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Abstract

This paper studies the limits of discrete time repeated games with pub-
lic monitoring. We solve and characterize the Abreu, Milgrom and Pearce
(1991) problem. We found that for the "bad" ("good") news model the
lower (higher) magnitude events suggest cooperation, i.e., zero punish-
ment probability, while the highrt (lower) magnitude events suggest de-
fection, i.e., punishment with probability one. Public correlation is used
to connect these two sets of signals and to make the enforceability to bind.
The dynamic and limit behavior of the punishment probabilities for varia-
tions in r (the discount rate) and ∆ (the time interval) are characterized,
as well as the limit payoffs for all these scenarios (We also introduce uncer-
tainty in the time domain). The obtained r ↓ 0 limits are to the best of my
knowledge, new. The obtained ∆ ↓ 0 limits coincide with Fudenberg and
Levine (2007) and Fudenberg and Olszewski (2011), with the exception
that we clearly state the precise informational conditions that cause the
limit to converge from above, to converge from below or to degenerate.

JEL: C73, D82, D86.
KEYWORDS: Repeated Games, Frequent Monitoring, Random Pub-

lic Monitoring, Moral Hazard, Stochastic Processes.

1 Introduction

This paper studies the limits of discrete time repeated games with public mon-
itoring. Contrary to the canonical setup, time is not fixed but is rather a
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parameter of the model. We call this situation deterministic monitoring. In
search of more effi cient results, we also consider the case where the repetitions
of the stage game are not known or controlled by the players. Many economic
situations with repeated interaction share this feature. In practical terms, it
tends to be the rule than the exception. We call it random monitoring.12

In this paper, we solve and characterize the Abreu, Milgrom and Pearce
(1991) problem. We focus on Poissonian events and consider the associated
"bad" and "good" news models. We found that for the "bad" ("good") news
model the lower (higher) magnitude events must suggest cooperation, i.e., zero
punishment probability, while the higher (lower) magnitude events must suggest
defection, i.e., punishment with probability one. Public correlation is used to
connect these two sets of signals and to make the enforceability constraint to
bind in equilibrium. This constraint must be satisfied first, and only after are the
payoffs obtained. Consequently, the payoffs and the punishment probabilities
are not always perfectly correlated.
The dynamic behavior of the punishment probabilities for variations in r

(discount rate) and ∆ (time interval) is characterized. We found that as r
decreases, punishment tends to decrease and more events suggesting cooperation
are added. The limit set of events include all of the possible events. In this case,
payoffs and punishment probabilities are perfectly correlated. In the "bad" news
model, we obtain a limited fully effi cient result, which does not extend to the
"good" news model.
However, when we decrease ∆, the result is less clear-cut and does not gen-

eralize; the effect on the information structure tends to be adverse. The "good"
news model degenerates because the non-occurrence of events becomes infinitely
likely for small ∆, independently of the number of events considered. The "bad"
news model has an inverse structure, and under some informational conditions,
it is possible to sustain limit payoffs above the static Nash equilibrium. As
found by Abreu, Milgrom and Pearce (1991), information or monitoring delay
has a positive effect on the payoffs; this is true in both models.
We fully characterize the limit payoffs for all of these scenarios. The obtained

r ↓ 0 limits are new, to the best of my knowledge. The obtained ∆ ↓ 0 limits co-
incide with Fudenberg and Levine (2007) and Fudenberg and Olszewski (2011),
with the exception that we clearly state the precise informational conditions
that make the limit converge from above, converge from below or degenerate.
We also consider the possibility of payoff gains due to random monitoring

w.r.t. the deterministic modeling, not only in the limit but also away from it.
Surprisingly, deterministic monitoring tends, in general, to be superior, not only
in payoff terms but also because it enlarges the spectrum of frequencies of play

1This terminology should not be confused with Miyahara and Sekiguchi (2011), where
random refers to whether or not an actual monitor exist.

2When monitoring is public, the players’ commonly observe noisy signals about others’
actions. Green and Porter (1984), Porter (1983) and Radner, Myerson and Maskin (1986)
are classic examples with this information structure. See Fudenberg and Tirole (1991) and
Mailath and Samuelson (2006) for complete surveys in repeated games.
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and the discount rates that enforce cooperation. Our intuition is that the ben-
efits of higher discounting are not enough to compensate for the informational
losses associated with random monitoring.

Related Literature - After the seminal work of Abreu, Milgrom and Pearce
(1991), renewed interest in frequent monitoring has re-emerged, in particular
due to Sannikov (2007).3

Abreu, Milgrom and Pearce (1991) show that the value of the best strongly
symmetric equilibrium degenerates at the limit when the realizations of the
public process represent "good" news. The lack of observed signals becomes
infinitely likely at the limit (when ∆ takes arbitrarily small values). Fudenberg
and Levine (2007, 2009) and Sannikov and Skrzypacz (2007) (see also Sannikov
and Skrzypacz (2010)) present similar limit results when the public signal is
Brownian rather than Poissonian.
Not all of the obtained results point to degeneracy. When the realizations of

the public process are interpreted as "bad" news, Abreu, Milgrom and Pearce
(1991) show that equilibrium payoffs above the static Nash, although not fully
effi cient, can be sustained in the limit.4

Fudenberg and Olszewski (2011) study a repeated game with stochastic asyn-
chronous monitoring. These authors show that at the limit, synchronous and
asynchronous monitoring technologies are equivalent if the signals are expo-
nential. However, when the signals are Brownian, the limit value of the asyn-
chronous games might be lower in some cases. Based on the idea of delayed-
responses,5 Fudenberg, Ishii and Kominers (2012) show that if players wait long
enough, after having observed a given signal, then it becomes likely that almost
all of the other players have observed the same signal; this way, they construct
a folk theorem.
The perfect monitoring case with time uncertainty was studied by Kawamori

(2004), who shows that the set of strongly symmetric equilibrium payoffs is
larger in this case than in the deterministic case. Although the true discount
rate remains unchanged, the players’decisions are based on a "lower discount
rate." This result typically fails under public monitoring.

The rest of the paper is organized as follows. Section 2 proposes the model.
Section 3 characterizes the best symmetric payoff. Sections 4 and 5 study the
punishment probabilities behavior for varying r and ∆, respectively. Section 6
study the limit case. Section 7 discusses non-limit payoffs and concludes. All of
the proofs are relegated to an appendix.

