other at the highest frequency, i.e., � # 0.

The approach assumes that the expected joint output depends exclusively on the action pro�le

simultaneously and privately decided by the players at the beginning of each period of the game,

but not on �. The strong decreasing e¤ect on the expected immediate gains from deviation when

the interval between actions shrinks, and the associated increase precision of the public signals,

make the result possible in the limit.
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I. INTRODUCTION

In repeated games, it is common to assume that the time interval between each repetition

of the stage game is of �xed length. When monitoring is perfect, letting the discount factor

� " 1 either by making the players more patient (through a decrease in the discount rate r)
or by shrinking the time interval between actions (through a decrease in �) are equivalent

exercises. The former approach has been preferred to prove many folk theorems and to show

the existence of e¢ cient equilibria.1

When monitoring is imperfect, taking r # 0 or � # 0 leads to di¤erent results. A decrease
in � impacts on the distribution of the public signals. Abreu et al. (1991) were the �rst to

point it out. In a setting with Poisson signals, they showed that results vary depending on

whether � " 1 is due to r # 0 or to � # 0. In the latter case, payo¤s above the static Nash,
but not fully e¢ cient, can be sustained when the realizations of the process represent bad

news which is more likely to occur when some player has deviated.2 On the other hand, by

making players increasingly patient through r # 0, Fudenberg et al. (1994) proved a general
folk theorem, under some informational assumptions.

More recently, renewed interest in frequent monitoring has emerged, mainly due to San-

nikov (2007)3 and Faingold and Sannikov (2007). The latter work, reported a degeneracy of

the set of strongly symmetric equilibrium (SSE) payo¤s in continuous time, payo¤s outside

the convex hull of the static Nash equilibrium set cannot be enforced. More in the spirit of

the present paper, by studying the limit of the discrete time game, Fudenberg and Levine

(2007, 2009) and Sannikov and Skrzypacz (2007, 2010) reported similar degeneracy results

when the noisy public signals follow a Brownian motion.

Since Brownian motion is an in�nitesimal variation process, we would expect payo¤s to

be above the static Nash. These results received a great deal of attention and interest, but

they may fail to �t with all economic situations of interest. More monitoring harms the

monitor�s side and produces a negative e¤ect in terms of incentives. This goes counter to

1 See, e.g., Fudenberg and Maskin (1986).
2 In an in�nitesimal time interval, the absence of Poisson events is in�nitely more likely. For that reason,

the same result does not extend when the information arrivals represent good news. In either case, there

is a loss of precision in the public signals.
3 This paper provides a novel and elegant characterization of the set of perfect public equilibria payo¤s using

continuous time methods.
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the Alchian and Demsetz (1972) theory, which defends the disciplinary e¤ect of monitoring

in terms of incentives. On the empirical side, Dickinson and Villeval (2008) showed that

monitoring has a positive e¤ect on an individual e¤ort.4

Following the discussion, the present paper attempts to rationalize the intuition that

frequent monitoring improves the informativeness of the public signals. As a result we

develop a theory where imperfect public monitoring, in the limit, is equivalent to perfect

monitoring.

We explore frequent monitoring in a simple partnership game with imperfect public mon-

itoring and discounting.5 We analyze the limit of a sequence of discrete time games indexed

by �. The public signal (joint output) is the observed state of an arithmetic Brownian

motion (ABM) process, at intervals of length �: Based on this information players adjust

their actions for the following period.

A great deal of attention is given to SSE payo¤s, not only because of their simplicity, but

because with two-sided imperfect public monitoring the pairwise identi�ability assumption

typically fails, limiting to a great extent the provision of incentives. Destruction of value

through punishments is the only way to provide incentives. Nonetheless, we show that the

value of the best SSE improves monotonically with the monitoring intensity. In addition,

we characterize the associated cuto¤ decision rule for general �.

Finally, we show that in the limit a folk theorem obtains, independently of how players

discount the future and of the level of uncertainty.

The intuition is the following. The aggregate of players� individual decisions has as-

sociated an end of period expected joint output, which di¤ers across e¤ort choices but is

independent on �. The realized joint output (the state of the ABM process) generates a

noisy measure of the actual e¤ort choices. Since, the noise component of the output process

increases monotonically with the time interval between observations, the information about

4 They also report evidence of a Frey�s (1993) crowding-out e¤ect, which may lead to an equilibrium

degeneracy in the limit. This e¤ect is based on behavioral aspects that are not considered in the existing

literature on frequent monitoring, which focuses exclusively on the informativeness of the signals with

respect to the monitoring intensity.
5 Essentially, the information structure is similar to that of Radner et al. (1986). Other, classical, situations

involving imperfect public monitoring are Green and Porter (1984) and Porter (1983) where the market

price is an imperfect signal of the quantities supplied by the �rms. Fudenberg and Tirole (1991) and

Mailath and Samuelson (2006) provided complete surveys.
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the actual e¤ort choices becomes increasingly precise when the monitoring frequency in-

creases, i.e., � decreases. In addition, the expected gains associated with a deviation from

the equilibrium path become less attractive. Both e¤ects favor the provision of incentives,

consequently payo¤s improve monotonically when � decreases.

The present paper �lls a gap in the existing literature by enlarging the spectrum of

economic problems that can be studied using the frequent monitoring theory.6

Related Literature: positive or negative results in frequent monitoring are very sensitive

to the modeling assumptions. Sannikov and Skrzypacz (2007),7 and Fudenberg and Levine

(2007)8 report the impossibility of achieving payo¤s higher than the static Nash. In both

papers the public signals follow an ABM process and players�control the drift of the process,

i.e., � (at)�, that depends on the unknown pro�le of action at chosen by players. To

understand this better, consider two distinct action pro�les, at and a0t, with di¤erent drifts

associated, i.e., � (at)� 6= � (a0t)�. In the limit, both � (at)� and � (a0t)� go to zero

at the same rate. Consequently, it is not possible to distinguish the drift associated with

the pro�le at from the drift of the pro�le a0t. Such modeling of the observed public signal

becomes extremely noisy when observed at a high frequency, creating a degeneracy e¤ect on

the payo¤s. These results are driven by the assumption that the process departs from the

same point, independently of the players�actions. In the present paper, we make a di¤erent

assumption - the ex-ante expected value varies with the action pro�les.

Under the assumption that a deviation increases the volatility of the process, Fudenberg

and Levine (2007) showed that fully e¢ cient equilibria can be achieved in the limit. Inference

improve with a decrease in �:9 The result obtained by Fudenberg and Levine is similar in

6 Developments on frequent monitoring allowed the study of interesting departures from the canonical

repeated game framework. Fudenberg and Olszewski (2011) studied the limit of an in�nite repeated game

with random asynchronous monitoring, while Osório (2008) studied in�nitely repeated games, where the

repetitions of the stage game are not deterministic.
7 Sannikov and Skrzypacz (2010) bound the set of equilibrium payo¤s by placing restrictions on how in-

formation from Brownian and Poisson components are used to provide incentives in the most e¢ cient

way.
8 Fudenberg and Levine (2009) consider di¤erent ways of passing to the continuous time limit, i.e., binomial

and trinomial approximations of the Brownian paths. Such construction can be applied in the context of

the present paper by considering two binomial trees that start at di¤erent points (the distinct expected

outputs). Then, both trees intercept in the second and following nodes.
9 The variance parameter can be consistently estimated from the path of the process (ys; s 2 (t; t+ "]) for
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shape to the one in the present paper. However, the assumptions that lead to e¢ ciency

di¤er.10

The rest of the paper is organized as follows. Section II integrates the present paper

with the existing literature. Section III presents the repeated game model and the public

information producing process. Section IV computes the bounds on the set of SSE payo¤s

and characterizes the optimal decision rule for varying �. Section V focuses on the limit

case and presents the main results. Section VI discusses extensions. Section VII concludes.

