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Abstract

This paper study repeated games where the time repetitions of the stage game are not known

or controlled by the players. We call this feature random monitoring. Kawamori�s (2004) shows

that perfect random monitoring is always better than the canonical case. Surprisingly, when the

monitoring is public, the result is less clear-cut and does not generalize in a straightforward way.

Unless the public signals are su¢ ciently informative about player�s actions and/or players are

patient enough. In addition to a discount e¤ect, that tends to consistently favor the provision of

incentives, we found an information e¤ect, associated with the time uncertainty on the distribution

of public signals. Whether payo¤ improvements are or not possible, depends crucially on the

direction and strength of these e¤ects.
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I. INTRODUCTION

This paper studies repeated games where the repetitions of the stage game are not known

or controlled by the players. Many economic situations with repeated interaction share this

feature. We call it random monitoring.

The Organization of the Petroleum Exporting Countries (OPEC), it is a well known

cartel with the goal to safeguard the members�interests, i.e., in�uence the oil market price

in their favor. OPEC�s adjustments in the oil supply are typically not programmed ex-ante;

the market conditions determine the timing when a strategic change is due. While in periods

of stability the OPEC interventions are less frequent, in periods of instability adjustments

occur more often. In theoretical terms, it is similar to a n-�rms Cournot problem, where

the time repetitions of the stage game (oil supply adjustments) are not predetermined.1

Allowing for this possibility, from an e¢ ciency perspective, we ask; what are the e¤ects

on players�payo¤s compared to the canonical setup where the repetitions are deterministic

and know in advance? This paper answer these questions in the Abreu, Milgrom and Pearce

(1991) public monitoring model.2

The perfect monitoring case with time uncertainty was studied by Kawamori�s (2004),

who shows that the set of strongly symmetric equilibrium payo¤s is larger than in the deter-

ministic case.3 Even though their true discount rate remains unchanged, players�decisions

are based on a "smaller discount rate", which we call the Kawamori�s e¤ect.

Surprisingly, when the monitoring is public, the result is less clear cut and does not gen-

eralize in a straightforward way. We identify a discount e¤ect that aggregates the Kawamori

e¤ect and a cross e¤ects. The latter captures the time correlation between discounting and

the distribution of public signals. In addition to the discount e¤ect, that consistently favors

1 Explicit communication among the agents, as in the OPEC cartel example, or the observation of common

events/signals, as in the present paper, facilitates the synchronization of actions.
2 When monitoring is public, players� commonly observe noisy signals about others actions. Green and

Porter (1984), Porter (1983) and Radner, Myerson and Maskin (1986) are classical examples with this

information structure. See Fudenberg and Tirole (1991) and Mailath and Samuelson (2006) for complete

surveys in repeated games.
3 We call random monitoring, when the stage game is repeated at unknown and not equally spaced moments

in time. When the stage game is repeated at known and equally spaced moments in time, we call it

deterministic monitoring. These concepts should not be confused with perfect and public monitoring.
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the provision of incentives, we found an information e¤ect, associated with the time uncer-

tainty on the distribution of public signals. Such e¤ect, requires more demanding conditions

on the informativeness of the public signals (a larger ex-ante statistical separation between

cooperation and defection) in order to have a positive impact on the provision of incentives.

Whether payo¤ improvements are or not possible, depends crucially on the direction and

strength of these e¤ects. Random public monitoring is by that fact limited and does not im-

prove payo¤s in all circumstances. These e¤ects also alter the quality of inference extracted

from the public signals.

We identify two ways in which random monitoring improves over deterministic monitor-

ing. One is by enlarging the spectrum of frequencies of play that sustain cooperation, and

the other is by improving the inference about players�actions when cooperation is enforced

by both monitoring technologies. Moreover, we establish directional conditions under which

these e¢ ciency gains on the value of the best strong symmetric equilibrium (SSE henceforth)

are possible.

Related Literature - The study of random monitoring would not be possible without the

recent advances in the theory of frequent monitoring. After the seminal work of Abreu,

Milgrom and Pearce (1991), renewed interest in frequent monitoring has re-emerged, in

particular due to Sannikov (2007).4

Abreu, Milgrom and Pearce (1991) show that the value of the best strongly symmetric

equilibrium degenerates at the limit when the realizations of the public process represent

good news. The lack of observed signals becomes in�nitely likely at the limit (when � takes

arbitrary small values). Fudenberg and Levine (2007, 2009) and Sannikov and Skrzypacz

(2007) (see also Sannikov and Skrzypacz (2009)) present similar limit results when the public

signal is Brownian rather than Poisson.

Not all results obtained point to a degeneracy. When the realizations of the public process

are interpreted as bad news, Abreu, Milgrom and Pearce (1991) show that equilibrium

payo¤s above the static Nash, but not fully e¢ cient, can be sustained in the limit.5

4 In the same spirit, studying games in continuous time see Faingold and Sannikov (2007) and Faingold

(2006).
5 Under Brownian signals, Fudenberg and Levine (2007) and Osório (2008) show that full e¢ ciency can

emerge at the limit. The latter assumes that players control the drift of the process, and di¤erent action

pro�les have associated di¤erent initial conditions. The former assumes that a deviation increases the
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Closer to the present paper is Fudenberg and Olszewski (2009). They study a repeated

game with stochastic asynchronous monitoring. They show that at the limit, synchro-

nous and asynchronous monitoring technologies are equivalent if the signals are exponential.

However, when the signals are Brownian, in some cases, the limit value of the asynchronous

games might be lower.

A common feature of these papers is the focus on the limit case. On the contrary, in

the present paper, monitoring is synchronous and stochastic. In addition, we do not restrict

to a particular monitoring intensity, rather the entire spectrum of frequencies of play were

payo¤s above the stage game Nash are possible. Concerning this aspect, this paper is the

�rst to study the implications of time uncertainty with public monitoring and for general

frequencies of play.

The rest of the paper is organized as follows. Section II describes random monitoring

in repeated games. Section III characterizes the best SSE payo¤. Section IV de�nes and

veri�es the existence of payo¤ improvements. Section V de�nes and decomposes the e¤ects

of random monitoring. Section VI discusses the intuition. All proofs are relegated to an

appendix.

