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Abstract In this note, we consider claims problems with indivisible goods. Specifically, by

applying recursively the P-rights lower bound (Giménez-Gómez and Marco-Gil (2008)), we

ensure the fulfillment of weak order preservation, considered by many authors as a minimal

requirement of fairness. Moreover, we lead to the discrete constrained equal losses and the

discrete constrained equal awards rules (Herrero and Martínez (2008a)). Finally, by the re-

cursive double imposition of a lower and an upper bound, we obtain the average between

them.

Keywords Claims problems · Indivisibilities · Order Preservation · Constrained equal

awards rule · Constrained equal loses rule · Midpoint

1 Introduction.

When a firm goes bankrupt, and the remaining capital is not enough to satisfy its demands,

how should the resources be divided among its creditors? This important issue of claims

problems acquires an special interest in the actual global financial crisis. In this model

(O’Neill (1982)) the amount to allocate and the demands of the creditors are perfectly di-

visible and homogeneous. However, there are many real-world situations where the amount

to divide and the claims are indivisible and identical units. Thus, any solution assigns to

each agent an integer number of units of this good. As an example consider a university

that offers a certain number of research fellowships and each department, depending on its

research level, claims a certain number of fellowships. Suppose that the aggregate demand

is greater than the total amount of fellowships to divide among the departments. How many

fellowships should be assigned to each department? Similarly, consider the case of waiting

lists for surgery at hospitals, demand of organs to be transplanted, airport slots demanded
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by airlines, food or medical assistance in war or disaster situations, visas to potential im-

migrants. In all these situations the data of the problem, as well as the allocations, are all

integer numbers.

Situations like these are studied under the framework of the so called claims problem

(see Moulin (2002) and Thomson (2003, 2006) for surveys).

Usually, in the case of indivisible claims problems priority (rationing) methods are ap-

plied (Moulin (2000), Herrero and Martínez (2008a,b) and Chen (2012)). In contrast, we

propose to implement the recursive method studied by Giménez-Gómez and Marco-Gil

(2008). Specifically, we require that any allowed proposals of distribution must satisfy weak

order preservation which is a discrete version of two basic axioms in the continuous case:

order preservation and equal treatment of equals. In this context, we define lower and upper

bounds on awards by ensuring the smallest and the highest quantities each agent can receive

from the set of rules satisfying weak order preservation, respectively. Note that it is quite

realistic to impose bounds on awards. In the formal definition of a claims problem solu-

tion there are already a lower and an upper bound since it is required that no agent receives

more than his claim and less than zero. Moreover, many other bounds on awards have been

proposed (O’Neill (1982), Herrero and Villar (2001), Moulin (2002), Moreno-Ternero and

Villar (2004) and Dominguez (forthcoming)).

Since, in general the aggregate guaranteed amount by means of our P-rights will not

exhaust the endowment, we propose and analyze its recursive application. Once each agent

receives her P-rights, the problem is revised accordingly. Then, the so called Recursive P-
rights Process proposes the recursive application of the P-rights in each recursive revised

problem. As in Giménez-Gómez and Marco-Gil (2008) we lead to the discrete constrained

equal loses rule and the discrete constrained equal awards rule. These results are similar to

those obtained by Herrero and Martínez (2008a). The main difference is that our process

recover the allocations that fulfill weak order preservation, a requirement that is not satisfied

by all the possible divisions recommended by the mentioned rules.

Finally, by combining both the lower and the upper bounds recursively we obtain the

average of the discrete constrained equal loses rule and the discrete constrained equal awards

rule (as in Giménez-Gómez and Peris (2011) for the divisible case). Consequently, we have

a rule for discrete claims problems that is invariant to awards and looses. The combination

of this rules in the continuous case is also studied in Thomson (2007).

The paper is organized as follows: Section 2 presents the model. Section 3 and 4 provides

our approaches and results. Section 5 contains final remarks. Appendices gather technical

proofs.