II. EXAMPLES

In order to better place the present paper in the existing literature, consider the following

cases. The �rst is in line with the present paper, the second with the existing literature.

Example 1 - Consider an in�nitely repeated Cournot game, where �rms�supply choices

are private information and the market price is publicly observed with frequency �. The

market price reacts not only to variations on the supply, but also to exogenous events.

If one of the �rms deviates from some collusive arrangement, by increasing its own pro-

duction, then the noisy market price should adjust instantaneously to the new aggregate

joint output. This is true if information is perfect, but also when it is imperfect (with the

addition of a noisy term). Since noisy in�nitesimal variations in prices occur continuously,

their aggregated sum is more likely to be relevant for larger values of �. To enforce collu-

sion, mistaken punishment becomes more likely. On the other hand, when the end-of-period

market price is observed at a high frequency (small �), the aggregate sum of exogenous

noisy perturbations is less likely to hide a deviation. In such a case, a decrease in market

price is almost surely a signal of that some �rm is supplying larger quantities than it should.

The approaches of Fudenberg and Levine (2007, 2009) and Sannikov and Skrzypacz (2007,

2010) do not �t in this framework, because in the limit the market price does not adjust

a small but measurable ": the same does not happen with the drift of the process. In the latter case, a

relatively large � is needed in order for the players�actions to be statistically distinguishable. See Prakasa

Rao (1999) for a formal treatment of the statistical methods for di¤usion processes.
10 The result does not generalize when a deviation decreases the uncertainty parameter and extreme realiza-

tions represent "good news". To preserve the incentives players incur too often in mistaken punishments
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instantaneously to changes in the supply. The following example illustrates a situation where

these models are more adequate.

Example 2 - Suppose that a worker is expected to have produced the amount of output

� (E)� at the end of a period of length �. The worker e¤ort is costly and the observed

output is a noisy measure of it. When the worker shirks, the end-of-period expected output

is 0 = � (S)�; while if he provides e¤ort � (E)� > � (S)�: The di¤erence from the previous

example, is that output does not react instantaneously to a no e¤ort decision taken at the

beginning of the period, because � (E)� # 0 when � # 0; which is the same as � (S)� = 0:
If the monitoring events are very frequent, i.e., for small �; there is nothing to monitor.

The supervisor must wait, i.e., larger �; in order to obtain reliable information about the

worker�s e¤ort. The informativeness of the public signals increases if the monitoring is less

frequent.

III. THE REPEATED GAME MODEL

We explore frequent monitoring in a simple partnership game with two long-run players

i 2 f1; 2g. The history of the game is the following. At moments in time t = 0;�; 2�; :::;
players can choose from two di¤erent e¤ort levels ait = 1 or ait = 0. In the former, player i

provides e¤ort E to the partnership; in the latter case, she is shirking S. Let at = (a1t; a2t)

denotes a pro�le of actions.

Independently, of their private e¤ort decisions, at moments in time t = �; 2�; :::; players

observe and split the realized joint output yt+�, generated during the time interval of length

�. The observed joint output (the public signal) at t+�,11 is driven by the following ABM

process,

yt+� = yt (at) + �

Z t+�

t

dZs; with Zt = 0 and t = 0;�; 2�; :::; (3.1)

where yt (at) = 2�0 (a1t + a2t) is the initial condition of the process at time t, a function

of the unknown pro�le of actions. The parameter � measures the noise of the process.

Uncertainty is generated by the standard Brownian motion fZs; s � 0g. The joint output

11 We could have considered the possibility that at the end of each period of length �, players observe the

full path of the process fys; s 2 (t; t+�]g realized from t to t+�. This case provides more information

to the monitor. Consequently, it has associated larger payo¤s. In the limit both cases are equivalent.
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E , 1 S , 0

E , 1 �; � � (�0 � �) ; �0

S , 0 �0;� (�0 � �) 0; 0

TABLE I: "Prisoner�s dilemma type" stage game payo¤s.

evolves continuously. In every in�nitesimal instant of time a noise realization is added. The

constant �0 is a productivity measure.

All the relevant information about players�actions is contained in yt (at) ; which is also

the end-of-period expected joint output.12 Since players cannot revise their actions during

the time interval of length �, we removed the drift from the process (3.1).13

Player i0s 2 f1; 2g realized payo¤ (ex-post) from the partnership is,

ri (ait; yt+�) � yt+�=2� (2�0 � �) ait;

where �0 > � > 0.14 The second term on the right-hand side (RHS) measures the cost of

providing e¤ort for player i. The constant � is conveniently placed to obtain the prisoner�s-

dilemma-like payo¤s of table I. Player i0s ex-ante expected payo¤ from the partnership is

then,

�i (at) � E (ri (ait; yt+�) jyt (at)) = �0 (a1t + a2t)� (2�0 � �) ait:

After considering all the possible e¤ort pro�les, we obtain the stage game payo¤ matrix of

Table I.

Shirking is a dominate strategy for both players. The minimax value of the game coincides

with the stage game Nash�s payo¤and equals 0 for both players. For convenience, we assume

2� > �0.

A great deal of attention is given to SSE payo¤s. In a strongly symmetric public strategy,

after every public history the same action is chosen by both players.15 More generally, a

12 The public process is a martingale with respect to some �ltration, i.e., E (yt+�jyt (at)) = yt (at) : Examples
of other processes with the same property are � (yt; t) = 0 for the geometric Brownian motion and

� (yt; t) = � (y0 � yt) for the Ornstein-Uhlenbeck process.
13 With di¤erent initial conditions, a process with drift leads to the same results.
14 The public signal represents the evolution of the aggregate output of the partnership. Other types of a

public signals can be considered, provided that they depend on both players�actions. It is also important

that ri (:) does not depend on a�i explicitly.
15 A public history, a time t, is a sequence of realizations of the observed state of the process, denoted by
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strategy is public if depends only on the public histories and not on player i0s private history.

Given a public history, a strategies that induces a Nash equilibrium on the continuation

game, from time t on, is called a perfect public equilibrium (PPE).

Without loss of generality, we assume a common exponential discount factor � � e�r�,
where r is the discount rate.

A. The Expected Joint Output and its Distribution

In this section, we examine in more detail the monitoring technology employed in the

present paper. From now on, to keep the notation simple, we drop the t index. The subscript

� refers to an end-of-period object.