3 In the same spirit, for games in continuous time, see Faingold and Sannikov (2007) and
Faingold (2006).

4Under Brownian signals, Fudenberg and Levine (2007) and Osório (2011) show that full
effi ciency can emerge at the limit. The latter assumes that players control the drift of the
process, and different action profiles have associated different initial conditions. The former
assumes that a deviation increases the volatility of the process. Fudenberg and Levine (2007)
also show that if a deviation has the inverse effect on the noise parameter, it is possible to
obtain payoffs above the static Nash, but not fully effi cient.

5See Abreu, Milgrom and Pearce (1991).
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C D
C π, π − (π′ − π) , π′

D π′,− (π′ − π) 0, 0

Table 1: The Prisoners’Dilemma Stage Game Payoffs.

2 The Model

We study the effects of frequent monitoring in Abreu, Milgrom and Pearce’s
(1991) model. The infinitely repeated prisoners’dilemma payoffs are shown in
Table 1.6

We assume π′ > π > 0 to guarantee that (C,C) returns the best symmetric
payoff and that defection is a dominant strategy.
At moments in time t0, t1, t2, ..., the players’simultaneously take their ac-

tions. In the subsequent period, an imperfect signal about these actions is
commonly observed. The signals follow a homogeneous Poisson process with
rate parameter λ ∈ {β, µ} . We have two relevant action profiles: the coopera-
tive profile where λ = β, and the unilateral defection profile where λ = µ. In a
given time interval ∆, the process returns an event k ∈ {0, 1, ...} .

As in Abreu, Milgrom and Pearce (1991), we consider two models, namely,

The "bad" news model µ > β : the occurrence of events in a given time in-
terval is interpreted as a signal of defection. Cooperation has associated
a lower arrival intensity.

The "good" news model β > µ : the non-occurrence of events in a given time
interval is interpreted as a signal of defection. Cooperation has associated
a higher arrival intensity.

2.1 Deterministic Monitoring

Definition 1 A repeated game is of deterministic monitoring if the interval of
time ∆ ≡ tτ − tτ−1 with τ ≥ 1 between the repetitions of the stage game is
constant and predetermined.

It corresponds to the canonical repeated games setup parameterized by ∆
instead of ∆ = 1.
The common discount factor is exponential,7 i.e., δ 3 δ∆ ≡ e−r∆, where

r ∈ (0,∞) denotes the discount rate.

Probabilities - In a given time interval of length ∆, the probability of ob-
serving a particular event of size k, when the profile (C,C) is chosen, is given
by

pk 3 pk ≡
(β∆)

k

k!
e−β∆; (1)

6We restrict our analysis to the simplest setting to avoid adding unnecessary complexities.
7We can consider other discounting functions. The qualitative features of the model remain

provided that discounting is convex in time.

4



otherwise, in the case of unilateral defection, i.e., (D,C) or (C,D) , we have

qk 3 qk ≡
(µ∆)

k

k!
e−µ∆. (2)

In the case of cooperation, the probability of observing one of the events k ∈
{0, 1, ...,K − 1} and k ∈ {K + 1, ...,∞} , in the time interval ∆ is given by∑K−1

k=0
pk ≡ Γ (K,β∆) /Γ (K) ,

and ∑∞

k=K+1
pk ≡ 1− Γ (K + 1, β∆) /Γ (K + 1) ,

respectively. In the case of unilateral defection, β is replaced by µ and we have∑K−1
k=0 qk and

∑∞
k=K+1 qk, respectively. Γ (.) is the gamma function, Γ (., .) is

the (upper) incomplete gamma function and Γ (., .) /Γ (.) is called the regularized
incomplete gamma function. This process has mean and variance λ∆.

2.2 Random Monitoring

Definition 2 A repeated game is of random monitoring if the interval of time,
x = tτ − tτ−1 with τ ≥ 1, between repetitions of the stage game is stochastic and
of uncertainty duration.

Random monitoring, in contrast to deterministic, refers to uncertainty in
the repetitions of the stage game, while perfect and imperfect monitoring refers
to the actions observability, i.e., the signals’informativeness (see Footnote 1).
We assume that x ∼ Exp (1/∆) , i.e., a continuous random variable with

x ∈ (0,∞).8 The i.i.d. assumption implies that the length of each time interval
is independent of the previous and subsequent intervals.

Meaningful comparisons require that the expected time interval length asso-
ciated with random monitoring, matches the deterministic monitoring frequency
∆, i.e., E (x) = ∆ <∞. Consequently, the discount factor is a random function
of time. The expected discount factor is

δ 3 E (δx) ≡
∫

(0,∞)

e−rxe−
x
∆ /∆dx = 1/ (1 + r∆) , 9 (3)

with E (δx) > δ∆. Note also that δ =
{
δ∆, E (δx)

}
.

8The exponential distribution is interesting because of its tractability; in addition, it max-
imizes the entropy of random monitoring for distributions with support x ∈ (0,∞).

9For tτ − tτ−1, ..., t1 − t0, we have a sequence of τ i.i.d. intervals. We can write

E
(
δtτ
)

= E
(
δ(tτ−tτ−1)+...+(t1−0)

)
=
∏τ

j=1
E (δx) = E (δx)τ .

Consequently, each payoff is discounted and treated independently of the previous period
payoff.
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Probabilities - Payoffs are discounted from the end of the interval x, at which
point the value of the process is observed. Consequently, we cannot separate
discounting from the events distribution, i.e., E (δxpk) . This difference is critical
w.r.t. the deterministic setup. Moreover, the sum of all possible events over the
entire support does not add to one. To address this issue, we divide E (δxpk)
by E (δx) and define p̃k ≡ E (δxpk) /E (δx) and q̃k ≡ E (δxqk) /E (δ) . Now,
these are actual probabilities and are associated with a well-defined stochastic
process. The probability of the occurrence of the event k ∈ {0, 1, ...} in the case
of cooperation and unilateral defection are given by

pk 3 p̃k ≡ (1 + r∆)

∫
(0,∞)

e−rx
1

∆
e−

x
∆

(βx)
k

k!
e−βxdx =

(1 + r∆) (β∆)
k

(1 + r∆ + β∆)
k+1

, (4)

and

qk 3 q̃k ≡ (1 + r∆)

∫
(0,∞)

e−rx
1

∆
e−

x
∆

(µx)
k

k!
e−µxdx =

(1 + r∆) (µ∆)
k

(1 + r∆ + µ∆)
k+1

, (5)

respectively.
In the case of cooperation, the probability of observing one of the events

k ∈ {0, 1, ...,K − 1} and k ∈ {K + 1, ...,∞} in an interval of expected length ∆
is given by ∑K−1

k=0
p̃k = 1− (β∆/ (1 + r∆ + β∆))

K

and ∑∞

k=K+1
p̃k = (β∆/ (1 + r∆ + β∆))

K+1
,

respectively. In the case of unilateral defection β, is replaced by µ, and we have∑K−1
k=0 q̃k and

∑∞
k=K+1 q̃k, respectively. The process has mean λ∆/ (1 + r∆) <

λ∆ and variance σ̃2
λ = λ∆ (1 + r∆ + λ∆) / (1 + r∆)

2
, which is lower than λ∆

if r∆ is suffi ciently large, i.e., λ∆ < r∆ (1 + r∆) . The variance decreases (in-
creases) in r (∆).