2 The model.

A discrete claims problem is a vector (E,c) ∈ Z++ ×Z
n
+, where Z represents the set of

integer numbers, E denotes the endowment and c is the vector of each agents’ claim, ci, for

each i ∈ N, N = {1, ..., i, ...,n}, such that the aggregate demand is greater than the endow-

ment, C = ∑
i∈N

ci ≥ E. Without loss of generality we assume claims are increasingly ordered.

Let BD represent the set of discrete claims problems.

A rule is a function, ϕ , which associates for each (E,c) ∈ BD , a distribution of the en-

dowment among the claimants, that satisfies the properties of ϕi(E,c)≥ 0 (non-negativity),

ϕi(E,c)≤ ci (claim-boundedness) and ∑
i∈N

ϕi(E,c) = E (efficiency).
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Each claims problem can be faced from two points of view: those of awards and those of

losses. Thus, we have two focal positions depending on whether we are focused on, awards

or the unsatisfied demand. In the latter case, given a claims problem (E,c) we consider the

dual claims problem, which is defined by the pair ( ∑
i∈N

ci −E,c) ∈ Z+×Zn
+.

Given a rule, ϕ , its dual Aumann and Maschler (1985)) distributes losses in the same

way as ϕ divides the endowment. Formally, the dual rule of ϕ , denoted by ϕd , assigns the

following distribution for each (E,c)∈BD and each i ∈ N, ϕd
i (E,c) = ci−ϕi( ∑

i∈N
ci−E,c).

The dual of a rule is a well-defined rule, if whenever (E,c) ∈ BD , then ( ∑
i∈N

ci −E,c) ∈
BD . Because ϕ satisfies efficiency, non-negativity and claim-boundedness, the same condi-

tions apply to ϕd . It is clear that (ϕd)d = ϕ.

Next, we introduce the rules on which we will focus in this paper. First, we define the

constrained equal awards and the constrained equal loses rules in the continuous case. Let

B be the set of claims problems in which the resource is perfectly divisible.

The constrained equal awards rule, CEA, (Maimonides 12th

Century, among others) recommends, for each (E,c) ∈ B, the vector

(min{ci,μ})i∈N , where μ is chosen so that ∑
i∈N

min{ci,μ}= E.

The constrained equal losses rule, CEL: for each (E,c)∈B and each i∈N, CELi(E,c)
≡ max{0,ci −μ} , where μ is chosen so that ∑

i∈N
max{0,ci −μ}= E.

In order to introduce the CEA and the CEL in the discrete case (indivisible goods)

hereinafter, we denote by CEAz and CELz the integer part of the allocation proposed by

CEA and CEL rules in the continuous case. Here is an illustration.

Example 1 Let (E,c) = (9,(2,6,8)). In this case, CEA(E,c) = (2,3.5,3.5), and CEL(E,c)
= (0,3.5,5.5). Then, CEAz(E,c) = (2,3,3), and CELz(E,c) = (0,3,5).

Herrero and Martínez (2004) propose that the discrete constrained equal awards rule,

DCEA, recommends to each agent the integer part of the CEA, CEAz, and the remained

estate, E ′ = E −∑i∈N CEAz(E,c)> 0, is distributed following a priority order σ among the

agents whose assignment is not an integer. Let us denote this set of agents by Q(CEA;E,c).
According to the priority order we give one unit to each of the claimants in Q(CEA;E,c)
with the highest priority until what remains of the endowment is distributed. Formally,

Definition 1 The discrete constrained equal awards rule, DCEA: for each (E,c) ∈ BD

and each i ∈ N, DCEAi(E,c) = CEAz
i (E,c) + 1 if i is in the list of the E ′ elements with

highest priority order in Q(CEA;E,c); or CEAz
i (E,c), otherwise.