The signal space generated by (3.1) can take any value in R. Players use a threshold

strategy to distinguish realizations suggesting equilibrium play, i.e., fy� > bg which we call
"good signals", from realizations suggesting defection, i.e., fy� � bg which we call "bad
signals".16

In general, for a given expected joint output y = 2�0 (a1 + a2), the probability that the

state of the public process (3.1) appears below b in the end of a period of length � is

Pr (y� � b) = �
�
(b� 2�0 (a1 + a2)) =�

p
�
�
;

where � (:) is the standard zero mean and unit variance Gaussian distribution.

There are four possible action pro�les: the strongly symmetric pro�le a = (E;E), the

asymmetric pro�les a0 = (E; S) = (S;E) and the Nash pro�le aN = (S; S), which is trivially

self-enforceable.17 At the end of a period of length �, the expected joint output associated

with a particular e¤ort pro�le appears disturbed by some noise. Decreasing �, we are more

likely to observe the process around the expected joint output. This way, players�inference

about the others private e¤ort choices becomes more precise.

ht = (yt; yt��; :::; y�) 2 Y t, with h0 = Y 0 � ?. The sequence of player i0s private e¤ort choices is player
i0s private history.

16 Sannikov and Skrzypacz (2007), showed that a threshold is the best rule to detect unilateral deviations.

For now, we contend with an arbitrary threshold, and further on we focus on the optimal threshold value.
17 Since the setting is symmetric, there is no loss in generality in placing no distinction between the pro�les

(E;S) and (S;E). Also note that to keep the notation standard, until now a denoted a general action

pro�le. With a slight abuse of notation, a now denotes the strongly symmetric e¤ort pro�le.
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Case (i) - For the SSE pro�le a = (E;E) ; the ex-ante expected joint output is y = 4�0.

The punishment probability is

FEE = �
�
(b� 4�0) =�

p
�
�
:

This is a type I error probability; even though no player has deviated, in each period,

punishment is initiated with positive probability. We want to protect this pro�le against a

the deviation a0 = (S;E) = (E; S). The pro�le a0 has associated an expected joint output

of y = 2�0. The probability of punishment is

FES = �
�
(b� 2�0) =�

p
�
�
:

Analogously a type II error is given by 1� FES.18 Clearly, we must have FES > FEE.
Case (ii) - Asymmetric equilibrium payo¤s require the pro�le a0 = (E; S) = (S;E). In

this case, the probability of mistaken punishment is

GES = �
�
(b� 2�0) =�

p
�
�
:

A deviation by player i must occur when the worst pro�le is due. A deviation by the e¤ort

providing player leads to the pro�le aN = (S; S). The expected joint output is null, i.e.,

y = 0. The probability of punishment is

GSS = �
�
(b� 0) =�

p
�
�
:

Again, we must have GSS > GES.

Notice that, depending on the pro�le we want to enforce, di¤erent incentives are required.

For that reason, we need to distinguish between b and b. Then, FES and GES do not have

the same value, since they have associated di¤erent decision rules.

IV. THE BEST STRONGLY SYMMETRIC EQUILIBRIA

This section presents a set of general results that are independent of the monitoring

intensity. They are useful for the following section when we focus on the limit case.19 It also

18 A type II error is the event of not punishing a deviator.
19 "on the limit" means� # 0, sometimes also referred to as the "highest monitoring intensity" or "continuous
monitoring". Throughout the paper, we frequently mention "an increase in the monitoring intensity" or

"an increase in the monitoring frequency"; they refer to a decrease in �.
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presents a characterization of the optimal decision rule associated with the value of the best

SSE of the in�nitely repeated partnership game.

The equilibrium pro�le we want to sustain is a = (E;E). A pro�le where a single

player deviates is denoted as a0; and the Nash pro�le is denoted as aN . These pro�les have

associated the stage game payo¤s, �, �0 and 0, respectively. See the payo¤s matrix of Table

I.

We apply the Abreu et al. (1986, 1990) bang-bang result to compute the best SSE

payo¤. Since the distribution of public signals is not convex, optimality requires an in�nite

punishment length, see Mirrlees (1974) and Porter (1983).

To �nd the expression that characterizes the best SSE payo¤, we need to solve the

following dynamic programing problem, which by symmetry is the same for both players:

v = (1� �)� + �
��
1� FEE

�
v + FEEv

�
; (4.1)

v � (1� �)�0 + �
��
1� FES

�
v + FESv

�
; (4.2)

v = (1� �) 0 + � [pv + (1� p) v] ; (4.3)

p 2 [0; 1] : (4.4)

Expression (4.1) is the normalized discounted value of the relation when both players provide

e¤ort. Players receive the expected payo¤ � associated with the mutual e¤ort, as well as

a discounted expectation over the expected values v and v; associated with the two types

of signals that might be observed. Constraint (4.2) is an enforceability condition. The

expected value of the game associated with the mutual e¤ort has to be at least as good as

the expected value of the game associated with a potential unilateral deviation. To minimize

the probability of mistaken punishment, in equilibrium (4.2) must bind.

Expression (4.3) is the normalized discounted value of the punishment phase, where p is

the probability with which the relation remains in this state. A value p = 1 means perpetual

punishment, and p = 0 requires a single punishment period. Since aN is a Nash equilibrium,

punishment is trivially enforced.

Expression (4.3) can be solved for v to obtain

v = (� (1� p) v) (=1� �p) : (4.5)

Plugging v into (4.1) and (4.2) and making the latter hold with equality, we obtain the

10



enforceability condition

1=� �
�
FES� � FEE�0

�
= (�0 � �) = p 2 [0; 1] ; (4.6)

which we require in order to satisfy (4.4).

If there is no way to satisfy p � 1, no equilibrium other than the in�nite repetition of the
static Nash can be sustained, i.e., v = 0. In this case, we say that the set of SSE payo¤s

degenerates. On the other hand, p < 0 does not pose a problem, we can adjust the optimal

cuto¤ rule to keep p 2 [0; 1].
After replacing (4.5) and the enforceability condition (4.6) into (4.1), we can solve for v

to obtain the expression for the best SSE,

v = � � FEE (�0 � �) =
�
FES � FEE

�
: (4.7)

The following result characterizes the optimal cuto¤ b� (�) that maximizes (4.7).

Lemma 1 Under (3.1), the strategy that achieves the best SSE payo¤ v�; requires perpetual

punishment v = 0 the �rst time the process is observed below b� (�). Where b� (�) � bp (�)
is called the optimal threshold and solves

FES� � FEE�0 = (1� �) (�0 � �) =�; (4.8)

and

bp (�) = 3�0 + �2� ln (�=�0) =2�0; (4.9)

is an upper bound on the optimal decision rule.

The bang-bang solution in this case is trivial, it maximizes v while pushing v to its lowest

feasible value. This is because the ABM is a Gaussian process and the distribution of the

public signals is not convex.