II. THE MODEL AND THE EXPECTED DISCOUNT FACTOR

We study the e¤ects of random monitoring in the Abreu, Milgrom and Pearce�s (1991)

model. The in�nitely repeated prisoners�dilemma payo¤s are shown in Table I.6

We assume that �0 > � > 0, i.e., defection is a dominant strategy for both players and

that (C;C) returns the best symmetric payo¤.

Let a (respectively, a0) denotes the cooperative (respectively, defective) pro�le of actions.

At moments in time t0; t1; t2; :::, players�simultaneously take their actions. In the following

period, an imperfect signal about these actions is commonly observed. Signals follow an

exponential distribution with a rate parameter that depends on the action pro�le.

Bad (respectively, good) news model - A bad signal is the (respectively, no) occurrence of

volatility of the process. Fudenberg and Levine (2007), also show that if a deviation has the inverse e¤ect

on the noise parameter it is possible to obtain payo¤s above the static Nash, but not fully e¢ cient.
6 We restrict our analysis to the simplest setting. We do this in order to concentrate on random monitoring

e¤ects, without extra complexities.
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C D

C �; � � (�0 � �) ; �0

D �0;� (�0 � �) 0; 0

TABLE I: The Prisoners�Dilemma Stage Game Payo¤s.

an event in a given time interval (0;�) : If players cooperate, bad signals arrive at rate �:

Otherwise, the arrival intensity increases (respectively, decreases) to � > � > 0 (respectively,

� < � with � > 0).

A. Deterministic Public Monitoring

When monitoring is deterministic, as it is usually assumed, the time interval is predeter-

mined, i.e., tk � tk�1 = � with k � 1:
The common discount factor is exponential,7 i.e., �� � e�r�; where r 2 (0;1) denotes

the discount rate.

Punishment Probabilities - In the canonical setup of length�; the probability of observing

a bad signal, when the pro�le a = (C;C) is chosen, is given by

p (�) �
Z
[0;�)

f (yja;�) dy =

8<: 1� e���;
e���;

(2.1)

for the bad and good news models, respectively. These are mistaken punishment probabili-

ties.

In case of a deviation, the detection probabilities in the bad and good news models, are

respectively,

q (�) �
Z
[�;1)

f (yja0;�) dy =

8<: 1� e���;
e���;

(2.2)

where f (yja; x) = �e��x and f (yja0; x) = �e��x are the conditional exponential densities.

7 We can consider other discounting functions. The qualitative features of the model remain, providing that

discounting is convex in time.
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B. Random Public Monitoring

When monitoring is random, tk � tk�1 = x is an i:i:d: continuous random variable with

c:d:f: GX (x). To simplify, the time random variable is also assumed exponentially distrib-

uted, i.e. X � Exp (1=�).8 Since time is non-negative x 2 [0;1) : The i:i:d: assumption
implies that the length of each time interval is independent of the length of the previous

and subsequent intervals.

De�nition 1 A repeated game is of random monitoring if the time repetitions tk�1 of the

stage game are stochastic.

Random as opposed to deterministic public monitoring, requires uncertainty in the repeti-

tions of the stage game. Perfect or imperfect monitoring refers to the signals informativeness.

Meaningful comparisons require that the expected time interval length associated with

random monitoring, matches the deterministic monitoring frequency �, i.e. EX (x) = � <

1:
Consequently, the discount factor is a random function of time. We talk about an expected

discount factor, i.e.

EX (�
x) =

Z
[0;1)

e�rxdGX (x) = 1= (1 + r�) :
9 (2.3)

Punishment Probabilities - Payo¤ are discounted from the random time x at which the

value of the process is observed. Consequently, we cannot separate discounting from the

distribution of signals. This is the main di¤erence w.r.t. the deterministic setup. The

punishment "probabilities" have to be adapted. In this case we speak about "discounted

punishment probabilities", i.e.,

ep (�) � Z
[0;1)

Z
[0;x)

e�rxg (x) f (yja; x) dydx =

8<: ��= (1 + r�) (1 + r�+ ��) ;

1= (1 + r�+ ��) ;
(2.4)

8 The exponential distribution is interesting, not only because of its tractability, but it also maximizes the

entropy of random monitoring for distributions with support x 2 [0;1).
9 For tk � tk�1; :::; t1 � t0; we have a sequence of k i:i:d: time intervals, and we can write

E
�
�tk
�
= EX

�
�(tk�tk�1)+:::+(t1�0)

�
=
Yk

j=1
EX (�

x) = EX (�
x)
k
:

Consequently, each payo¤ can be discounted and treated independently of the previous period payo¤.
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and

eq (�) � Z
[0;1)

Z
[x;1)

e�rxg (x) f (yja0; x) dydx =

8<: ��= (1 + r�) (1 + r�+ ��) ;

1= (1 + r�+ ��) ;
(2.5)

for the event of mistaken and correct punishment, respectively. The bad and good news

models are simultaneously presented. Note that now, the density f (yj:; x) is also conditional
on the realized random time. g (x) = e�x=�=� is the density of the time random variable.

We look at strategies pro�les that form a perfect public equilibrium.10�11

III. THE BEST STRONGLY SYMMETRIC EQUILIBRIUM

The value of the best SSE of the prisoners�dilemma of Table I is well known for the

canonical public monitoring case. To accommodate random monitoring, we need to take

into account that discounting cannot be separated from the signals distribution.

Players�employ �� grim strategies.12 If a bad signal is observed, players coordinate the

punishment decisions on a public random device, which e¤ectively punish with probability

� 2 (0; 1] and forgives otherwise. When monitoring is random (respectively, deterministic),

we denote this probability as e� (respectively, �)
The continuation value is a convex combination between the expected normalized payo¤

associated with the observation of a good signal ev; and the expected normalized payo¤
associated with the observation of a bad signal ev: The players�expected payo¤ is

ev = [1� EX (�x)]� + EX (�x) [(1� e�ep (�) =EX (�x)) ev + e�ep (�)ev=EX (�x)] : (3.1)

Even though that discounting and signals are convolved and the repetitions of the stage

game are random, as in (2.4) and (2.5), we apply the recursive dynamic programming

methods of Abreu, Pearce and Staccetti (1986, 1990).