Similarly for the discrete constrained equal loses rule, DCEL, let E ′′ = E−
∑i∈N CELz(E,c) > 0 and Q(CEL;E,c) be the set of agents whose assignment in CEL is

not an integer. Again according to the priority order, we give one unit to each of claimants

in Q(CEL;E,c) with the highest priority until E ′′ is distributed.

Definition 2 The discrete constrained equal losses rule, DCEL: for each (E,c) ∈BD and

each i ∈ N, DCELi(E,c) = CELz
i (E,c) + 1 if i is in the list of E ′′ elements with highest

priority order in Q(CEL;E,c); or CELz
i (E,c), otherwise.
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Example 2 Following the above example, with priority order σ1 ≥ σ2 ≥ σ3, DCEA(E,c) =
(2,4,3), and DCEL(E,c) = (0,4,5).

Finally, we consider a society in which the distribution of the endowment is based on

a set of basic properties or fair principles.1 Note that the more properties are required by a

society, the fewer the number of admissible rules. Next, we formally present such problems

and the definitions of their associated rules, as introduced by Giménez-Gómez and Marco-

Gil (2008).

Definition 3 A discrete claims problem with legitimate principles is a triplet (E,c,P),
where (E,c) ∈ BD, and P is a set of properties upon which a particular society has agreed.

Henceforth, let BDP be the set of all discrete claims problems with legitimate principles.

An admissible rule for a society that has agreed on P is a rule satisfying all these prop-

erties.

Definition 4 An admissible rule is a function, ϕ : BD → R
n
+ satisfying all properties in P.

Let Φ(P) denote the set of admissible rules for P.

Given the set of admissible rules, we obtain the P-Rights (Giménez-Gómez and Marco-

Gil (2008)) and the P-Utopia (Giménez-Gómez and Peris (2011)) as the minimal and the

maximal awards for each agent given the legitimate principles (properties) upon which the

society has agreed, respectively. Formally, this is determined as follows:

Definition 5 Given (E,c,P) ∈ BDP, the discrete P-rights, d pr, is for each i ∈ N,
d pri(E,c,P) = min

ϕ∈Φ(P)
{ϕi(E,c)} .

Definition 6 Given (E,c,P) ∈ BDP, the discrete P-utopia, d pu, is for each i ∈ N,
d pui(E,c,P) = max

ϕ∈Φ(P)
{ϕi(E,c)} .

Many authors agree that a minimal requirement of fairness is captured by the property of

Order Preservation in the perfect divisible claims problems.In our context, let P = {WOP}
be the set whose only element is weak order preservation. This property requires that if

agent i’s claim is larger than agent j’s claim, he should receive al least as much as agent

j and agent i should also lose al least as much as agent j. Furthermore, if two agents have

equal claims, then they should receive amounts that differ, at most, by one unit.

Weak order preservation, WOP: For each (E,c) ∈ BD and each pair i, j ∈ N:

(i) If ci > c j, then ϕi(E,c)≥ ϕ j(E,c) and ci −ϕi(E,c)≥ c j −ϕ j(E,c);
(ii) If ci = c j, then | ϕi(E,c)−ϕ j(E,c) |≤ 1.

Note that in this extended framework, we do not allow those allocations that fail the

agreed upon legitimate principles. For instance, in Example 2 depending on the priority

order, we can obtain an allocation that gives more to lower claimants, so in that case, WOP
is violated.

1 With society, we mean the group of agents involved in each problem.
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3 The recursive discrete P-rights rule.

In this section, we apply the approach introduced by Giménez-Gómez and Marco-Gil (2008)

but in the context of discrete claims problems: the recursive discrete P-rights process. Specif-

ically, in this process, at the first step each agent will receive her P- rights of the original

problem. At the second step, the estate is what remains and the claims are adjusted down by

the amounts just assigned. Then, each agent receives her P-rights in this residual problem,

and so on.