Note that in both the deterministic and the random cases, a deviation in-
creases the variance in the "bad" news model but decreases it in the "good"
news model. Fudenberg and Levine (2007) have noted the distinction between
these two situations as the cause for the latter’s∆ limit degeneracy. Throughout
the text, we refer to

σ̃2
µ/σ̃

2
β =

µ (1 + r∆ + µ∆)

β (1 + r∆ + β∆)
,

as the variance ratio. This ratio is larger (smaller) than one in the "bad"
("good") news model. In terms of inference, for the "bad" ("good") news model,
we want this ratio to be as large (small) as possible. The derivative w.r.t. r is
given by

−∆2µ (µ− β) /β (1 + r∆ + β∆)
2
,
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and is negative (positive) in the "bad" ("good") news model. The derivative
w.r.t. ∆ is given by

µ (µ− β) /β (1 + r∆ + β∆)
2
,

and is positive (negative) in the "bad" ("good") news model. Note that the
ratio varies in opposite directions depending on whether we change r or ∆.

We look at the profiles of strategies that form a perfect public equilibrium
(PPE).10’11

3 The Best Symmetric Equilibrium

To accommodate random monitoring, we take into account that discounting
cannot be separated from the signals’ distribution. Despite this restriction,
the expression that characterizes the best symmetric payoff for the prisoners’
dilemma of Table 1 has a similar structure to the deterministic monitoring case.
However, the actual payoffs can differ substantially.

The players’employ αk − grim strategies.12 After the occurrence of a given
event k, players coordinate the punishment (perpetual stage game Nash equi-
librium) decision on a public random device, which effectively punishes with
probability αk ∈ (0, 1] and forgives otherwise.13 When monitoring is random
(respectively, deterministic), this probability is denoted as α̃ (respectively, α).

A critical question is which events should suggest cooperation, which should
suggest defection, and which are determined by public randomization?
Let Π denote the set of events that suggest cooperation, with Π = Π in

the deterministic and Π = Π̃ in the random monitoring cases. Recall that
discounting and signals are convolved in the latter case, as in (4) and (5).14

The dynamic programming algorithm of Abreu, Pearce and Staccetti (1986,
1990) generalizes straightforwardly. The value of the infinitely repeated game
is given by

v = (1− δ)π + δv
∑

k∈Π
pk (∆) (1− αk) . (6)

10The publicly observed history is htk ≡
{
yt0 , yt1 , ..., ytk−1

}
with ht0 ≡ ∅. Player i has

also a private history htki ≡
{
yt0 , at0i , ..., y

tk−1 , a
tk−1
i

}
.

11A strategy is public if it depends only on the public histories and not on the private
history of player i. Given a public history, a profile of public strategies that induces a Nash
equilibrium on the continuation game from that time on is called a PPE.
12When signals have a Poisson distribution, α − grim strategies are required to make the

enforceability constraint to bind.
13The probability α, as well as other functions in this paper, depend on r and ∆ (and the

other parameters). However, to shorten the notation, we denote them without this depen-
dence.
14To be general enough, at this stage, we do not specify the upper and lower bound of

summation nor do we specify the monitoring technology. Recall also that v = {v, ṽ} , pk =
{pk, p̃k} , qk = {qk, q̃k} and δ =

{
δ∆, E (δx)

}
, where the first and second elements of each

set refer to the deterministic and random monitoring cases, respectively.
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The normalized value of the infinitely repeated game is a convex combination
between the immediate cooperative payoff and the continuation value. This
structure is enforceable if

v ≥ (1− δ)π′ + δv
∑

k∈Π
qk (∆) (1− αk) , (7)

where qk = {qk, q̃k} . The crucial differences between deterministic and ran-
dom monitoring are in the discount factors and in the signals’distribution. In
equilibrium, these differences propagate to αk and to the events set Π.

Proposition 3 The best symmetric payoff is given by

v = π − (π′ − π) / (lK − 1) , (8)

where

lK =
1−

(∑
k∈Π qk + qK (1− αK)

)
1−

(∑
k∈Π pk + pK (1− αK)

) , (9)

and

(0, 1] 3 αK = 1−
π
(
1− δ

∑
k∈Π qk

)
− π′

(
1− δ

∑
k∈Π pk

)
δ (πqK − π′pK)

. (10)

The Lemma is valid for the "bad" and "good" news models and for the
deterministic and random monitoring technologies. Optimal behavior requires
that in addition to δ, pk and qk, the set Π and the vector α vary for each model
and each monitoring technology. The derivation of these sets can be found in
the proof of Proposition 3. The following scheme resumes them, respectively:

Deterministic "bad" news:

δ∆, pk, qk, Π =
{

0, 1, ...,K − 1
}
and α = {0, ..., 0, αK , 1, ...}

Random "bad" news:

E (δx) , pk, qk, Π̃ =
{

0, 1, ..., K̃ − 1
}
and α̃ =

{
0, ..., 0, α̃K̃ , 1, ...

}
Deterministic "good" news:

δ∆, pk, qk, Π =
{
K + 1, ...,∞

}
and α = {1, ..., 1, αK , 0, ...}

Random "good" news:

E (δx) , pk, qk, Π̃ =
{
K̃ + 1, ...,∞

}
and α̃ =

{
1, ..., 1, α̃K̃ , 0, ...

}
In the "bad" news model, we have pk (∆) /qk (∆) > pk+1 (∆) /qk+1 (∆) for

all k. The most informative events are the low magnitude events. In other
words, the difference between cooperative and defective behavior is easier to

8



infer. Consequently, these events are natural candidates for signaling coop-
eration. Moreover, if the observation of the event K − 1 is accepted as sug-
gesting cooperation, then all the other events with smaller magnitude must
suggest cooperation, as well. However, if the observation of the event K + 1
suggests defection, so does all the higher magnitude one. In between, the pun-
ishment probability αK associated with the observation of the event K forces
enforceability to bind. Similar reasoning applies to the "good" news model,
where pk+1 (∆) /qk+1 (∆) > pk (∆) /qk (∆) . The larger magnitude events are
the events that suggest cooperation.