However, not explicitly mentioned in order to keep the notation simple, the solution

b� (�) depends on all the parameters of the model, i.e., �0, �, r, � and �. Consequently,

since both FES and FEE depend on b� (�) ; they also depend on these parameters. The

equality (4.8) gives an implicit function to compute b� (�). It is simply the enforceability
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condition (4.6) evaluated at p = 1 (or equivalently v = 0; see (A1) in the Appendix). In

addition, if an optimal decision rule b� (�) exist it must take a value below bp (�).20

Existence and Uniqueness of the Optimal Decision Rule - The function p in (4.6) is

strictly convex in b with a unique minimum value at bp (�). When p (bp (�)) < 1, we have

two threshold values, say b1 and b2, that satisfy p (b1) = p (b2) = 1. In this case the cuto¤

value is not unique. Suppose b1 � b2; since @v=@b < 0; the associated SSE payo¤s are

respectively v1 � v2. Then, it is not admissible to choose a threshold other than the one

associated with the larger SSE payo¤, i.e., b1.

De�nition 2 We say that a threshold value b is admissible when it has associated the largest

payo¤ v. If in addition p (b) 2 [0; 1] we say that such threshold is also feasible.

Expression (4.9) establishes an upper bound and the existence of a b� (�) is in the interval

(�1; bp (�)). Admissibility is then a proxy to uniqueness. However, not all b < bp (�) are
feasible. In particular, if the minimum value p (bp (�)) is larger than one, we cannot enforce

the pro�le (E;E). The set of feasible and admissible thresholds is then [b� (�) ; bp (�)).21

Even though there may be a continuum of feasible thresholds, since @v=@b < 0 the optimal

choice is b� (�). The problem is that for large�; the set of feasible threshold values vanishes.

Denote this monitoring intensity by �. It corresponds to the cuto¤ monitoring frequency

below (above) which we can (cannot) enforce the pro�le (E;E).

Lemma 3 Let � and r be constant. There exist a nonempty interval
�
0;�

�
where coopera-

tion can be enforced. The value � is the � solution of (4.8) evaluated at (4.9).

Then, exist always some interval where cooperation can be enforced, even if that requires

monitoring at very high frequencies. Depending on the model�s parameters, � might take a

larger or a smaller value.

20 The two point set f0; v�g associated with (4.8) in Lemma 1 is self-generating, since the continuation
values v = �N = 0 and v� are elements of the set. Public correlation allows us to convexify the set into

an interval [0; v�].
21 We could have de�ned admissibility in a di¤erent but equivalent way. Notice that the function v is strictly

concave in b, taking a unique unrestricted maximum value for some bv 2 (�1; bp]. When at bv we have
v (bv) > 0, there are two thresholds that satisfy the optimality condition v (b1) = v (b2) = 0. The lower of

the two is the admissible one. The set of feasible and admissible threshold would be fb � bv : v (b) � 0g �
fb � bp : p (b) 2 [0; 1]g.
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FIG. 1: The optimal threshold as a function of � (�0 = 3 and � = 2) :

Note that b� (�) = bp (�) at � = �, while if � < � we can enforce (E;E) with bp (�)

but we can do better, if we choose b� (�) � bp (�). On the other hand, for values of � > �
we cannot enforce (E;E) ; because neither bp (�) nor b� (�) exist.

By Lemma 1, if a solution b � bp (�) to (4.8) exists, it is an optimal threshold. The

following result establishes some additional properties.

Lemma 4 For � 2
�
0;�

�
; a solution b� (�) 2 (�1; bp (�)) to (4.8) exists and is unique

and di¤erentiable.

The threshold b� (�) adjusts smoothly to changes in �. When � > � we cannot guar-

antee the existence of the function b� (�).

Numerical Illustration of the Optimal Threshold - We �nish the Section with an illustra-

tion, Figure 1, of most results presented.

The value � is the point (to the right) where each curve ends. It increases, either because

players become more patient or because the public signals are less noisy.
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In addition, the more impatient (or lower the noise) the players are, the tighter the

monitoring has to be in order to create incentives.

The strict convex shape of the threshold function for � 2
�
0;�

�
is caused by two e¤ects

that operate in the same direction. As the monitoring intensity increases, i.e., � becomes

small, the public signals become more informative and the expected immediate gains from

deviation become less important. For that reason, the optimal threshold approaches 2�0,

the value to which the output would fall in the perfect monitoring case when some player

deviates. Such a result is formally shown in Lemma 5 of Section V.22

As the monitoring intensity decreases, the sum of in�nitesimal variations of the process

becomes more likely to generate "bad signals". Wrong punishments in the equilibrium path

become more likely, because the public signal loses precision. The threshold relaxes, in

order to minimize such a possibility. At the same time, the expected immediate gains from

a deviation become more attractive. At a certain point, after reaching its minimum value,

the optimal threshold starts increasing at an increasing rate, creating the U-shape.

V. MONITORING FREQUENCY AND LIMIT EFFICIENCY

In this section, we focus on the limit case. We show that under Brownian uncertainty

monitoring intensity has a positive e¤ect on the payo¤s. Finally, we present the main result

of this paper, a �-limit folk theorem.

A. The Limit Value of the Optimal Threshold

We start by studying the limit value of the optimal decision rule b� (�). Figure 1 above

provides an illustration, and the following result formalizes it.

Lemma 5 When � # 0 the optimal threshold b� (�) converges to 2�0, i.e., the expected
signal associated with the deviation with less impact on the distribution of the public signals.

Because di¤erent action pro�les have associated di¤ering expected output levels, in the

limit, signals become perfectly informative about players� actions. We have asymptotic

22 It is also true that @b�=@� # �1 when � # 0 and @b�=@� " 1 when � " �.
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perfect monitoring. Under perfect monitoring, after a deviation, the associated deterministic

output would be observed at the level 2�0: That is exactly the point to where it converges

b� (�). The result is more general; b� (�) must converge to the expected signal associated

with the deviation with less impact on the distribution of the public signals.

As mentioned, b� (�) cannot be obtained in a close form. For that reason, it is nontrivial

to verify the rate at which b� (�) converges to 2�0. Suppose that the optimal threshold

function has the following structure: b� (�) = 2�0 ���k (:) with � > 0, where k (:) is some

function of the parameters of the model. If � � 1=2; e¢ cient results obtain in the limit, but
enforceability holds with slack. On the other hand, if � < 1=2; the enforceability condition

(4.8) fails. These experiments suggest that b� (�) " 2�0 at the rate �0:49(9). We do not

develop this idea further, because of its complexity and low relevance for the present paper.

Nonetheless, we point this out.

B. Monotonicity of the Best SSE Payo¤

A relevant question, is how does the value of v� change with �? The following result

establishes a monotonic relation between the best SSE payo¤ and monitoring intensity.

Proposition 6 In the interval
�
0;�

�
, the best SSE payo¤ v� increases monotonically with

the monitoring intensity, i.e., with a decrease in �.

More monitoring improves the payo¤s and has a positive e¤ect on the incentives. Figure

2 illustrates the strict monotonic improvement in the best SSE payo¤s towards e¢ ciency.