10 A strategy is public if it depends only on the public histories and not on the private history of player i.

Given a public history, a pro�le of public strategies that induces a Nash equilibrium, on the continuation

game from that time on, is called a PPE.
11 The publicly observed history is htk � fyt0 ; yt1 ; :::; ytk�1g with ht0 � ?: Player i has also a private history
htki �

n
yt0 ; at0i ; :::; y

tk�1 ; a
tk�1
i

o
:

12 � � grim strategies are required when public signals are exponential in order to make the enforceability

constraint to bind. Optimal behavior with Brownian signals endogenously sets � = 1.
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Lemma 2 Under random monitoring, the value of the best SSE is given by

ev (�) = � � (�0 � �) ep (�) = (eq (�)� ep (�)) ; (3.2)

which is enforceable while

(0; 1] 3 e� (�) = (1� EX (�x)) (�0 � �) = (eq (�)� � ep (�)�0) : (3.3)

The payo¤ depends directly on the discount rate r through ep (�) and eq (�) : It is a
consequence that discounting and signals are not independent. When the enforceability

condition (3.3) fails, i.e. e� (�) =2 (0; 1] ; perpetual defection is the equilibrium of the game.

When monitoring is deterministic but public, we can replace eq (�) for ��q (�) ; ep (�) for
��p (�) ; and EX (�x) for ��; in (3.2) and (3.3), to obtain the expressions that characterize

the value of the best SSE, i.e.,

v (�) = � � (�0 � �) p (�) = (q (�)� p (�)) ; (3.4)

and

(0; 1] 3 � (�) =
��
1� ��

�
=��

�
(�0 � �) = (q (�)� � p (�)�0) ; (3.5)

respectively. Note that v (�) is independent of the discount rate.

IV. PAYOFF GAINS WITH RANDOM MONITORING

With perfect informative signals, random monitoring is able to enforce the same payo¤

as in the deterministic setup with a higher discount rates. Players�decisions are based on a

larger discount factor (the expected discount factor). The e¤ect is similar as if players had

become "more patient". We call it the Kawamori�s e¤ect.

Surprisingly, when monitoring is imperfect the result is less clear cut. In particular,

because uncertainty on the time repetitions of the stage game may adversely a¤ect the

informational content of the public signals. Before any other considerations, we de�ne how

random monitoring can improve payo¤s w.r.t. the canonical case.

De�nition 3 The best SSE under random monitoring ev (�) ; is larger than the best SSE
under deterministic monitoring v (�) when:

8



(i) e� (�) 2 (0; 1] ; � (�) 2 (0; 1] and
eq (�) =ep (�) > q (�) =p (�) ; (4.1)

holds.

(ii) e� (�) 2 (0; 1] and � (�) =2 (0; 1] :
In part (i) ; both monitoring technologies enforce cooperation, i.e., conditions (3.3) and

(3.5) are simultaneously satis�ed. In this case, both ev (�) and v (�) are at least weakly
above zero. Consequently, random monitoring returns higher payo¤s if ev (�) � v (�) ; or

equivalently if the inequality (4.1) is satis�ed. In statistical terms, if uncertainty in the time

domain leads to an increase in the ratio eq (�) =ep (�) w.r.t. q (�) =p (�) ; it becomes easier
to separate defection from cooperative.

Part (ii) states that cooperation is enforced exclusively with random monitoring. Con-

sequently, we have a gain equal to ev (�) � 0 because v (�) = 0: In this case, random

monitoring expands the spectrum of frequencies of play that sustain cooperation.

Outside De�nition 3, either deterministic monitoring leads to higher payo¤s or no moni-

toring technology can improve over the static Nash.

De�nition 3 is general and ambiguous w.r.t. a particular model. For that reason we can

think about multiple improvement structures that satisfy either statement.

Let �0 be the � that solves (4.1) with equality. In addition let e� and � be the � that

solve e� (�) = 1 and � (�) = 1; respectively.
A. The Bad News Model

A minimal requirement to perform any analysis is that both ev (�) and v (�) are larger
than zero and enforceable at least in the limit � # 0: Consequently we have the upper bound
on the discount rate r < (�� � ��0) = (�0 � �) :
Random monitoring and inference -We want to know for which values of� the inequality

(4.1) is satis�ed. Since �0 cannot be expressed explicitly and approximations to the expo-

nential are not useful, we cannot clearly state whether e� (�0) 2 (0; 1] and � (�0) 2 (0; 1]
are satis�ed. Nonetheless, we can guarantee the existence of �0; a necessary condition for

the statement (i) of De�nition 3 to hold.

9



Proposition 4 There exist a �0 2 <++ such that inequality (4.1) holds for � 2 (�0;1) :

Since�0 > 0; the immediate conclusion is that random public monitoring cannot improve

for all frequencies of play in the bad news model. The result contrasts with the deterministic

perfect monitoring scenario, where improvements are possible for all enforceable frequencies

of play, as shown by Kawamori (2004).

Random Monitoring and the Provision of Incentives -While the solution e� for e� (�) = 1
can be found in close form, the solution � to � (�) = 1 cannot. Nonetheless, the following

result sheds light on the e¤ects of random monitoring in terms of incentives. In particular,

whether the statement (ii) of De�nition 3 applies.

Proposition 5 If r is su¢ ciently small w.r.t. the ratio ��=��0; random monitoring has a

positive impact on the provision of incentives.

Improvements are possible if the arrival rates of bad news in case of cooperation and

defection are su¢ ciently distinct and/or players�are enough patience. This observation is

persistent for all result. For that reason and to not repeat constantly the same arguments,

Section VI elaborates on the intuition.

The last two results allow us to narrow the forms of payo¤ improvements that might be

observed. The following result for the bad news model, replace De�nition 3.

Corollary 6 In the bad news model, if payo¤ improvements of type (i) and (ii) of De�nition

3 are possible, they are in one of the following forms, respectively:

(i) � 2
�
�0;�

�
with �0 < � � e�; or � 2 ��0; e�� with �0 < e� � �:

(ii) � 2
�
�; e�� with � < e�:

The �rst statement is based on the observation that (4.1) holds in the direction � >

�0 > 0: The second statement relies on the fact that both � (�) and e� (�) are positive,
strictly convex and increasing in � > 0 (until an asymptote is reached). In addition, for

small �; both � (�) and e� (�) are in (0; 1) :13 Consequently, there is a single positive real
root, and improvement structures of the type � 2

�e�;�� with e� � � are impossible.