Definition 7 For each m ∈ N, at the m-th step, the recursive discrete P-rights process,

RDm, associates with each (E,c,P) ∈ BDP and each i ∈ N, the amount

[RDm(E,c,P)]i = d pri(Em,cm,P),

where (E1,c1)≡ (E,c) and for m ≥ 2,

(Em,cm)≡ (Em−1 − ∑
i∈N

d pri(Em−1,cm−1,P),cm−1 −d pr(Em−1,cm−1,P)).

This process is efficient whenever the discrete P-rights provides a positive value to some

agent at each step2. Based on it, we define the next rule:

Definition 8 The recursive discrete P-rights rule, ϕRD, associates with each (E,c,P) ∈
BDP and each i ∈ N, ϕRD

i (E,c,P) =
∞
∑

m=1
[RDm(E,c,P)]i.

Note that, since P= {WOP}, at each step among all the possible allocations proposed by

any rule, we only consider the ones satisfying WOP. If that gives more than one possibility,

there is more than one admissible allocation, then we select the one that respects the priority

order.

Theorem 1 For each (E,c,P) ∈ BDP, the recursive discrete P-rights rule is the discrete
constrained equal losses rule, ϕRD(E,c,P) = DCEL(E,c), satisfying WOP.

Proof. See Appendix 1.

Since the CEL rule (Aumann and Maschler (1985)) is the dual of the CEA rule (Herrero

and Villar (2001)), the next result is obtained in a straightforward way.

Corollary 1 For each (E,c,P) ∈ BDP, c−ϕRD(L,c,P) = DCEA(E,c), satisfying WOP.

4 The double recursive discrete rule.

In this section, given the set of admissible rules, we apply the double imposition of the

minimal and the maximal awards that each agent must receive according to P (Giménez-

Gómez and Peris (2011)).

Definition 9 For each m ∈ N at the m-th step, the double boundedness recursive discrete
process, DBRDm, associates with each (E,c,P) ∈ BDP and each i ∈ N,

2 See Dominguez (forthcoming).
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[DBRD(Em,cm,P)]i = d pri(Em,cm,P),

where (E1,c1)≡ (E,c) and for m ≥ 2,

Em ≡ Em−1 − ∑
i∈N

d pri(Em−1,cm−1,P)

cm
i = d pui(Em−1,cm−1,P)−d pri(Em−1,cm−1,P).

Definition 10 The double recursive discrete rule, ϕDRD,

associates with each (E,c,P)∈BDP and each i∈N, ϕDRD
i (E,c,P)=

∞
∑

m=1
[DBRDm(E,c,P)]i.

Now, we assume that the society is concerned about equity. Then we use the well-known

Lorenz (equity) criterion, which is considered a general equity principle (Dutta and Ray

(1989), Arin (2007)), to delimit the set of admissible rules to those that are between the most

and the least egalitarian ways of distributing the resources. Note that under P = {WOP},

these extreme rules are the CEA and CEL rules, respectively (Thomson (2010)). In this

context, by focusing on awards and losses respectively, an admissible rule raises in a natural

way as those ones included within the area between the CEA and CEL satisfying WOP.

Definition 11 An admissible rule is a function, ϕ : BD →R
n
+, satisfying all properties in P

such that min{DCEAi(E,c),DCELi(E,c)} ≤ ϕi (E,c)≤ max{DCEAi(E,c),DCELi(E,c)}.

Next result states that the recursive double imposition of the d pr and the d pu that satisfy

WOP recommends the midpoint allocation between DCEA and DCEL. The average of this

rules in the continuous case is also studied in Thomson (2007).

Theorem 2 For each (E,c,P) ∈ BDP, with P = {WOP},

ϕDRD(E,c,P) =
DCEA(E,c)+DCEL(E,c)

2
.

Proof. See Appendix 2.

5 Final remarks.

On one hand we have lead to the discrete constrained equal losses rule, when focusing on

awards, and the discrete constrained equal awards rule, when focusing on losses. To do that

we have applied in a recursive way the lower bound d pr obtained by the requirement of

WOP.