In another context, Kandori (1992) showed a similar result, where an exogenous improve-

ment in the precision of the public signals expanded the set of PPE payo¤s. A monotonic

relation between monitoring intensity and payo¤s can also be found in the Abreu et al. (1991)

"bad news" model and in the Fudenberg and Levine (2007) volatility sensitive model. As in

the present paper, in these models the information quality improves with a decrease in �:

When r # 0, i.e., the players become arbitrarily patient, the value v� " �. The best SSE
payo¤ is fully e¢ cient. In addition, we have b� (�) " 1. Such a result is well known and
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FIG. 2: The best SSE payo¤ as a function of �.

leads to a folk theorem in the limit as r # 0.23 In fact, whatever e¢ ciency is achieved by
letting r # 0 can be achieved all the more by letting � # 0: The reason is that a decrease in �
has associated an informational gain that is not present when r decreases.24 Consequently,

we have the following result.

Proposition 7 The best SSE payo¤ v� converges to � faster with � than with r:

C. The �-Limit Folk Theorem

In Lemmas 1, 3, 4 and 5, we developed a great knowledge about the threshold b� (�).

A threshold larger than b� (�), but below bp (�), still satis�es the enforceability conditions

(4.8) but with slack. Limit e¢ ciency does not require an optimal value for b; as in the limit,

23 It happens because the distribution of the public signals is Gaussian and has unbounded support. See

Mirrlees (1974).
24 I am thankful to an anonymous referee who has pointed out to me this reasoning.
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the same result holds with a threshold that is feasible and admissible according to De�nition

2. Consequently, we have FEE # 0 and FES " 1:25

For the optimal threshold b� (�) associated with an asymmetric path that starts with the

pro�le (E; S) ; similar reasoning applies.26 Notice that FES and GES do not take the same

value, because they have associated di¤erent decision rules, b� (�) and b� (�) ; respectively.

Following Lemma 5, the threshold b� (�) must converge to 0, the joint output associated

with a deviation from the e¤ort providing player. Consequently, according to De�nition 2,

any choice b 2 [b� (�) ; bp (�)) is feasible and admissible. In this case, we have GES # 0 and
GSS " 1.27

Then a �-limit folk theorem must holds for the partnership game.

Since the claim does not rely on any feature of the prisoners�dilemma, but on the infor-

mativeness of the public signals, a �-limit folk theorem must generalize to games with more

players and richer action spaces. Let V (�; r), denote the set of PPE payo¤s for a given

discount rate r and a monitoring intensity �. Let V + be the set that contains every feasible

and individual rational payo¤, with nonempty interior. Assume that every distinct action

pro�le is pairwise identi�ability, i.e., has associated a di¤erent probability distribution.

Since signals are unbounded, we have limr#0 V (�; r) " V +; see Mirrlees (1974). Con-
sequently, and because a decrease in � has the same e¤ect has a decrease in r plus a

informational gain, see Proposition 7, we must have lim�#0 V (�; r) " V +:

Proposition 8 (�-limit folk theorem) Providing that the r and � are bounded, a folk

theorem obtains when � # 0.

In the limit, the public signals become perfectly informative about players�actions.28 In

addition, the in�nitesimal expected gains from a deviation become irrelevant with respect

to the potential punishments.

25 Enforceability holds with slack, but we are still able to obtain perfectly informative signals when � # 0.
26 Notice that, in general, an asymmetric path does not need to start with the pro�le (E;S). However, the

optimal moment for a deviation is when the pro�le (E;S) is due.
27 In order for an e¢ cient result to obtain, the probabilities FES and GSS need not converge to one. A limit

e¢ cient result is possible with FEE and GES converging to zero, wile FES and GSS converging to some

value larger than zero, or even to zero but at a lower rate. Fudenberg and Levine (2007) discussed the

necessity of similar conditions for the existence of an e¢ cient limit equilibrium.
28 The result holds true for other well-known Gaussian processes, as e.g., the geometric Brownian motion or

the Ornstein-Uhlenbeck process.
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The increase informativeness of the Brownian signals for high monitoring intensities is the

key aspect. It is due to the measurable distance between the expected joint output values

associated with each e¤ort pro�le. Such a distance in a process of in�nitesimal variation is

critical. Relevant uncertainty arises only if players cannot observe the public process during

some measurable time interval. Then the accumulated sum of in�nitesimal normal events

may be misleading, which is more likely, the larger the time interval is during which the

process was left unattended.

In our setting, more monitoring cannot harm the monitor�s side. As a result we de-

veloped a theory where imperfect public monitoring, in the limit, is equivalent to perfect

monitoring.29

VI. POSSIBLE EXTENSIONS: SOME COMMENTS

In this section, we brie�y discuss the case where players have a continuum of available

actions.30

A. A Game with a Continuous Action Space

When the action space is discrete, in the limit, deviations from the equilibrium path are

similar to jumps in the process. Since Brownian paths are continuous but not smooth, such

defective behavior is almost surely detected. In this section, we brie�y discuss the repeated

Cournot game. This game is of interest since it has a continuum of actions, and deviations

can be of in�nitesimal magnitude.

In brief, the stage game expected payo¤s (ex-ante) are given by �i (q1; q2) = qiP (Q). Let

P (Q) = 1�Q be the inverse demand function andQ = q1+q2 the aggregate supply. Without
loss of generality, we assume that production costs are zero and no capacity constraints, i.e.,

29 As discussed in the Introduction, these results are in line with the Alchian and Demsetz (1972) theory that

defended the disciplinary e¤ect of monitoring and the Dickinson and Villeval (2008) empirical �ndings

that monitoring has a positive e¤ect on the individuals�e¤ort. See also the references therein.
30 It�s also interesting to think about the relation between the limit of a sequence of discrete time games and

the continuous time version. A number of technical issues arise when trying to de�ne a continuous time

version of the model presented in this paper. See Simon and Stinchcombe (1989), Bergin and MacLeod

(1993), and Fudenberg and Levine (1986).
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FIG. 3: The best SSE payo¤ in the Cournot game (� = r = 0:1).

qi 2 [0;1). The two �rms decide their supply quantities simultaneously and independently
at moments in time t = 0;�; 2�:::, and observe the market price yt+� (the state of the public

process (3.1)) at times t = �; 2�:::.31 Note that yt = P (Qt) is the expected end-of-period

market price associated with the individual private supply decisions chosen by each �rm in

the beginning of the period t.

Our goal is to enforce the SSE payo¤. In a Cournot duopoly with imperfect public

information, it is never optimal to produce exactly the monopoly quantities qMi = 1=4, but

rather, an amount slightly larger (except in the limit). Denote this quantity as q�i . To �nd

it, we apply the Abreu et al. (1986, 1990) bang-bang result.32

Figure 3 shows the value of the best SSE payo¤ for varying �. In particular, when �

becomes small, the best SSE payo¤ converges to the full e¢ cient value 1=8, i.e., the perfect

monitoring payo¤. The numerical approximation suggest that the e¢ cient limit result of

31 The observed state of an ABM price process may take negative values. There is no loss of generality when

allowing for such possibility. A geometric Brownian motion process solves the problem.
32 I thank Andrzej Skrzypacz for providing me with the material needed to compute and understand the

mechanics of the best SSE in the Cournot game.
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Propositions 8 holds with a continuum of actions. A monotonic improvement in the payo¤s

is clear when � becomes small, in line with Proposition 6.