Definition 4 We say that a K non-trivial equilibrium exists if αK ∈ (0, 1]
enforces cooperation.

However, not explicitly expressed, when monitoring is deterministic, the
payoff function depends on r but through αK and K (both are functions of
the all model parameters). However, when monitoring is random, the payoffs
depend on r through the signals’distribution as well. It is a consequence that
discounting and signals are not independent.
The expression 1 −

(∑
k∈Π qk + qK (1− αK)

)
is the probability of correct

punishment, while 1−
(∑

k∈Π pk + pK (1− αK)
)
is the probability of mistaken

punishment. Then, lK is the likelihood of the correct detection of defective
behavior. The most effi cient equilibria are associated with high values of lK .
In other words, we want a large value of lK , but first we need to guarantee
enforceability. E.g., the effect of r or∆ changes the binding enforceable function,
determining lK and consequently the payoffs, but not the other way around.
In other words, a binding enforceable condition is the starting point, then,
given this restriction, the payoffs are obtained. For that reason, the payoff
function is not always smooth or monotonic. This function is continuous, but
not differentiable in all of its domain. These issues are discussed in more detail
later.
We have the following important continuity property, which does not depend

on the monitoring technology.

Corollary 5 In the "bad" news model, αK = 0⇐⇒ αK+1 = 1 or αK = 1⇐⇒
αK−1 = 0.
In the "good" news model, αK = 1⇐⇒ αK+1 = 0 or αK = 0⇐⇒ αK−1 = 1.

The idea is that ("bad" news model) monitoring with the set of events Π =
{0, 1, ...,K − 1} suggesting cooperation and punishing the occurrence of an event
of magnitude K with probability zero, is the same as monitoring with the set
of events Π = {0, 1, ...,K} suggesting cooperation and punishing the occurrence
of an event of magnitude K + 1 with probability one. Similar reasoning applies
in the "good" news model.
Another consequence ("bad" news model) is as follows: if for a given equi-

librium parameterization αK ∈ (0, 1] , then for that K equilibrium parameter-
ization, the α-function (10) must return αK+1 > 1 and αK−1 < 0. In other
words, ”αK+1” cannot enforce cooperation, while ”αK−1” enforces cooperation

9



with slack. Similarly, in the "good" news model, if for a given equilibrium
parameterization αK ∈ (0, 1] , the function (10) must return αK+1 < 0 and
αK−1 > 1.

Proposition 6 In a K non-trivial "bad" ("good") news equilibrium, πqk−π′pk
increases (decreases) in k = 0, ...,K (respectively, k = K, ...,∞) and πqK −
π′pK > 0.

The results state that the equilibrium value ofK must be such that πqK/π′pK
is larger than one. Otherwise, the subtraction of one more event to the set of sig-
nals suggesting cooperation drives the ratios πqK−1/π

′pK−1 and πqK+1/π
′pK+1

below one ("bad" and "good" news models respectively).

4 Varying the Discount Rate r

It is known that low discount rates favor the provision of incentives. Here, it is
not an exception, formally,

Proposition 7 In a K non-trivial equilibrium ∂αK/∂r > 0, where K > 0 and
K <∞, in the "bad" and "good" news models, respectively.

The result is valid for any model and monitoring technology. In the "bad"
news model, a necessary condition for the existence of some r frequency that
supports cooperation is that µ > β. This is the case, because we can always
find a r suffi ciently small and an associated K such that µ > β is suffi ciently
informative. On the contrary, in the "good" news model, we have additional
informational requirements for the existence of a non-trivial equilibrium for some
r frequency, (β − µ) ∆ > ln (π′/π) for the deterministic case and π (1 + β∆) >
π′ (1 + µ∆) for the random monitoring case (see the proof). In both cases,
either the signals are suffi ciently informative or the time interval is suffi ciently
large.
A decrease in r decreases the punishment probability and the equilibrium

value of K must move in the K + 1 and K − 1 directions in the "bad" and
"good" news models, respectively. Such is an expansion on the set of events
that suggest cooperation, i.e., from Π = {0, ...,K − 1} to Π′ = {0, ...,K} in
the "bad" news model and from Π = {K + 1, ...,∞} to Π′ = {K, ...,∞} in the
"good" news model. Formally,

Corollary 8 In a non-trivial equilibrium, the set Π weakly increases when r
decreases.

The set increases weakly because, while αK ∈ (0, 1] , the set has the same
dimension. As r decreases, the incentives to defection decrease and monitor-
ing relaxes, expanding the set of events that suggest cooperation. Payoffs and
incentives are necessarily connected. This relationship is formally stated as
follows.
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Proposition 9 In a deterministic K non-trivial equilibrium ∂v/∂r < 0 ⇐⇒
∂αK/∂r > 0.

In the random "bad" news model, a deviation increases the variance σ2
λ,

which improves inference. As r decreases, this inference effect improves even
more. At the same time, a low discount effect favors the provision of incentives.
In fact, there are no trade-offs, and we should expect not only that the payoffs
improve but also we should expect a fully effi cient result at the limit. In the
deterministic case, the information structure is not affected by variations in r.
In the random "good" news model, a deviation decreases the variance fa-

voring inference. At the same time, a decrease in r tends to strengthen this
effect. On the other hand, a low discount rate favors the provision of incentives.
Consequently, the payoffs improve for lower values of r. However, we should not
expect a limit effi cient result because mistaken punishments do occur on the
equilibrium path.

Proposition 7 states that ∂αK/∂r < 0 cannot occur in a K equilibrium.
Then, ∂αK/∂r > 0 while enforceability holds, i.e., while r is suffi ciently small.
When enforceability fails, Proposition 6 states that πqK−π′pK > 0. In the "bad"
news model, as r increases, we subtract events (the monitoring tightens), and
there must be a point when enforceability fails, i.e., we must have ∂αK−1/∂r < 0
and, because of Corollary 5 αK = 1 ⇐⇒ αK−1 = 0, it must be the case
that πqK−1 − π′pK−1 < 0. Similarly, in the "good" news model at a certain
point ∂αK+1/∂r < 0, because by Corollary 5 αK = 1 ⇐⇒ αK+1 = 0 we have
πqK+1 − π′pK+1 < 0. Otherwise, we partially or totally overlap the r interval
where K is an equilibrium but with a small set Π, this is not optimal behavior.
The idea is that αk is increasing in r, and when this is no longer the case, a
non-trivial equilibrium fails to be enforceable. The remainder of the argument
follows in the proof of the following result.