13 We have e� (�) > � (�) for small �: Consequently, � (�) and e� (�) must cross once in order for an
improvement to be possible.
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B. The Good News Model

This model highlights further the limitations of random monitoring in improving payo¤s.

Random monitoring and inference -The following result states that when the occurrence

of an event is interpreted as good news, improvements in the sense of part (i) of De�nition

3 are impossible.

Proposition 7 There is no �0 2 <++ that satis�es (4.1) with equality.

An additional implication of Proposition 7, is that v (�) � ev (�) for all � > 0:14
Random monitoring and the provision of incentives - In face of the previous result, we turn

our attention to the existence of improvements of the kind stated in part (ii) of De�nition

3.

Proposition 8 For small � (i.e., the smaller positive real root of e� (�) = 1) random

monitoring has a negative impact on the provision of incentives. Otherwise, if r is su¢ ciently

small w.r.t. the ratio ��=��0; random monitoring has a positive impact on the provision of

incentives.

In the good news model, � (�) = 1 delivers either two (the interesting case) or zero

roots positive real roots. In the interesting scenario there is an interval in <++ that enforces
cooperation.

The following result aggregates the implications of our �ndings in the good news model

and replaces De�nition 3.

Corollary 9 In the good news model, if payo¤ improvements of type (ii) of De�nition 3 are

possible, they are of the form � 2
�
�; e�� with � < e�:

The potential improvement structures are narrowed to a single case. Proposition 7 exclude

any improvements of the type (i) in De�nition 3. On the other hand, improvements with

the structure e� < �; are excluded by the �rst part of Proposition 8.
The reader is referred to the numerical Examples 14 and 17 below.

14 As shown by Abreu, Milgrom and Pearce (1991), the good news model degenerates in the limit � # 0:

11



V. DECOMPOSING THE RANDOM MONITORING EFFECTS

We have two e¤ects associated with random public monitoring. An information e¤ect

caused by the introduction of time uncertainty on the signals observation, and a discount

e¤ect cause by the addition of discount on the time uncertain structure of the model. The

latter includes on it the Kawamori e¤ect.

These e¤ects alter the distribution of the public signals and the provision of incentives.

Whether random monitoring generates payo¤ improvements, depends on the direction and

magnitude of these e¤ects. The goal of the present Section is to de�ne and disaggregate

these e¤ects.

To separate the information from the discount e¤ect we need to de�ne the "undiscounted

mistaken punishment probability"

bp (�) � Z
[0;1)

Z
eY � g (x) f (yja; x) dydx =

8<: ��= (1 + ��) ;

1= (1 + ��) ;
(5.1)

and the "undiscounted correct punishment probability"

bq (�) � Z
[0;1)

Z
eY � g (x) f (yja

0; x) dydx =

8<: ��= (1 + ��) ;

1= (1 + ��) ;
(5.2)

for the bad and good news models, respectively. These probabilities take into account the

time uncertainty on the distribution of the public signals but with discount removed.

To decompose the e¤ects of random monitoring on the provision of incentives, we de�neb� (�) : Replace in (3.3), ep (�) by ��bp (�) and eq (�) by ��bq (�) ; to obtain
(0; 1] 3 b� (�) = 1� ��

��
�0 � �bq (�)� � bp (�)�0 : (5.3)

Denote b�; as the � value that solves b� (�) = 1: In addition, let �I and �II ; be � values

in <+ that solve bq (�) =bp (�) > q (�) =p (�) ; (5.4)

and eq (�) =ep (�) > bq (�) =bp (�) ; (5.5)

with equality, respectively.
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Random monitoring e¤ects and the distribution of public signals - We start from the

canonical public monitoring likelihood ratio q (�) =p (�) : The next step is to add uncer-

tainty in the time domain to obtain bq (�) =bp (�) : If this ratio is larger (respectively, smaller)
than q (�) =p (�) ; we say that random monitoring produces a positive (respectively, neg-

ative) information e¤ect. At this point, if we add discounting to bq (�) =bp (�) ; we obtaineq (�) =ep (�) : In this case, there is a positive (respectively, negative) discount e¤ect if the
latter ratio results larger (respectively, smaller) than the former. Since, we are dealing with

ratios the Kawamori�s e¤ect is null. Nonetheless, discounting plays an indirect role, through

the time correlation with the public signals.

Given Corollaries 6 and 9, we de�ne the random monitoring e¤ects on the distribution of

the public signals.

De�nition 10 Random monitoring has a positive:

(i) information e¤ect on the distribution of the public signals if �I < �0:

(ii) discount e¤ect on the distribution of the public signals if �II < �0:

Otherwise, these e¤ects are negative or adverse.

Random monitoring e¤ects and the provision of incentives - Variations in the likelihood

ratio is just half of the story. Random monitoring also impacts on the provision of incentives.

Start with the deterministic monitoring � (�) punishment probability and associated

cuto¤ �: The addition of time uncertainty in the distribution of public signals results in

the enforceability condition b� (�) de�ned in (5.3) and the associated cuto¤ b�: If b� > �;

then the spectrum of monitoring frequencies that enforce cooperation has increased due to

positive information e¤ects on the provision of incentives. Discounting is present, through

the discount factor, but it does not play a role.

Finally, we extend the time uncertainty to the discount factor and replace the punishment

probabilities by the discounted analogue, de�ned in (2.4) and (2.5), to obtain e� (�) : The
di¤erence between e� and b� establishes the discount e¤ect. If e� > b�; then discounting
expands the enforceable spectrum.

De�nition 11 Random monitoring has a positive:

(i) information e¤ect on the provision of incentives if � < b�:
(ii) discount e¤ect on the provision of incentives if b� < e�:
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Otherwise, these e¤ects are negative or adverse.

We can have both e¤ects in the same or in opposed directions. In the latter case, its the

magnitude of each e¤ect that determines the impact of random monitoring on the provision

of incentives.