On the other hand, by the double impositions of d pr and d pu, we have lead to the

midpoint between DCEA and DCEL rules. This result, can be extended to any problem

where two dual rules delimit the set of admissible allocations, as shown by Giménez-Gómez

and Peris (2011) for perfectly divisible claims problems.

Acknowledgements: We would like to thank Josep E. Peris and William Thomson for their
very useful comments. Financial support from Universitat Rovira i Virgili, Banco Santander and
Generalitat de Catalunya under projects 2011LINE-06 and 2009SGR900, Ministerio de Ciencia e
Innovación and FEDER under project ECO2011-22765 are gratefully acknowledged.
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Appendix 1: Proof of Theorem 1.

Remark 1 For each (E,c,P) ∈ BDP and each m ∈ N, Lm = L.

Proof. Let (E,c,P) ∈ BDP. Then,

Lm = Cm −Em = ∑
i∈N

(
ci −

m
∑

k=1
d pri(Ek,ck,P)

)
−
(

E − ∑
i∈N

m
∑

k=1
d pri(Ek,ck,P)

)
= C−

E = L.
�

First fact establishes that for P, the sum of the awards given by the recursive discrete

P-rights rule is the entire estate.

Fact 1 For each (E,c,P) ∈ BDP, ∑
i∈N

(
∞
∑

m=1
[RDm(E,c,P)]i

)
= E.

The second fact gives a useful way to compute the CEL rule.

Fact 2 For each (E,c) ∈ B and each i ∈ N, the loss imposed on agent i by CEL is
CELi(E,c) = ci − γi, where γi = min{ci,αi} and αi = (L− ∑

j<i
γ j)/(n− i+1).

Fact 3 By Fact 2 and Remark 1 we get:

(a) For each (E,c) ∈ B and each i ∈ N, if γi = ci, then for each j < i, γ j = c j.

(b) For each (E,c) ∈ B and each i ∈ N, if γi = αi, then αi = μ , and for each j > i, α j = αi.
Therefore γi = μ.

(c) At each m ∈ N and for each i ∈ N, αm
i only depends on the initial problem, (E,c), and

on agent j′s claim, for each j < i

Here, we denote by (ci −min{ci,μ})z the integer part of (ci −min{ci,μ}). Then the

integer part of the award is the following:

Lemma 1 For each (E,c) ∈ BD and each i ∈ N,

CELz
i (E,c) = ci −min{ci, μ̃} where μ̃ =

{
μ, if μ ∈ Z;
μz +1, if μ /∈ Z.

Proof. Let (E,c) ∈ BD and i ∈ N. By definition CELz
i (E,c) = (ci −min{ci,μ})z. We dis-

tinguish two cases:

Case 1: min{ci,μ} = ci. Since μ̃ ≥ μ then, CELz
i (E,c) = (ci−

min{ci,μ})z = ci −min{ci, μ̃}= 0.

Case 2: min{ci,μ}= μ . We have two possibilities:

2.1 If μ ∈ Z, then μ̃ = μ ∈ Z and CELz
i (E,c) = (ci −min{ci,μ})z = (ci − μ)z = ci − μ =

ci − μ̃ = ci −min{ci, μ̃}.

2.2 If μ /∈ Z, then μ̃ = μz +1 > μ and CELz
i (E,c) = (ci −min{ci,μ})z = (ci −μ)z. Since

μ /∈ Z we have μz < μ < μz + 1 and μ = μz + ξ where ξ ∈ (0,1). Thus ci − (μz + 1) <
ci −μ < ci −μz and (ci −μ)z = (ci − (μz +ξ ))z = ci − (μz +1) = ci − μ̃ . Moreover, ci > μ
and μ /∈ Z so, we have ci ≥ μz + 1 = μ̃ . Thus, ci − (μz + 1) = ci − μ̃ = ci −min{ci, μ̃}.