It is interesting to contrast the evolution of the optimal threshold b� (�) with the expected

signal of the process P (Q�). We found that as � gets small, the threshold value becomes

tighter. Converging in the limit, to the expected signal associated with the most collusive

equilibrium P
�
QM

�
= 1=2. The observation is an extension of Lemma 5 for games with

a continuous action space, where the deviation with less impact on the distribution of the

public signals is in�nitesimal, for that reason b� (�)! P
�
QM

�
.

VII. FINAL COMMENTS

In economics it is hard to think of situations where information is continuously available.

The price of very liquid stocks or certain commodities are available at high frequencies, but

not continuously. In spite of that fact, if such a possibility were available, this paper shows

that the most e¢ cient outcomes might be achieved by continuously monitoring the state of

the process.

In practice, we observe agents monitoring at discrete moments in time either because

it unfeasible or it does not compensate the potential bene�ts. Quoting Alchian and Dem-

setz (1972, p. 780), "If detecting such behavior were costless, neither party would have an

incentive to shirk, because neither could impose the cost of his shirking on the other.".

On many occasions, monitoring events might be random, i.e., an agent does not control

the timing at which the supervisor accedes to the available information. Osório (2008)

and Fudenberg and Olszewski (2011) studied problems of this kind. In addition, when a

partner continuously monitors the other, she cannot devote her time to other activities.

Such requires specialization of the monitoring activities.

We stress that while players� impatience is typically exogenous, monitoring frequency

has an enormous appeal to be endogenously determined, opening new research avenues and

bringing new tools to better understand the complexity of real economic problems.

20



REFERENCES

[1] Abreu, D., P. Milgrom and D. Pearce (1991). �Information and Timing in Repeated Partner-

ships.�Econometrica, 59, 1713-1733.

[2] Abreu, D., D. Pearce and E. Stacchetti (1986). "Optimal Cartel Equilibria with Imperfect

Monitoring," Journal of Economic Theory, 39, 251-269.

[3] Abreu, D., D. Pearce and E. Stacchetti (1990). �Toward a Theory of Discounted Repeated

Games with Imperfect Monitoring.�Econometrica, 58, 1041-1063.

[4] Alchian, A. and H. Demsetz (1972). "Production, Information Costs, and Economic Organi-

zation." American Economic Review, 62, 777-795.

[5] Bergin, J. and W. B. MacLeod (1993). "Continuous Time Repeated Games." International

Economic Review, 34, 21-37.

[6] Dickinson, D. and M.-C. Villeval (2008). "Does monitoring decrease work e¤ort? The com-

plementarity between agency and crowding-out theories," Games and Economic Behavior, 63,

56�76.

[7] Faingold, E., Y. Sannikov (2007). "Reputation E¤ects and Equilibrium Degeneracy in

Continuous-Time Games," forthcoming in Econometrica.

[8] Frey, B., (1993). "Does monitoring increase work e¤ort? The rivalry between trust and loy-

alty," Economic Inquiry 31, 663�670.

[9] Fudenberg, D. and D. Levine (1986). "Limit Games and Limit Equilibria." Journal of Eco-

nomic Theory, 38, 261-279.

[10] Fudenberg, D. and D. Levine (1994). �E¢ ciency and Observability with Long-Run and Short-

Run Players.�Journal of Economic Theory, 62, 103-135.

[11] Fudenberg, D. and D. Levine (2007). �Continuous Time Models of Repeated Games with

Imperfect Public Monitoring.�Review of Economic Dynamics, 10, 173-192.

[12] Fudenberg, D. and D. Levine (2009). �Repeated Games with Frequent Signals.� Quarterly

Journal of Economics, 124, 233-265.

[13] Fudenberg, D., D. Levine and E. Maskin (1994). �The Folk Theorem with Imperfect Public

Information.�Econometrica, 62, 997-1040.

[14] Fudenberg, D. and E. Maskin (1986). "The Folk Theorem in Repeated Games with Discounting

21



or with Incomplete Information," Econometrica, 54, 533-554.

[15] Fudenberg, D. and J. Tirole (1991). Game Theory, MIT Press, Cambridge, MA.

[16] Fudenberg, D. and W. Olszewski (2011). "Repeated Games with Asynchronous Monitoring of

an Imperfect Signal," Games and Economic Behavior, 72, 86-99-

[17] Green, E. and R. Porter (1984). �Noncooperative Collusion under Imperfect Price Informa-

tion.�Econometrica, 52, 87-100.

[18] Kandori, M. (1992). �The Use of Information in Repeated Games with Imperfect Monitoring.�

Review of Economic Studies, 59, 581�593.

[19] Mailath, G. and L. Samuelson (2006). Repeated Games and Reputations: Long-run Relation-

ships. Oxford University Press, New York.

[20] Mirrlees, J. A. (1974). �Notes on welfare economics, information and uncertainty,� in M.

Balch, D. McFadden and S.-Y. Wu, editors, Essays on Economic Behavior under Uncertainty,

North-Holland, Amsterdam.

[21] Osório, A. M. (2008). "Repeated Games at Random Moments in Time," mimeo.

[22] Porter, R. (1983). "Optimal Cartel Trigger Price Strategies." Journal of Economic Theory,

29, 313-338.

[23] Prakasa Rao, B.L.S. (1999). Statistical Inference for Di¤usion Type Processes. Arnold Pub-

lishers and Oxford University Press.

[24] Radner, R., R. Myerson, and E. Maskin (1996). "An Example of a Repeated Partnership Game

with Discounting and with Uniformly Ine¢ cient Equilibria," Review of Economic Studies, 53,

59-69.

[25] Sandberg, I. W. (1981). "Global Implicit Function Theorems," IEEE Transactions on Circuits

and Systems, 28, 145�149.

[26] Sannikov, Y. (2007). �Games with Imperfectly Observable Actions in Continuous Time,�

Econometrica, 75, 1285�1329.

[27] Sannikov, Y. and A. Skrzypacz (2007). �Impossibility of Collusion under Imperfect Monitoring

with Flexible Production,�American Economic Review, 97, 1794-1823.

[28] Sannikov, Y. and A. Skrzypacz (2010). �The Role of Information in Repeated Games with

Frequent Actions,�Econometrica, 78, 847-882.

[29] Simon, L. and M. Stinchcombe (1989). �Extensive Form Games in Continuous Time: Pure

Strategies,�Econometrica 57, 1171-1214.

22



APPENDIX A: PROOFS OF THE LEMMAS AND PROPOSITIONS.