A. The Bad News Model

Proposition 12 The information (respectively, discount) e¤ect on the distribution of the

public signals is negative (respectively, positive) and bounded.

The positive discount e¤ect parallels with the perfect random monitoring case. Now, in

addition, we have an information e¤ect that weakens the inference about players�actions.

Nonetheless, the information e¤ect is not necessarily negative when we consider the

provision of incentives. The reason is that these e¤ects are measured at di¤erent points.

Note that, for � 2 (0;�I) inequality (5.4) fails while for � 2 (�I ;1) it holds.
The following result provides crucial knowledge on how random monitoring impacts on

the provision of incentives through the discount and the information e¤ect.

Proposition 13 (i) If the ratio ��=��0 is su¢ ciently large, the information e¤ect has a

positive and bounded impact on the provision of incentives.

(ii) If r is su¢ ciently small w.r.t. the ratio ��=��0; the discount e¤ect has a positive

impact on the provision of incentives.

The information e¤ect depends crucially on the relation q (�)��p (�)�0 w.r.t. bq (�)��bp (�)�0: If the former di¤erence is lower than the latter, we have the guarantee of a positive
e¤ect. However, when ��=��0 decreases the relation tends to reverse.

The expressions b� (�) and e� (�) ; and consequently the discount e¤ect, can be divided
in two components. The �rst part

�
1� e�r�

�
=e�r� > r�; re�ects the Kawamori e¤ect. It

incorporates the immediate impact of discounting on the provision of incentives, which is

positive and increasing.
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Proposition 12 states that eq (�) =ep (�) > bq (�) =bp (�) for all r;15 still the discount e¤ect
is not positive for all r: In this case, the second part of b� (�) and e� (�) must satisfy

�0 � �bq (�)� � bp (�)�0 < �0 � �eq (�)�=EX (�x)� ep (�)�0=EX (�x) ;
at least for su¢ ciently large r: Such favours an increase in b� w.r.t. e� and its against the

existence of a positive discount e¤ect. To the latter, we call it cross e¤ect. Consequently,

we are lead to the conclusion that better inference does not necessarily result in stronger

incentive.

However, our sense is that the discount e¤ect is always positive when improvements of

the type (ii) of Corollary 6 are possible.

The following numerical example attempts to precise some of the statements made before.

Example 14 Suppose that �0 = 3; � = 2 and r = 0:1:

When � = 1 and � = 3; we have �0 = 0:890 (with �I = 1:012 as stated by Proposition

12).

� = 0:891 (�)|{z}
information e¤ ect

b� = 0:791 (+)|{z}
discount e¤ ect

e� = 0:850
Following Corollary 6, since e� < �0 and e� < �; there is no feasible payo¤ improvements.
The strong negative information e¤ect on the provision of incentives is not compensated by

the discount e¤ect, see Proposition 13.

The situation is di¤erent when � = 1 and � = 10: In this case, we have �0 = 0:472 (and

�I = 0:521).

� = 0:999 (+)|{z}
information e¤ ect

b� = 1:340 (+)|{z}
discount e¤ ect

e� = 1:521
For � 2 (0:472; 0:999) and � 2 (0:999; 1:521) we have improvements in the sense of part
(i) and (ii) of Corollary 6, respectively. Both e¤ects favour the provision of incentives. In

relation to the previous parametrization, there is an increase in the ratio ��=��0 (Proposition

13).

15 We have the relations q (�) > bq (�) > eq (�) and p (�) > bp (�) > ep (�) : When �=� increases these
inequalities tend to become more tight and more concave.
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B. The Good News Model

Proposition 7 and Corollary 9 state that in the good news model random monitoring

cannot improve in the sense of part (i) of De�nition 3. The following result provides the

explanation.

Proposition 15 The discount and the information e¤ects on the distribution of the public

signals are always negative.

Following Proposition 8, randommonitoring improvements as stated in Corollary 9, might

be possible for su¢ ciently large values of � (the large positive real root of e� (�) = 1). We
now try to separate the forces underlying this result.16

Proposition 16 (i) If the ratio ��=��0 is su¢ ciently large the information e¤ect has a

positive impact on the provision of incentives.

(ii) If r is su¢ ciently small w.r.t. the ratio ��=��0; the discount e¤ect has a positive

impact on the provision of incentives.

It is important to note that the cuto¤ associated with each statements are not the same

(this is true for all presented results). It just states that such cuto¤s must increase (respec-

tively, decrease) with � and � (respectively, � and �0).

The following numerical example attempts to clear some remaining ambiguity associated

with the inexistence of explicit expressions.

Example 17 Suppose that �0 = 3; � = 2; � = 3 and � = 1: When r = 0:1; the two positive

real roots associated with each threshold are � = f0:209; 2:116g ; b� = f0:370; 2:103g ande� = f0:385; 2:405g : For example, the latter pair of roots means that random monitoring

enforces cooperation for � 2 (0:385; 2:405) : The interpretation is similar for the former

pair of roots, in which case deterministic monitoring enforces cooperation.

� = 2:116 (�)|{z}
information e¤ ect

b� = 2:103 (+)|{z}
discount e¤ ect

e� = 2:405
16 For the smaller root, the information and the discount e¤ects are always negative. Explaining the inexis-

tence of payo¤ improvements on the provision of incentives, as stated in Proposition 8.
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Following Proposition 8, improvements due to random monitoring that satisfy Corollary 9

are possible for the large root only, i.e., when � 2 (2:116; 2:405) : Proposition 7 excludes
other improvement. The negative information e¤ect is cancelled by a strong discount e¤ect,

see Proposition 16.

In the case where r = 0:2; payo¤ improvements are no possible. The negative information

e¤ect is too strong to be compensated by the discount e¤ect.

� = 1:603 (�)|{z}
information e¤ ect

b� = 1:139 (+)|{z}
discount e¤ ect

e� = 1:25
Note that, for the lower roots the interpretation of a positive and a negative e¤ect is

reversed. A decrease in a cuto¤ has a positive e¤ect since it expands the enforcement interval

to the left.