Proposition 10 In the "bad" news model, the value of K that satisfies πqK −
π′pK > 0 and πqK−1 − π′pK−1 < 0 is the last (lowest) K that enforces cooper-
ation.
In the "good" news model, the value of K that satisfies πqK − π′pK > 0 and

πqK+1 − π′pK+1 < 0 is the last (largest) K that enforces cooperation.

The result is valid for large r and ∆. As it is for larger r, for large ∆, we
must also have ∂αK/∂∆ > 0, otherwise enforceability fails. This way we know
the punishment probability slope for large ∆. Consequently, it is enough to
study the behavior of the punishment probability for small ∆ and then link
Proposition 10 together. This result is important for this reason, but it also
establishes explicit conditions on K for a non-limit and non-trivial equilibrium.

5 Varying the Time Interval ∆

Proposition 10 is valid for a suffi ciently large ∆ or r. Consequently, in the last
enforceable neighborhood, we must have ∂αK/∂∆ > 0 for suffi ciently large ∆,

11
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Figure 1: Deterministic (blue/dark) and random (orange/grey) "bad" news
model punishment probability α as a function of ∆.

and ∂αK−1/∂∆ < 0 in its neighborhood. Now, we want to know what happens
when ∆ is small and establish a bridge between these two. The following result
characterizes the behavior of the punishment probability with respect to ∆.

Proposition 11 Suppose that π (µ+ r) > π′ (β + r) . In a K non-trivial "bad"
news equilibrium, ∂αK/∂∆ < 0 for small ∆ and ∂αK/∂∆ > 0 for large ∆, with
K > 0.15

In a K non-trivial "good" news equilibrium, ∂α0/∂∆ < 0 for small ∆ > 0
and ∂αK/∂∆ > 0 for large ∆, with K ≥ 0 and K <∞.

In the "bad" news model, a decrease in ∆ reduces the variances ratio in
the unit direction, which corresponds to an informational loss. For small ∆,
better information is obtained with fewer but more precise events, i.e., Π =
{0, 1} . The information degradation must bound the payoffs below the effi cient
frontier, even when the discounting incentives are maximal. For large ∆, signals
become more informative and more events are considered, but the discounting
incentives become weaker. This process lasts while the informational gains are
stronger. Afterwards, the set of events shrinks until the point that the incentives
to cooperate vanish due to low discounting. Figure 1 illustrates some of these
arguments.
As we can see, for small (large) ∆, the punishment probability is negatively

(positively) sloped as stated in Proposition 11 (and Proposition 10). The same

15 If the sign

−β
(
π′ (β + r)

)2 − µ (π (µ+ r))2 + ππ′
((
r2 + βµ

)
(β + µ) + 2r

(
β2 + µ2

))
,

is positive then α1 ↓ r (π′ − π) / (πµ− π′β) as ∆ ↓ 0 and α1 is monotonic increases in
∆ ∈ (0,∆a) . This case is special in the sense that exist alternating intervals of time where
enforceability fails while in others no.
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Figure 2: Deterministic (blue) and random (orange) "good" news model pun-
ishment probability α as a function of ∆.

occurs in the "good" news model, see Figure 2 below.
In the "good" news model, we always have ∂αK/∂∆ > 0; the exception is

when K = 0 (a small ∆, below which enforceability fails) where ∂α0/∂∆ < 0.
Consequently, α0 has a U-shape with the minimum above zero. Intuitively, for a
small ∆ ↓ 0, it becomes impossible to statistically distinguish cooperation from
defection. Still, for small ∆ > 0, non-trivial equilibrium payoffs are possible
via the addition of events. The information quality of each signal decays; to
compensate, we add events suggesting cooperation. Incentives are provided with
more signals but of lower informational quality. In some sense the monitoring
relaxes when ∆ is small. As ∆ increases, at a certain point the information
degradation is so important than the incentives via discounting are not suffi cient
and the equilibrium degenerates. The same conclusion is obtained by noticing
that the variance ratio increases in the unit direction when ∆ gets small. Figure
2 illustrates these arguments and the intuition around Proposition 11.
In terms of payoffs, the higher the number of signals, the better. In terms

of the provision of incentives, the number of events is determined endogenously
by the model, and more events do not necessarily lead to better incentives.
These two objectives are correlated, but not perfectly. Consequently, Proposi-
tion 9 does not generalize. We might observe the payoffs increasing while the
punishment probability decreases or increases, and vice versa.

Corollary 12 In a non-trivial "bad" news equilibrium, while ∂αK/∂∆ < 0, the
set Π weakly decreases when ∆ decreases and while ∂αK/∂∆ > 0, the set Π
weakly increases when ∆ decreases.
In a non-trivial "good" news equilibrium, the set Π weakly increases when ∆

decreases.
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In the "bad" news model, increases in ∆ initially cause an expansion in the
set until the transition point, where it shrinks again. For the smallest values of
∆, we have K = 1, i.e., monitoring becomes strict to compensate for the signal’s
low information. At this point, the discounting incentives for cooperation are
strong. As ∆ increases, information becomes more reliable, and consequently
more events suggesting cooperation are added. At the same time, the incentives
via discounting weaken. At a certain point, these incentives are so weak that
monitoring needs to tighten again. Intuitively, the compensation is made with
fewer but more precise events.
In a K = 0 "good" news equilibrium, in spite of the change in the derivative

sign, the set remains constant and equal to Π = {1, ...,∞} . Otherwise, the set
decreases in ∆, i.e., a reduction in the set of events suggesting cooperation. The
argument is similar; as the set of events shrinks, we trade informational quality
for quantity to balance the weaker discounting incentives.

6 Limit Payoffs

6.1 The Limit r ↓ 0

Placing together Proposition 9 and Corollary 8, in equilibrium, as the players
become more patient, the number of events suggesting cooperation weakly in-
creases. This is the case when the lowest punishment probability αK = 0 is
reached and an additional event is required (the K+ 1 equilibrium in the "bad"
news model and theK−1 equilibrium in the "good" news model). Consequently,
the set of signals suggesting cooperation Π enlarges.

We do not have the functional form that establishes the relationship be-
tween K and r (the same occurs with ∆); nonetheless, we know the sign of its
"derivative", which is enough to proceed. To take the most from the available
information, in the limit, i.e., r ↓ 0, we must have K ↑ ∞ for the "bad" news
model, and K ↓ 0 for the "good" news model. Actually, it is more correct to
state K = 0, rather than K ↓ 0.