Proof of Lemma 1. After solving the system composed by (4.1), (4.2), (4.3) and (4.4), we

obtain p; v, and v, given respectively by (4.6), (4.7), and

v = v � (1� �) (�0 � �) =
�
�
�
FES � FEE

��
; (A1)

which is obtained after replacing (4.6) and (4.7) into (4.5). Expression (4.7) and (A1) are

the upper and lower bounds on the set of SSE payo¤s, respectively. Our goal is to �nd

the optimal cuto¤ b, which maximizes v subject of p 2 [0; 1]. We start by showing that v
increases monotonically with a decrease in b. Di¤erentiate v with respect to b; we obtain

@v=@b = � (�0 � �)
�
FESFEEb � FEEFESb

�
=
�
FES � FEE

�2
;

which is always negative, since for the Gaussian distribution, FESFEEb � FEEFESb > 0

for all b, where, we denote the partial derivatives of FEE and FES with respect to b as

FEEb � @FEE=@b and FESb � @FES=@b; respectively. Consequently, b must be as small as

possible, but constrained to satisfy (4.6). For that we need to know how b changes with p;

in particular, we are interested in �nding out under which conditions @b=@p � 0. Implicitly
di¤erentiating (4.6), we obtain

@b=@p = � (�0 � �) =
�
FESb � � FEEb �0

�
:

This derivative is negative if

FEEb =FESb = exp
��
4b�0 � 12�02

�
=2��2

�
< �=�0: (A2)

The RHS is a number in the interval (1=2; 1). Recall that we assume 2� > �0. The LHS

is continuous and monotonically increasing in b. When b = 3�0, it takes the value 1, which

does not satisfy the inequality. When b ! �1, the LHS goes to 0, which satis�es the
inequality. Then, by continuity and monotonicity of the LHS in b, there must be a value b

below 3�0, at which the inequality (A2) holds. This value is given by

bp (�) = 3�0 + �2� ln (�=�0) =2�0;

and it is an asymptote of @b=@p. Note that bp (�) is also the unique value that minimizes the

LHS of (4.6) with respect to b. To see it, when (A2) holds with equality, we have @p=@b = 0.

The second order condition is

@2p=@b2 = �
�
FESbb � � FEEbb �0

�
= (�0 � �) ; (A3)
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where, the second derivatives of FEE and FES with respect to b are denoted respectively as

FEEbb � @2FEE=@b2 and FESbb � @2FES=@b2. The derivative in (A3) is strictly positive. To see
it, notice that FEEbb (b;�) = � (b� 4�0)FEEb =��2 and FESbb (b;�) = � (b� 2�0)FESb =��2.

Replace these expressions in (A3) and use the �rst order condition (A2) holding with equality,

to obtain

@2p=@b2 = 2�02FEEb =
�
��2 (�0 � �)

�
> 0:

So, bp (�) is the value that minimizes (4.6), but note that this is an unconstrained minimum.

For that reason, p might take a negative value at bp (�), or even be larger than 1. In either

case, the condition (4.6) is not satis�ed since p 2 [0; 1]. While, in the latter case we cannot
enforce the pro�le (E;E), in the former case we can decrease b below bp (�) ; until p be at

least equal to 0, i.e., feasible, because @b=@p < 0 for b < bp (�). But we can do even better

in this direction, because the value of b that maximizes v and satis�es (4.6) can be pushed

even lower, until p = 1. Such a value of b < bp (�) is the optimal threshold b� (�) and by

(4.5) has associated the optimal punishment v = 0, i.e., perpetual punishment.

Proof of the Lemma 3. From Lemma 1 we know that b� (�) = fb : v = 0g = fb : p = 1g
and that b� (�) � bp (�) = argminb p. When minb p � 1, we can enforce (E;E) with bp (�) ;
but we can do better in payo¤ terms if we choose b� (�) � bp (�). However, there is a values
of � for which minb p > 1. Consequently, we cannot enforce (E;E) - neither with bp (�)

nor with b� (�) - because it does not exist. Similarly, we can de�ne a new unconstrained

threshold bv (�) = argmaxb v. In this case, when maxb v � 0, we can enforce (E;E) with

bv (�) ; but we can do better in payo¤ terms if we choose b� (�) � bv (�). Again there must
be a monitoring frequency for which maxb v < 0. Since the equilibrium condition is v = 0;

which is equivalent to p = 1, there must be a common monitoring frequency � = � at

which minb p = 1 and maxb v = 0. Consequently, for � < �, we must have both minb p < 1

and maxb v > 0, while for � > �, we have both minb p > 1 and maxb v < 0, and b� (�) does

not exist.

We now search for the value � = �. In the proof of Lemma 1 we found that p is strictly

convex in b. In addition minb p gives the �rst order condition,

FEEb =FESb = �=�0;

where bp (�) solve the equality. It can be shown that v is strictly concave with a unique

maximum - to simplify let�s assume that it is. After some arrangements, the �rst order
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condition of maxb v can be written as

�
�
FESFEEb � FEEFESb

�
= (1� �)

�
FESb � FEEb

�
;

where bv (�) solves the equality. Because at � we have bp (�) = bv (�), the two �rst order

conditions must be satis�ed at the same value. Manipulating both equalities we obtain

FES (bp (�))� � FEE (bp (�))�0 = (1� �) (�0 � �) =�;

which is (4.8) evaluated at b = bp (�), where bp (�) is given by (4.9). The value of � that

solves this equality is �.

The value � has the following asymptotic properties when � or r goes to 1 we have

� ! 0, while if � ! 0 we obtain � ! ln (�0= (�0 � �)) =r, and if r ! 0 we get � ! 1.
Consequently, providing that � and r are bounded, the interval

�
0;�

�
is always guaranteed

to be nonempty, i.e., � > 0.

Proof of Lemma 4. We extend the local implicit function theorem to hold in the convex

interval
�
0;�

�
. Lemma 3 tells us how to �nd the value �. Moreover, for bounded � and r,

a value of � > 0 always exists. Rewrite the equality (4.8) in the following way and denote

it as I (b;�), i.e.,

I (b;�) � FES� � FEE�0 � (1� �) (�0 � �) =�: (A4)

Since FEE, FES and � are continuous and di¤erentiable with respect to � 2
�
0;�

�
and

b 2 (�1; bp (�)], so thus the mapping I (b;�) is continuous and di¤erentiable.
From, Lemma 1 and Lemma 3, for any �0 2

�
0;�

�
there is exactly one b0 2 (�1; bp (�)]

such that I (b0;�0) = 0. If �0 > � there is no such value of b0, and if b 2 R, b0 is not
unique, because p given in (4.6) is strictly convex with a minimum at bp (�). Consequently,

point (i) of Sandberg�s (1981, p. 146) global implicit function theorem is satis�ed.

Additionally, we need to verify that I (b;�) is locally solvable in the neighborhood of

the point (b0;�0) - in which case, by continuity of b (�) ; Sandberg�s theorem holds for

all � 2
�
0;�

�
. The condition for local solvability is @I (b0;�0) =@b 6= 0, implying that

I (b0;�0) = 0. The di¤erentiability condition is written as

FESb � � FEEb �0 6= 0;

where, the partial derivatives of FEE and FES with respect to b are denoted respectively

as FEEb � @FEE=@b and FESb � @FES=@b. In the proof of Lemma 1 we have seen that this
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equation is satis�ed for all b0 6= bp (�), with bp (�) given by (4.9). However, to improve on the
value of the best SSE payo¤we are interested in b0 � bp (�), implying that @I (b0;�0) =@b �
0. Note that b0 = bp (�) (and consequently, @I (b0;�0) =@b = 0) only at � = �. But for all

�0 2
�
0;�

�
, we always have b < bp (�) (and consequently, @I (b0;�0) =@b > 0). Then for

each point inside the interval
�
0;�

�
there is a unique, continuous and di¤erentiable function

b (�) on an open ball around (b0;�0) that locally satis�es I (b;�) = 0.