Therefore, CELz
i (E,c) = ci −min{ci, μ̃}.

�
As a consequence of the above lemma we have the discrete constrained equal losses

rule.
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Remark 2 For each (E,c) ∈ BD and each i ∈ N,

DCELi(E,c) = ci −min{ci, μ̄}

where μ̄ =

⎧⎪⎪⎨
⎪⎪⎩

μ̃ −1, if i is one of the E ′′ elements

with highest priority order

in Q(CEL;E,c);
μ̃, otherwise.

Lemma 2 For each (E,c,P) with (E,c)∈BD and each m ∈N, μ̄m+1 = μ̄m where μ̄m solve
∑

i∈N
CELz

i (E
m,cm) = Em and μ̄m+1 solves ∑

i∈N
CELz

i (E
m+1,cm+1) = Em+1.

Proof. By Lemma 1, Giménez-Gómez and Marco-Gil (2008) and Remark 2.

�
From now on, μ and μ̄ denote μm and μ̄m respectively, for each m ∈ N.

Lemma 3 For each (E,c,P) ∈ BDP, if there is m ∈ N such that d pri(Em,cm,P) =
DCELi(Em,cm). Then, for each h ∈ N, d pri(Em+h,cm+h,P) = 0.

Proof. We show that if d pri(Em,cm,P) = DCELi(Em,cm) then d pri(Em+1,cm+1,P) =
DCELi(Em+1,cm+1) = 0.

Let (E,c) ∈ BD and m ∈ N, be such that d pri(Em,cm,P) = DCELi(Em,cm) = cm
i −

min{cm
i , μ̄}. Then, ci

m+1 = ci
m−DCELi(Em,cm)= ci

m−(cm
i −min{cm

i , μ̄})= min{cm
i , μ̄}.

Thus

DCELi(Em+1,cm+1) = cm+1
i −min

{
cm+1

i , μ̄
}
= 0. By Fact 2, if DCELi(Em+1,cm+1) = 0

then, for each h∈N, d pri(Em+1,cm+1,P)= DCELi(Em+h,cm+h)= 0.

Lemma 4 For each (E,c,P) ∈ BDP, and each i ∈ N. If for all m ∈ N, d pri(Em,cm,P) =
ϕi(Em,cm) �= DCELi(E,c), then

ϕRD
i (E,c,P) =

∞

∑
k=1

d pri(Ek,ck,P)≤ DCELi(E,c).

Proof. Let (E,c,P) ∈ BDP and i ∈ N. Suppose that for each m ∈ N, d pri(Em,cm,P) =
ϕi(Em,cm) �= DCELi(E,c). By Lemma 1, for each m ∈ N, DCELi(Em,cm) = cm

i −
min{cm

i , μ̄} and by Definition 5, d pri(Em,cm,P) ≤ DCELi(Em,cm) = (cm
i − μ)z = cm

i −
μ̄ = ci −

m−1

∑
k=1

d pri(Ek,ck,P)− μ̄ . Thus, d pri(Em,cm,P) +
m−1

∑
k=1

d pri(Ek,ck,P) ≤ ci − μ̄ =

DCELi(E,c), that is
m
∑

k=1
d pri(Ek,ck,P)≤ DCELi(E,c). Therefore, lim

m→∞

m
∑

k=1
d pri(Ek,ck,P)≤

DCELi(E,c).
�

Lemma 5 For each (E,c) ∈ BD and each i ∈ N, if there is m∗ ∈ N, m∗ > 1, such that
d pri(Em∗

,cm∗
,P) = DCELi(Em∗

,cm∗
) and d pri(Em∗−1,cm∗−1,P) = ϕi(Em∗−1,cm∗−1) �=

DCELi(Em∗−1,cm∗−1), then

m∗

∑
k=1

d pri(Ek,ck,P) = DCELi(E,c).
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Proof. Let (E,c)∈BD and m∗ ∈N, m∗ > 1 be such that d pri(Em∗
,cm∗

,P)=DCELi(Em∗
,cm∗

)
and d pri(Em∗−1,cm∗−1,P) = ϕi(Em∗−1,cm∗−1) �= DCELi(Em∗−1,cm∗−1). Since

ϕi(Em∗−1,cm∗−1)< DCELi(Em∗−1,cm∗−1), DCELi(Em∗−1,cm∗−1)> 0.