VI. COMMENTS ON THE INTUITION

Random monitoring in the bad and good news models present very tractable structures

of interest in applied work. However, payo¤ comparisons with the deterministic setting are

tricky. In particular, because we cannot establish most relations in close form. The goal of

this Section is to establish some intuition on a complex network of e¤ects.

Both, the bad and good news models present similar relations w.r.t. the di¤erences

q (�)� p (�) and eq (�)� ep (�) : For small �; the former is large than the latter, while for
larger �; the relation is reversed. In the bad news model, a increase in the ratio �=� favours

the provision of incentives (Proposition 13), because it lowers the inequality shifting point,

increasing e� w.r.t. �.

A variation in �=� of the same magnitude in the good news model delivers exactly the

same result (Proposition 8). That is the reason why payo¤ improvements of the type (ii) of

De�nition 3 have the same structure (compare Corollaries 6 and 9).

When we decompose the e¤ect of random monitoring the equivalence between both mod-

els remain. In both cases we have bq (�)� bp (�) > eq (�)� ep (�) : Consequently, the crossing
point with q (�) � p (�) is lower, and the information e¤ect is positive if e� is su¢ ciently

large (or equivalently, for large �=� and �=�; respectively).

The introduction of discounting increases the crossing point, the more the value of r

(which is negative in terms of incentives provision). On same time, the direct e¤ect on
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the discount tends to increase the value of e� w.r.t. b�: Consequently, the direction of the
discount e¤ect depends crucially on the strength of these opposed forces (Propositions 13

and 16).

The equivalence between both models is broken when we look for improvements of the

type (i) of De�nition 3. In the good news model, for any parametrization, q (�) =p (�)

is larger than eq (�) =ep (�) (Proposition 7). However, in the bad news model, if �=� is
su¢ ciently large the relation can be reversed (Proposition 4) and improvements are possible

(Corollary 6(i)).17 De�nitive conclusions have to verify for the existence of incentives.

We close by stressing that in both models more informative signals (larger values of �=�

and �=�; respectively) favor the existence of positive discount and information e¤ects, and

consequently payo¤ improvements.

APPENDIX: PROOF OF LEMMAS AND PROPOSITIONS

Proof of Lemma 2. Following Abreu, Pearce and Stacchetti (1986, 1990), to �nd the best

SSE payo¤, we need to solve the dynamic programing problem: composed expression (3.1),

ev � [1� EX (�x)]�0 + EX (�x) [(1� e�eq (�) =EX (�x)) ev + e�eq (�)ev=EX (�x)] ; (6.1)

and e� 2 [0; 1] : With ep (�) and eq (�) are de�ned, respectively in (2.4) and (2.5).
Expression (3.1) is the cooperation value. Players receive the stage game payo¤associated

with cooperation, plus a discounted expectation over the expected payo¤s ev and ev; suggesting
cooperation and defection respectively. Constraint (6.1) imposes that the cooperation payo¤

is at least as good as the defection payo¤. If e� =2 (0; 1] ; we cannot enforce the pro�le (C;C) :e� 2 (0; 1] is the punishment probability after the observation of a defective signal. With
� � grim strategies we can set ev = 0; the static Nash payo¤ which is trivially enforced.

Punishment is then an absorbing state.

We solve (3.1) w.r.t. ev; to obtain
ev = (1� EX (�x))�= [1� EX (�x) + e�ep (�)] : (6.2)

Similarly, we solve the inequality (6.1) w.r.t. ev; to obtain
ev � (1� EX (�x))�0= [1� EX (�x) + e�eq (�)] : (6.3)

17 The discount and information e¤ects decomposition is trivial, Propositions 12 and 15.
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Plug (6.2) into (6.3), with the latter holding with equality, and solve for e� to obtain (3.3),
which must satisfy e� (�) 2 (0; 1] : Finally, replace (3.3) into (6.2), to obtain (3.2).
The deterministic monitoring case is essentially the same with EX (�x) ; ep (�) and eq (�)

replaced by ��; ��p (�) and ��q (�) ; respectively.

Proof of Proposition 4. In the bad news model of frequency �; inequality (4.1) is written

as

� (1 + r�+ ��) =� (1 + r�+ ��) >
�
1� e���

�
=
�
1� e���

�
: (6.4)

When � # 0; the limits of eq (�) =ep (�) (LHS of the inequality) and q (�) =p (�)

(RHS of inequality) equal to �=�. However, they converge at di¤erent rates. The

limit of @ (eq (�) =ep (�)) =@� ! � (�� �)�=�, and the limit of @ (q (�) =p (�)) =@� !
� (�� �)�=2�: Consequently, for small � the latter is larger, and inequality (6.4) fails.

On the other hand, the limits of eq (�) =ep (�) and q (�) =p (�) for � " 1; return respec-
tively � (� + r) =� (�+ r) and 1. Since � > � and r > 0; for large � the inequality (6.4) is

satis�ed.

Since both sides of (6.4) are convex and monotonically decreasing in �; there must exist

a crossing point � = �0 that solves (6.4) with equality.

Proof of Proposition 5. In the bad news model, the probability e� (�) in (3.3) is given by
e� (�) = r (�0 � �) (1 + r�+ ��) (1 + r�+ ��)

� (1 + r�+ ��)� � � (1 + r�+ ��)�0 : (6.5)

The value of � that satisfy e� (�) = 1 has the close form
e� = (� (r + �)� �0 (r + �)) = (�0 � �) (r + �) (r + �) : (6.6)

The sign depends on the numerator, which is strictly positive because r <

(��� �0�) = (�0 � �) : It also implies that e� (�) > 0 for r > 0: In the bad news model,

the probability � (�) in (3.5) is given by

� (�) =
�
er� � 1

� �0 � �
(1� e���)� � (1� e���)�0 : (6.7)

In order for e� � � we must have �
�e�� =2 (0; 1] ; we want to show it for low r: Pluge� into � (�) ; and take the limit r # 0 of �

�e�� =2 (0; 1] to obtain 0; an indetermination.
19



Consequently, we need to look at the limit of @�
�e�� =@r; which equals to

�� � ��0

�

�
1� e�

����0�
�(�0��)

�
� �0

�
1� e�

����0�
�(�0��)

� :
A negative derivative implies that �

�e�� < 0 for small r; i.e., ��e�� is decreasing in this
region. Consequently e� � �; i.e., improvement in incentives are possible for small r: If the
term in the LHS of the denominator is large than the term in RHS, cæteris páribus, then

the sign is positive (respectively, negative), i.e., when �=� is su¢ ciently small (respectively,

large). Similarly, since the e¤ects of � and �0 on the exponential part (denominator) is

stronger, if �=�0 is su¢ ciently small (respectively, large) the sign is positive (respectively,

negative). We can aggregate this information into ��=��0 to prove the result.