Now, apply Sandberg�s implicit function theorem: by continuity of b (�), for each S 2
A there is a T 2 B, where A and B are the families of compact subsets of

�
0;�

�
and

(�1; bp (�)) ; respectively. Then b (S) is also compact and belongs to T . Implying that
there is a unique, continuous and di¤erentiable function b� (�) ; such that I (b� (�) ;�) = 0

for all � 2
�
0;�

�
.

Proof of Lemma 5. In the proof of Lemma 1, we found that @v=@b < 0, i.e., the lower

the value b is, the larger is the payo¤ v. Moreover, Proposition 6 states that v� improves

monotonically as � gets small. Consequently, the largest value v� is reached in the limit

� # 0. Now, we want to �nd the lowest feasible limit value of b that maximizes v and
satis�es (4.8). We rewrite (4.8) here, i.e.,

FES� � FEE�0 = (1� �) (�0 � �) =�:

The RHS goes to 0 with�, so in the limit the LHS must also go to 0 as well. Since, the upper

bound bp (�) ! 3�0 when � ! 0, we don�t need to consider values of b > 3�0. Let�s start

by considering the case where b ! x 2 (2�0; 3�0]. Then, we have FES ! 1 and FEE ! 0,

implying that the LHS goes to
�
� � �N

�
> 0. The enforceability condition (4.8) is satis�ed

but with slack. So the limit value of b� (�) must be lower.

Now, suppose that b ! x 2 (�1; 2�0), in this case we have FES ! 0 and FEE ! 0,

both the LHS and the RHS goes to 0. We to check whether the LHS and RHS go to 0 at

the same rate. When we di¤erentiate both sides with respect to � we obtain

� b� 2�0

2�3=2�
p
2�
e�

(b�2�0)2

2��2 � +
b� 4�0

2�3=2�
p
2�
e�

(b�4�0)2

2��2 �0 = r (�0 � �) =�: (A5)

The limit on LHS is smaller than the limit on the RHS, i.e., 0 < r (�0 � �). Meaning that
the LHS of (4.8) is smaller than the RHS, i.e., we lose enforceability. So, when � ! 0; we

cannot have b ! x 2 (�1; 2�0). Consequently, we must have lim�!0 b
� (�) ! 2�0. The

order of convergence must be such that (4.8) and (A5) hold with equality.
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Proof of Proposition 6. Start by de�ning v� (�) =
�
maxb�bp(�) v (b;�) : I (b;�) = 0

	
and write the Lagrangian L (b;�) = v (b;�)��I (b;�). By Lemma (4) the solution b� (�) is
a continuous and di¤erentiable function of�; assume that the same holds for the Lagrangian

multiplier �. Then by the envelope theorem for constrained maximization, we can write

@v� (�) =@� = @L (b� (�) ;�) =@�. Our goal is to show that

@v� (�) =@� = @v (b� (�) ;�) =@�� �@I (b� (�) ;�) =@� < 0; (A6)

where � is obtained from solving @L (b;�) =@b = 0. Expression (A6) has the following three
components:

@v (b� (�) ;�) =@� = �
�
FESFEE� � FEEFES�

�
(�0 � �) =

�
FES � FEE

�2
;

@I (b� (�) ;�) =@� = FES� � � FEE� �0 � r (�0 � �) =�;

and

� = �
�
FESFEEb � FEEFESb

�
(�0 � �) =

��
FES � FEE

�2 �
FESb � � FEEb �0

��
; (A7)

where FEE� = @FEE=@�, FES� = @FES=@�, Fb = @FEE=@b and FESb = @FES=@b, are

evaluated at b = b� (�). Replace these expressions into (A6), after some algebra we get

�r (�0 � �)
�
FESFEEb � FEEFESb

�
=� <

�
FES� � FEE�0

� �
FESb FEE� � FEEb FES�

�
:

Apply (4.8), so that we can simplify further, to obtain

�r
�
FESFEEb � FEEFESb

�
< (1� �)

�
FESb FEE� � FEEb FES�

�
:

Note that FEE� = � (b� (�)� 4�0)FEEb =2� and FES� = � (b� (�)� 2�0)FESb =2�; then after

replacing, we obtain

�r
�
FESFEEb � FEEFESb

�
< (1� �)FEEb FESb �0=�:

The LHS is always negative, while the RHS is always positive since for the Gaussian distri-

bution FESFEEb � FEEFESb > 0 for any � > 0.

Proof of Proposition 7. Following the same arguments as in the Proof of Proposition 6.

We can de�ne v� (r) =
�
maxb�bp(r) v (b; r) : I (b; r) = 0

	
; and write the Lagrangian L (b; r) =

v (b; r)��I (b; r). Similarly to b� (�) ; it can be shown that a solution b� (r) exists, and it is
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a continuous and di¤erentiable function of r. Then by the envelope theorem for constrained

maximization, and since � < 0; we can show that

@v� (r) =@r = ��(�0 � �) =� < 0;

where @v (b� (r) ; r) =@r = 0; @I (b� (r) ; r) =@r = ��(�0 � �) =� and � is given by (A7). In
order to infer the existence of an informational e¤ect, we set r = � 2

�
0;�

�
: Consequently,

if

@v� (r) =@rjr=� > @v
� (�) =@�jr=�;

is satis�ed, a decrease on � has associated an extra gain associated with better inference.

The previous inequality is then written as

�
�

�
(�0 � �) > �F

ESFEE� � FEEFES�
(FES � FEE)2

(�0 � �)� �
�
FES� � � FEE� �0 � �

�
(�0 � �)

�
:

After some algebraic manipulations we obtain

FESb � � FEEb �0 > FES� � � FEE� �0:

Since FEE� = � (b� (�)� 4�0)FEEb =2� and FES� = � (b� (�)� 2�0)FESb =2�, and after mak-

ing some rearrangements we obtain

FESb � (2� + b� (�)� 2�0) =2� > FEEb �0 (2� + b� (�)� 4�0) =2�:

The term inside brackets in the LHS is clearly larger than the term inside brackets in the

RHS. By (A2), the remaining terms reinforce the inequality.

Proof of Proposition 8. Let Ai be the action set of player i and y : Ai � A�i �! Rd

an arbitrary function satisfying a suitable pairwise identi�ability condition. Suppose the

public signal is distributed according to a d-dimensional multivariate Gaussian distribution

with mean y (ai; a�i) and variance-covariance matrix given by Id�d�2�; where Id�d is the

d-dimensional identity matrix. Let the stage game payo¤s satisfy the full dimensionality

condition, i.e., V + has nonempty interior.

Following Mirrlees (1974), since the distribution of the public signals is Gaussian, it has

unbounded support. Then, we must have limr#0 V (�; r) " V +: Now, we �x r and �: Since
by Proposition 7, information improves with a decrease in �; we must have

lim
r#0
V (�; r) � lim

�#0
V (�; r) :

Whatever e¢ ciency is achieved by letting r # 0 can be achieved all the more by letting� # 0:
Consequently, we have lim�#0 V (�; r) " V +:
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