Proposition 13 In the "bad" news model, r ↓ 0 =⇒ v ↑ π.
In the "good" news model,

r ↓ 0 =⇒
{

v ↑ π − e−β∆

e−µ∆−e−β∆ (π′ − π)

ṽ ↑ π − 1+µ∆
(β−µ)∆ (π′ − π)

∆ >
ln(π′/π)
β−µ

∆ > π′−π
βπ−µπ′

. (11)

These limits are new to the best of my knowledge. Clearly, the result ob-
tained for the "bad" news model suggests the existence of a limit folk-theorem.
The result is possible because the distribution of the public signals is of un-
bounded support (see Milgrom 1977) and the variance ratio improves (constant)
with reductions in r for the random (deterministic) monitoring case. However,
because a reduction in the variance after a deviation is not as statistically infor-
mative as an increase (see Fudenberg and Levine (2007)), in the "good" news
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Figure 3: "Bad" news model: payoffs v (blue) and ṽ (orange) as a function of
r. (µ = 2, β = 1,∆ = 1, π = 2, π′ = 3)

model, we are bounded away from a fully effi cient result. In spite of that fact, if
the signals are suffi ciently informative, i.e., β >> µ, we can become arbitrarily
close. In both models, convergence occurs from below and the best payoffs are
obtained at the limit.

In the "good" news model β > µ, when r ↓ 0 we must have v converging
above ṽ. To see it, note that v > ṽ for r ↓ 0 is equivalent to looking at lK > lK̃
at the limit, i.e.,

e−µ∆/e−β∆ > (1 + β∆) / (1 + µ∆) .

Note that the RHS is equivalent to an expansion of the LHS of ∆ around zero.
Consequently, the RHS is a lower bound to the LHS, not only for small but for
all ∆. The sense is that the "good" news result extends to all enforceable r. If
this is the case, then random monitoring brings no improvement to the "good"
news model.
However, at the limit r ↓ 0 and for the "bad" news model, we cannot for-

mally show whether v is above ṽ or the other way around. The reason that we
cannot show this relationship is because the limit K ↑ ∞ is non-trivial. Figure
3 shows the existence of a crossing point for small r, in which random monitor-
ing is superior on the left neighborhood. We are then tempted to think that at
the limit, random monitoring is payoff superior, but notice that the number of
signals required to sustain cooperation is much lower with deterministic mon-
itoring. Intuitively, in the limit and with a same number of signals "K ↑ ∞"
deterministic monitoring must converge to effi ciency above random monitoring.
Clearly, the figure shows the existence of a discounting interval where random

monitoring leads to payoff improvements.16

16However, not shown in the picture, random monitoring tends to reduce the r−discounting
interval that sustains cooperation for a large r.
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Away from the limit, the comparisons between v and ṽ are diffi cult to for-
malize because, typically, K 6= K̃ for equal parameterization.

6.2 Limit Time Frequency

In the "bad" news model, for a given K, as ∆ decreases, the punishment prob-
ability increases; consequently, v must decrease as well, because of a higher
likelihood of mistaken punishment on the equilibrium path. However, this rela-
tionship is not perfect. In other words, as ∆ gets small, the signals become less
informative and the detection technology becomes stricter. In extreme cases,
i.e., (r + β) / (r + µ) > π/π′, for a small ∆ (even before the limit), the equilib-
rium degenerates. In spite of it, for large values of ∆, we can move arbitrarily
close to a full effi cient enforceable equilibrium if the signals are suffi ciently in-
formative.
The "good" news model degenerates because of the low information content

from the public signals for a low ∆. The discounting incentives are not suffi cient
to compensate for this effect.

Proposition 14 In the "bad" news model,

∆ ↓ 0 =⇒


v ↓ π − β

µ−β (π′ − π)

v ↑ π − β
µ−β (π′ − π)

v ↓ 0

π
π′ ≥

2r+β
2r+µ ≥

r+β
r+µ

2r+β
2r+µ >

π
π′ ≥

r+β
r+µ

otherwise

. (12)

In the "good" news model, ∆ ↓ 0 =⇒ v ↓ 0.

These limits coincide with Fudenberg and Levine (2007) and Fudenberg and
Olszewski (2011), with the exception that we clearly state the exact informa-
tional conditions that cause the limit to converge from above, to converge from
below or to degenerate.
One important conclusion for the "bad" news model is that for any∆, neither

K = 0 nor K = 2, can enforce limit cooperation. The latter may enforce
cooperation for a large ∆, even if the equilibrium degenerates at the limit.
Limit degeneracy is guaranteed when (r + β) / (r + µ) > π/π′. In spite of that
fact, for large values of ∆, we might be able to sustain cooperation providing
that at least π/π′ ≥ β/µ.17 Limit payoffs above the static Nash are only possible
if a α1 ∈ (0, 1] exists.
The "good" news model degenerates, even before the limit ∆ ↓ 0. The in-

formation degradation for a small ∆ is the key aspect.

Proposition 15 In the "bad" news model,

∆ ↓ 0 =⇒
{
ṽ converges above v
v converges above ṽ

π/π′ ≥ (2r + β) / (2r + µ)
π/π′ < (2r + β) / (2r + µ)

In the "good" news model, ∆ ↓ 0 =⇒ v is above ṽ.
17Even if π/π′ ≥ (2r + β) / (2r + µ) we can observe discontinuities in the ∆ domain. In

other words, there might exist ∆ intervals in which cooperation is enforceable alternating with
intervals where enforceability fails.
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In the "bad" news model, random monitoring is typically superior at the
limit and its neighborhood. In fact, away from the limit, deterministic moni-
toring tends to be superior.
In the "good" news model, random monitoring does not produce any effi -

ciency gain, not only in the limit but also away from it. This result is even the
case when we consider the possibility of enlarging the frequencies of play that
support cooperation. See Figures 4 and 5 below.

7 Non-limit payoffs: Discussion

Under perfect random monitoring we can enforce the same payoffs as in the
deterministic setup with higher discount rates. The players’decisions are based
on a larger discount factor (the expected discount factor). The effect is similar;
as if the players had become "more patient" (see Kawamori (2004)).
Surprisingly, when monitoring is imperfect, the result is less clear cut, in

particular, because the uncertainty regarding the time repetitions of the stage
game adversely affect the informational content of the public signals. Before
any other considerations, we define how random monitoring can improve the
payoffs w.r.t. the canonical deterministic case.

Definition 16 Given the same parameterization, the best symmetric equilib-
rium ṽ is larger than the best symmetric equilibrium v when:

(i) α̃K̃ ∈ (0, 1] , αK ∈ (0, 1] and ṽ > v.
(ii) α̃K̃ ∈ (0, 1] and αK /∈ (0, 1] .