The limit of �
�e�� when r " (��� �0�) = (�0 � �) (the upper bound on r) converge to

1 2 (0; 1] from below. Then on the lower neighborhood of (��� �0�) = (�0 � �) we have
�
�e�� 2 (0; 1] =) e� � � and increasing. Consequently, there must exist a �xed point

r� 2 (0; (��� �0�) = (�0 � �)) s.t. �
�e�� = 1:

Proof of Proposition 7. Inequality (4.1) for the good news model is given by

(1 + r�+ ��) = (1 + r�+ ��) > e���=e���: (6.8)

The LHS (respectively, RHS) ratio is strictly concave (respectively, convex) and monotoni-

cally increasing in � > 0: Since e(r+�)� � 1 + r� + �� + O (�)2 for � � 0; we have that
e(r+�)�=e(r+�)� is an upper bound on the LHS when � > �: After we cancel the discount

rate, it equals to the RHS. Consequently, inequality (6.8) must fail for all � > 0:

Proof of Proposition 8 . Start by notice that v (�) � 0 and ev (�) � 0 require, respectively
� � ln (�0=�) = (� � �) � �y;

and

� � (�0 � �) = (�� � ��0 � r (�0 � �)) � �z:

The RHS of the former inequality is strictly positive. While the RHS of the latter, is larger

than zero when r < (�� � ��0) = (�0 � �) : Moreover, by Proposition 7, v (�) � ev (�) for
all � > 0: In addition, both expressions are monotonically increasing in �: Then, we must

have v (�z) � ev (�z) = 0; which implies that �z � �y:
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In the good news model, the expression for � (�) and e� (�) are, respectively
� (�) =

�
er� � 1

�
(�0 � �) =

�
e���� � e����0

�
; (6.9)

and e� (�) = r�

1 + r�

(�0 � �) (1 + r�+ ��) (1 + r�+ ��)
(1 + r�+ ��)� � (1 + r�+ ��)�0 : (6.10)

The asymptote of � (�) occurs at � = �y; while the asymptote of e� (�) occurs at � = �z:

On the right neighborhood of their asymptotes, both expression are monotonically decreasing

in �: Then, for � # �z we must have e� (�) " 1; while � (�z) takes some bounded value.

We have to consider two cases. i) � (�z) � 1 : implying that � � e�; and there is no
possible improvement (for the small root, the interpretation is reversed). ii) � (�z) � 1 :

implying that e� � �; and improvements might be possible. But Proposition 7 states that
v (�z) � ev (�z) = 0: Consequently, improvements through incentives are not possible as

well.

For the large positive real root e� that solves e� (�) = 1; the argument is similar to the one
employed in the proof of Proposition 5. The di¤erence is that now, e� has a more complex

expression. The following is a resume of the �ndings. Because of the di¤erence in the denom-

inator of (6.10), for large �; an increase in r causes a larger increase in e� (�) w.r.t. � (�) ;
favouring a higher � w.r.t. e�: An increase in � (respectively, �) causes a larger decrease
(respectively, increase) in e� (�) w.r.t. � (�) ; favouring a lower (respectively, higher) �
w.r.t. e�: An increase in � (respectively, �0) causes a larger decrease (respectively, increase)
in e� (�) w.r.t. � (�) ; favouring a lower (respectively, higher) � w.r.t. e�: We aggregate
this information into the ratio ��=��0: Larger ratios favour the provision of incentives, i.e.,

� < e�; and the other way around.
Proof of Proposition 12. We have seen that for � > �0 > 0; inequality (6.4) is satis�ed.

Similarly, for � > �I inequality (5.4), that is written as

� (1 + ��) =� (1 + ��) >
�
1� e���

�
=
�
1� e���

�
;

is also satis�ed. Then, since r > 0; we have for all � 6= 0 that

� (1 + r�+ ��) =� (1 + r�+ ��) > � (1 + ��) =� (1 + ��) ;

where the latter inequality correspond to (5.5). Then, the discount e¤ect is positive, because

�II = 0: Consequently, we must have�0 < �I ; i.e., the information e¤ect must be negative.
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Otherwise, a positive discount e¤ect would be impossible. Inequality (5.4) fails for � 2
(0;�I) :

The derivative of the di¤erence of the ratios in the latter inequality is strictly increas-

ing in �. Consequently, the maximal di¤erence is obtained for � " 1; and is bounded,
because the LHS converges to (r + �) = (r + �) while the RHS goes to �=�: Similarly, note

that bq (�) =bp (�) and q (�) =p (�) are monotonically decreasing, and have supremum and

in�mum values equal to �=� and 1; respectively. Consequently, both e¤ects are bounded.

Proof of Proposition 13. (ii) For the bad news model, the expression e� (�) is given by
(6.5) and b� (�) by

b� (�) = �er� � 1� (�0 � �) (1 + ��) (1 + ��)
��(1 + ��)� � ��(1 + ��)�0 : (6.11)

From zero to the respective asymptote, these expressions are convex and monotonically

increasing in �; where both take the value 1. The asymptote of e� (�) occurs at
e�a = (�� � ��0) = (� (r + �)�0 � � (r + �)�) ;

while the asymptote of b� (�) does not depend on r and it is always positive, i.e.,
b�a = (�� � ��0) =�� (�0 � �) :

Since both b� and e� occur before their asymptote value, it rules out the possibility of an

unbounded discount e¤ect. In addition, since r > 0 we have e� < b�a < e�a:

The value r that makes b� (�) � 1 is given by
r > ln

�
(1 + ��)�0 � (1 + ��)�
(�0 � �) (1 + ��) (1 + ��)

�
=�:

Plug the solution e�; of e� (�) = 1; given in (6.6) to get

r > R (r) �

ln

 �
1+�

�(r+�)��0(r+�)
(�0��)(r+�)(r+�)

�
�0�

�
1+�

�(r+�)��0(r+�)
(�0��)(r+�)(r+�)

�
�

(�0��)
�
1+�

�(r+�)��0(r+�)
(�0��)(r+�)(r+�)

��
1+�

�(r+�)��0(r+�)
(�0��)(r+�)(r+�)

�
!