By Lemma 1 DCELi(Em∗
,cm∗

) = cm∗
i −min{cm∗

i , μ̄}. Since DCELi(Em∗−1,cm∗−1)> 0, then

cm∗−1
i > μ̄ . By Lemma 2, cm∗

i ≥ μ̄. Then, at step m∗, agent i has received

m∗

∑
k=1

d pri(Ek,ck,P) =
m∗−1

∑
k=1

d pri(Ek,ck,P)+DCELi(Em∗
,cm∗

)

=
m∗−1

∑
k=1

d pri(Ek,ck,P)+(cm∗
i −min

{
cm∗

i , μ̄
}
)

=
m∗−1

∑
k=1

d pri(Ek,ck,P)+ ci −
m∗−1

∑
k=1

d pri(Ek,ck,P)−min
{

cm∗
i , μ̄

}

= ci −min
{

cm∗
i , μ̄

}
= ci − μ̄ = DCELi(E,c).

�

Lemma 6 For each (E,c,P) ∈ BDP, d pr1(E,c,P) = DCEL1(E,c) and
d prn(E,c,P) = DCEAn(E,c).

Proof. First we show that d pr1(E,c,P) = DCEL1(E,c). For each problem (E,c,P) with

(E,c) ∈ BD, consider the two following cases:

• DCEL1 (E,c) = 0. By non-negativity, d pr1(E,c,P) = DCEL1(E,c).
• DCEL1 (E,c) > 0. By the DCEL rule definition and WOP, c1 − DCEL1 (E,c) ≤ c j −
DCEL j (E,c) for each j �= 1. Let us suppose that there is ϕ ∈ Φ(P) such that ϕ1 (E,c) <
DCEL1 (E,c) . By efficiency for some j �= 1 ϕ j (E,c)> DCEL j (E,c). Then c1−ϕ1 (E,c)>
c j −ϕ j (E,c) , contradicting WOP. Therefore, d pr1(E,c,P) = DCEL1(E,c).

Second, by using a similar reasoning to the previous one it is straightforward that

d prn(E,c,P) = DCEAn(E,c).

�
Proof of Theorem 1.
Let (E,c) ∈ BD. There are two cases.

Case a: All agents claim the same amount. Then, by definition of discrete P-rights for

P, ϕi(E,c)− ϕ j(E,c) ≤ 1 and the entire estate is distributed at the first step. Therefore,

ϕRD(E,c,P) = DCEL(E,c).

Case b: There are at least two agents whose claims differ. By Lemma 6, d pr1(E,c,P) =
DCEL1(E,c). Furthermore, by Lemmas 3 and 5, for each agent r ∈ N who at some step m ∈
N, receives DCELr(Em,cm) as d pr for P, we have ϕRD

r (E,c,P) = DCELr(E,c). Moreover,

for each agent l �= r, by Lemma 4, ϕRD
l (E,c,P)≤ DCELl(E,c). By Remark 1 ϕRD(E,c,P)

exhausts the estate, then ϕRD(E,c,P) = DCEL(E,c).
�
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Appendix 2: Proof of Theorem 2.

This proof is based on a fact, two lemmas, and a remark. Notice that it is also based on that

any admissible rule under WOP is between the DCEA and the DCEL rules.

The next fact says that the d pr and the d pu are dual to each other.

Fact 4 For each (E,c,P) ∈ BDP, d pr(E,c,P) = c−d pu(L,c,P).