In part (i) , both monitoring technologies enforce cooperation. In this case,
both ṽ and v are, at least, weakly above zero. Consequently, the random mon-
itoring returns higher payoffs if ṽ ≥ v, or, equivalently, if l̃K̃ ≥ lK . Part (ii)
states when cooperation is enforced exclusively with random monitoring. Con-
sequently, we have a gain equal to ṽ because v = 0. In this case, random
monitoring expands the spectrum of the frequencies of play that sustain coop-
eration. Outside of the Definition 16, either deterministic monitoring leads to
higher payoffs or no monitoring technology can improve on the static Nash.

Random monitoring in the "bad" and "good" news models presents tractable
structures of interest in the applied work. However, payoff comparisons with
the deterministic setting are tricky, in particular, because we cannot establish
most relationships in close form. Definition 16 is general and ambiguous w.r.t.
a particular model. For that reason, Figures 4 and 5, attempt to elucidate these
issues.
Figure 4 illustrates the payoffs from the "bad" news deterministic and ran-

dom monitoring models. For a small ∆, the payoffs decay when ∆ decreases,
but random monitoring is superior in the sense of part (i) of Definition 16. For
a large ∆, we observe the opposite: the payoffs are higher with deterministic
monitoring and the enforceable space grows larger.
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Figure 4: Deterministic (blue) and random (orange) "bad" news model payoffs
v and ṽ as a function of ∆. (r = 0.1, π = 2, π′ = 3, β = 1, µ = 1.7)
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Figure 5: Deterministic (blue) and random (orange) "good" news model payoffs
v and ṽ as a function of ∆. (r = 0.1, π = 2, π′ = 3, β = 3, µ = 1)
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In the deterministic monitoring case, the payoffs increase in ∆ for K = 1,
they present a u-shape for K = 2, ..., 8, and they are concave decreasing in ∆ for
K = 9. The largest payoff is achieved at α7 = 0 or α8 = 1, i.e., the coordinate
(∆, v) = (4.35, 1.88) . In the random monitoring case, the payoffs increase in ∆

for K̃ = 1, they present a u-shape for K̃ = 2, 3, and they present a concave
decreasing in ∆ for K̃ = 4. The largest payoff is achieved at α̃3 = 0 or α̃4 = 1,
i.e., the coordinate (∆, ṽ) = (0.55, 1.61) .

The same conclusion holds for the "good" news model. Here, we add events
of increasing magnitude as ∆ decreases. Figure 5 provides an illustration. In
the deterministic monitoring case, the payoffs increase in ∆ for K = 0, they
present a u-shape for K = 1, ..., 13, and they are convex decreasing in ∆ for
K = 14, ..., 19. The largest payoff is achieved at α9 = 1 or α10 = 0, i.e., the
coordinate (∆, v) = (8.43, 1.99) . In the random monitoring case, the payoffs
increase in ∆ for K̃ = 0 and are convex decreasing in ∆ for K̃ = 1, 2. The largest
payoff is achieved at α̃0 = 1 or α̃1 = 0, i.e., the coordinate (∆, ṽ) = (2.24, 1.24) .
The conditions of Definition 16 fail and deterministic monitoring is superior in
all dimensions.
The results presented in these figures tend to be general and these patterns

repeat for other parameterizations. Consistent with Abreu, Milgrom and Pearce
(1991), delay allows for larger payoffs: this is true independently of the moni-
toring structure.

APPENDIX: PROOF OF COROLLARIES AND PROPOSITIONS

Proof of Propositions 3. Consider the general case. Under cooperation we
have expression (6) and the incentives to defection are removed if inequality (7)
is satisfied. Replace (6) with (7) to obtain

v ≥ (1− δ) (π′ − π)

δ
∑
k∈Π (pk − qk) (1− αk)

. (13)

Our objective is to

max
α={α0,α1,...}

(6) subject to (13) and αk ∈ (0, 1] .

The best symmetric non-trivial equilibrium v > 0 requires inequality (13) binds.
Because pk > 0, the more elements there are in Π and/or the smaller αk is, the
larger the value (6).
Consider first the "bad" news model, i.e., µ > β > 0. In this case, we have

pk > qk for a small k and pk < qk for a large k.18 In the former (latter),

18E.g., in the deterministic "bad" news model, the value k such that pk (∆) > qk (∆) and
pk+1 (∆) ≤ qk+1 (∆) , is bounded by

(µ− β) ∆/ ln (µ/β)− 1 ≤ k∗ < (µ− β) ∆/ ln (µ/β) .
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the occurrence of k events is more likely if there is cooperation (defection).
Our concern is not with a particular event but instead is with the aggregate.
Starting from k = 0 with pk − qk > 0, the denominator of (13) increases and
the RHS of the inequality decreases as we add events. Next (for some k > k∗),
i.e., when pk − qk < 0, the addition of a new signal decreases the denominator
and consequently increases the RHS of (13). If we continue adding events, for
some k = K, the inequality (13) fails. Note that at k = k∗, the RHS of (13)
reaches its minimum; consequently, we must have K ≥ k∗. Because pk > pk+1,
if we take some k ≥ k∗ satisfying k < K, as a signal of cooperation, then it
must be the case that αk = 0. The relative measure is the relevant one, i.e.,
pk/qk > pk+1/qk+1 for all k. Because (13) holds if Π = {0, 1, ...,K − 1} and fails
if Π = {0, 1, ...,K} then we must have αK ∈ (0, 1] and αk = 1 for all k > K.
The argument holds independently of the monitoring technology, with K ≡ K
and K ≡ K̃ for the deterministic and random cases, respectively.
In the "good" news model, i.e., β > µ > 0, the argument is reversed. In

this case, we have pk < qk for a small k, while pk > qk for a large k.19 In the
former (latter), the observation of k signals is more likely if there is defection
(cooperation). To obtain the aggregate of events that lead (13) to hold with
equality, starting from a k that is suffi ciently large, i.e., when pk − qk > 0,
the addition of a new event (the event k − 1) increases the denominator on the
RHS of (13) and consequently decreases the inequality. Below a certain k∗,
pk − qk < 0, the denominator of (13) decreases and the RHS of (13) increases
as we add signals. If we continue adding signals, at a certain point, k = K,
and the inequality (13) fails. Observe that now pk/qk < pk+1/qk+1 for all k.
Consequently, (13) holds for Π = {K + 1, ...,∞} and fails for Π = {K, ...,∞}
with 0 ≤ K ≤ k∗. Then, in equilibrium, we must have αK ∈ (0, 1] , αk = 0 for
all k > K, and αk = 1 for all k < K.