(� (r + �)� �0 (r + �)) = (�0 � �) (r + �) (r + �) :

The limit of R (r) when r # 0 equals to zero. To deal with the indetermination, di¤erentiate
the both sides of the inequality and take the limit to obtain

1 > (�0 � �)
�
��2 � �0�2

�
=
�
��0 (�� �)2

�
;
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which is always satis�ed, since 0 > � (��� �0�)2 : Then, for small r we must have a positive
discount e¤ect.

Observe that when r " (�� � ��0) = (�0 � �) we again obtain an indetermination. To deal
with this more complex indetermination, note that for small � # 0; both e� (�) and b� (�)
converge to r (�0 � �) = (�� � ��0) which is below the unit if r < (�� � ��0) = (�0 � �) :
The same condition also guarantee that e� > 0: The limit � # 0 of the derivatives when
r = (�� � ��0) = (�0 � �) are

@e� (�) =@�! ��0 (�� �)2 = (�0 � �) (�� � ��0) ;

and

@b� (�) =@�! �
2��0

�
�2 + �2

�
� (�� + ��0)2

�
=2 (�0 � �) (�� � ��0) ;

respectively. Consequently, we have @e� (�) =@� > @b� (�) =@� for � # 0 and r =

(�� � ��0) = (�0 � �) : Then, for larger r we must have e� < b�; i.e., a negative discount
e¤ect. In addition, a �xed point r� = R (r�) is guaranteed to exist in the interval

(0; (�� � ��0) = (�0 � �)) ; below which a positive discount e¤ect is guaranteed.
(i) The expression b� (�) is given above in (6.11), while � (�) is given by (6.7). Bothb� (�) and � (�) are strictly convex and monotonically increasing in �; taking the value

one before their asymptotes. Notice that both expressions di¤er only in the denominator,

consequently r plays no role.

Notice that p (�) > bp (�) and q (�) > bq (�) ; i.e., respectively, 1� e��� > ��= (1 + ��)
and 1 � e��� > ��= (1 + ��) : The same increase in � (respectively, �0), decreases

(respectively, increases) � (�) more than b� (�) ; because q (�) > bq (�) (respectively,
p (�) > bp (�)). So larger � (respectively, �0), increase (respectively, decrease) � w.r.t.b�:Also, the same increase in � (respectively, �), decreases (respectively, increases) � (�)
more than b� (�) ; because q (�) (respectively, p (�)) is exponential. So larger � (respec-
tively, �), tends to increase (respectively, decrease) � w.r.t. b�: We can aggregate this
information into the ratio ��=��0: Larger ratios favour the existence of a positive informa-

tion e¤ect, i.e., � < b�; and the other way around.
Proof of Proposition 15. In the good news model, the information e¤ect improves

inference if inequality (5.4) is satis�ed, i.e.,

(1 + ��) = (1 + ��) > e���=e���:
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Similarly, the discount e¤ect improves inference if inequality (5.5) is satis�ed, i.e.,

(1 + r�+ ��) = (1 + r�+ ��) > (1 + ��) = (1 + ��) :

Both sides of each inequality are monotonically increasing in �: The �rst inequality is

never satis�ed. Note that the LHS is concave while the RHS in convex. The RHS can be

approximated by the lower bound 1 + �� � �� + O (�2) . e(���)�: After some algebraic
manipulations we obtain 0 � ��2 (� � �) + O (�2) ; an impossibility, because � > � and

O (�2) are strictly positive.

In the latter inequality, the LHS di¤ers from the RHS when r > 0: Di¤erentiate the LHS

w.r.t. r to obtain � (� � �)�2= (1 + r�+ ��)2 : Consequently, we have another impossi-

bility, the LHS is always lower than the RHS.

Proof of Proposition 16. In the good news model

b� (�) = �er� � 1� (�0 � �)
1

(1+��)
� � 1

(1+��)
�0
:

While � (�) and e� (�) are respectively, given by (6.9) and (6.10). We are interested on the
larger real roots �; b� and e�: Around these values, � (�) ; e� (�) and b� (�) ; are monotoni-
cally increasing and convex in �. It easy to show that, for the large real roots we have we

have bq (�) > eq (�) > q (�) :
(i) When looking at information e¤ects, the di¤erence between � (�) and b� (�) is on

the denominator and r plays no role. Suppose that � increases (respectively, �), sincebq (�) > q (�) (respectively, bp (�) > p (�)) it tends to increase (respectively, decrease)b� (�) more than � (�) ; i.e., favours a decrease (respectively, increase) of b� w.r.t. �: For

the same reason, an increase in � (respectively, �0), tends to decrease (respectively, increase)

� (�) less than b� (�) ; i.e., favours a decrease (respectively, increase) of � w.r.t. b�: Putting
together this information, if the ratio ��=��0 is su¢ ciently large we must have a positive

information e¤ect, i.e. � < b�:
(ii) Now, we look at the discount e¤ect. In comparisons between b� (�) and e� (�) ; the

value of r plays a role. Brie�y, an increase in r causes a larger increase in b� (�) w.r.t. e� (�) ;
i.e., favours a increase of b� w.r.t. e�: Consequently, for any parametrization, lower r favours
the existence of a positive discount e¤ect. Since bq (�) > eq (�) ; an increase in � tends to
increase e� (�) more than b� (�) ; i.e., favors a decrease of e� w.r.t. b�: An increase in � has
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the opposite e¤ect. Similarly, an increase in �; tends to decrease e� (�) more than b� (�) ;
i.e., favours an increase of e� w.r.t. b�: An increase in �0 has the opposed e¤ect. Putting
together this information, when the ratio ��=��0 is su¢ ciently large w.r.t. r we must have

a positive discount e¤ect, i.e. b� < e�:
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