The following lemma shows that at any step m ∈ N, m > 1, the sum of the d pr and the

d pu coincides with the sum of the claims.

Lemma 7 For each (E,c,P) ∈ BDP, and m ∈ N,m > 1,

∑
i∈N

[d pri(Em,cm,P)+d pui(Em,cm,P)] =Cm.

Proof. Let (E,c,P) ∈ BDP, and m ∈ N,m > 1. Then, d pri(E,c,P) =
min{DCEAi (E,c,) ,DCELi (E,c)}, and d pui(E,c,P)= max{DCEAi (E,c) ,DCELi (E,c)}.

By Fact 4, the next expression comes straightforwardly.

∑
i∈N

[
d pui(Em,cm,P)+d pri(Em,cm,P)

2

]
= Em.

Finally,

Em = Em−1 − ∑
i∈N

d pri(Em−1,cm−1,P) =

= ∑
i∈N

[
d pui(Em−1,cm−1,P)+d pri(Em−1,cm−1,P)

2

]
−

− ∑
i∈N

d pri(Em−1,cm−1,P) =

= ∑
i∈N

[
d pui(Em−1,cm−1,P)−d pri(Em−1,cm−1,P)

2

]
=Cm/2,

by the definition of the double boundedness recursive discrete process.
�

The following remark is a direct consequence of Lemma 7.

Remark 3 For each (E,c,P) ∈ BDP, and m ∈ N,m > 1, Em = Lm =Cm/2.

Proof. Let each (E,c,P) ∈ BDP, and m ∈ N, m > 1. We know that, Lm =Cm −Em. By

Lemma 7, Em =Cm/2. Therefore, Lm =Cm −Cm/2 =Cm/2.
�

Finally, the next lemma says that each agent’s claim at each step different for step 1

coincides with the sum of d pr and d pu.

Lemma 8 For each (E,c,P) ∈ BDP, such that m ∈ N,m > 1,

cm
i = d pui(Em,cm,P)+d pri(Em,cm,P).
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Proof. Let (E,c,P) ∈ BDP, and m ∈ N, m > 1. By Remark 3 Lm = Em, so

d pri(Em,cm,P) = d pri(Lm,cm,P). By duality, d pui(Em,cm,P) = cm
i − d pri(Lm,cm,P) =

cm
i −d pri(Em,cm,P), then, cm

i = d pui(Em,cm,P)+d pri(Em,cm,P).
�

Proof of Theorem 2.

Let (E,c,P) ∈ BDP,. For each m ∈ N,

ϕDRD
i (E,c,P) = d pri(E,c,P)+

∞

∑
m=2

d pri(Em,cm,P).

By the definition of the double boundedness recursive discrete process,

∞

∑
m=2

cm
i =

∞

∑
m=2

[
d pui(Em−1,cm−1,P)−d pri(Em−1,cm−1,P)

]
=

= d pui(Em,cm,P)+
∞

∑
m=2

d pui(Em,cm,P)−d pri(Em,cm,P)−
∞

∑
m=2

d pri(Em,cm,P).

By Lemma 8,
∞
∑

m=2
cm

i =
∞
∑

m=2
[d pui(Em,cm,P)+d pri(Em,cm,P)]. So,

d pui(E,c,P) +
∞
∑

m=2
d pui(Em,cm,P) − d pri(E,c,P) −

∞
∑

m=2
d pri(Em,cm,P) =

∞
∑

m=2
[d pui(Em,cm,P)+d pri(Em,cm,P)]. Thus,

∞
∑

m=2
d pri(Em,cm,P) = (d pui(E,c,P)−d pri(E,c,P))/2. Therefore,

ϕDRD
i (E,c,P) = d pri(E,c,P)+

d pui(E,c,P)−d pri(E,c,P)
2

=

DCEAi(E,c)+DCELi(E,c)
2

.

�
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