The computation of v, ṽ, αK and α̃K̃ follows standard steps, but with the
obtained optimal behavior incorporated. For the deterministic "bad" ("good")
news model, we have Π = Π ≡

{
0, 1, ...,K − 1

}
and α = α ≡ {0, ..., 0, αK , 1, ...}

(respectively, Π = Π ≡
{
K + 1, ...,∞

}
and α = α ≡ {1, ..., 1, αK , 0, ...}), while

in the random case Π = Π̃ ≡
{

0, 1, ..., K̃ − 1
}
and α = α̃ ≡

{
0, ..., 0, α̃K̃ , 1, ...

}
(respectively, Π = Π̃ ≡

{
K̃ + 1, ...,∞

}
and α = α̃ ≡

{
1, ..., 1, α̃K̃ , 0, ...

}
).

Consequently, for the general case, (6) and (7) are replaced by

v = (1− δ)π + δv
(∑

k∈Π
pk + pK (1− αK)

)
,

and
v ≥ (1− δ)π′ + δv

(∑
k∈Π

qk + qK (1− αK)
)
,

19E.g., in the deterministic "bad" news model, the value k such that pk+1 > qk+1 and
pk ≤ qk is bounded by

(β − µ) ∆/ ln (β/µ)− 1 ≤ k∗ < (β − µ) ∆/ ln (β/µ) .
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respectively. The solution of this system of two equations (with the latter hold-
ing with equality) and two unknown returns, (8) with (9) and (10).
Alternatively to (8), we can replace the α function into (9) and write

v =
(1− δ) (πqK − π′pK)(

1− δ
∑
k∈Π pk

)
qK −

(
1− δ

∑
k∈Π qk

)
pK

. (14)

On some occasions, this formulation is more convenient.

Proof of Corollary 5. In the "bad" news model, after some algebra, both
αK = 0 and αK+1 = 1 lead to

π

(
1− δ

∑K

k=0
qk

)
− π′

(
1− δ

∑K

k=0
pk

)
= 0,

while for the "good" news model, both αK = 1 and αK+1 = 0 lead to

π
(

1− δ
∑∞

k=K+1
qk

)
− π′

(
1− δ

∑∞

k=K+1
pk

)
= 0.

Proof of Proposition 6. Note that αK = 1 implies

π
(

1− δ
∑

k∈Π
qk

)
− π′

(
1− δ

∑
k∈Π

pk

)
= 0, (15)

i.e., the event K is fully considered to be a signal of defection. On the other
hand, αK = 0 implies that

π
(

1− δ
∑

k∈Π
qk

)
− π′

(
1− δ

∑
k∈Π

pk

)
= δ (πqK − π′pK) .

From αK = 0 to αK = 1, we have subtracted (in the reverse direction, we have
added) the event K from the pool of events suggesting cooperation. We want
to know the sign of πqK − π′pK on the RHS of the last equality. Optimality
requires the enforceability constraint

δ ≥ π′ − π(
π′
∑
k∈Π pk − π

∑
k∈Π qk

)
− (πqK − π′pK) (1− αK)

,

to bind, but with the largest possible set of events Π. Suppose that πqK >
π′pK and enforceability binds, then we cannot add more signals without losing
enforceability (i.e., a decrease in αK increases the RHS ratio). On the other
hand, an increase in αK decreases the RHS ratio but "reduces" the set of events.
We do not want enforceability to hold with slack and with a small set of signals.
Suppose the opposite, i.e., πqK < π′pK and enforceability binds, then a decrease
in αK decreases the RHS ratio and we could add events until we obtain the
largest set of signals Π = {0, ...,∞} . Enforceability would improve with the
addition of no informative events, which is impossible. In the opposite direction,
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if πqK < π′pK and we increase αK , we would increase the RHS. Consequently,
πqK > π′pK in a K non-trivial equilibrium.

Now, we show the first part of the result. We first focus on the determinis-
tic case; similar arguments can be generalized in a straightforward manner to
random monitoring. We want to show that πqK − π′pK > πqK∓n − π′pK∓n. In
the "bad" news model, we have

πqK

(
1− K!(

K − n
)
!

(µ∆)
−n
)
> π′pK

(
1− K!(

K − n
)
!

(β∆)
−n
)
,

and because µ > β, the term in brackets in the LHS is larger than the one in
the RHS. Then, because πqK − π′pK > 0, the result holds for any n = 1, ...,K.
In the "good" news model we have

πqK

(
1− K!(

K + n
)
!

(µ∆)
n

)
> π′pK

(
1− K!(

K + n
)
!

(β∆)
n

)
;

because πqK − π′pK > 0 and β > µ, the term in brackets in the LHS is larger
than in the RHS and πqk − π′pk must decrease in k = K, ...,∞, for any n =
1, ...,∞.

Proof of Proposition 7. We provide a partial proof; the remaining argument
follows in the proof of Proposition 10. Note that at αK = 1, we have the equality
(15). W.l.o.g., we differentiate αK w.r.t. z = r and evaluate it at αK = 1 (the
same can be done at αK = 0). Our goal is to find the sign of ∂αK/∂r. Because
πqK > π′pK by Proposition 6), after some algebra, we obtain the expression
that determines the sign of this derivative,

π

(
∂δ

∂z

∑
k∈Π

qk + δ
∑
k∈Π

∂qk
∂z

)
− π′

(
∂δ

∂z

∑
k∈Π

pk + δ
∑
k∈Π

∂pk
∂z

)
. (16)

(i)Deterministic "bad" news model: we have ∂δ∆/∂r = −∆δ∆,
∑K−1
k=0 ∂qk/∂r =

0 and
∑K−1
k=0 ∂pk/∂r = 0, and after some algebra, we obtain π′

∑K−1
k=0 pk −

π
∑K−1
k=0 qk > 0, i.e., ∂αK/∂r > 0. Note that we cannot have an equilibrium

with K = 0.
(ii) Random "bad" news model: we have ∂E (δx) /∂r = −∆E (δx)

2
,
∑K̃−1
k=0 ∂q̃k/∂r =

∆K̃q̃K̃/ (1 + r∆) and
∑K̃−1
k=0 ∂p̃k/∂r = ∆K̃p̃K̃/ (1 + r∆) , and after some alge-

bra, we obtain

π′
∑K̃−1

k=0
p̃k − π

∑K̃−1

k=0
q̃k + K̃

(
πq̃K̃ − π

′p̃K̃
)
> 0,

i.e., ∂α̃K̃/∂r > 0. Again, we cannot have an equilibrium with K = 0.
(iii) Deterministic "good" news model: we have

∑∞
k=K+1 ∂qk/∂r = 0 and∑∞

k=K+1 ∂pk/∂r = 0, and after some algebra we obtain π′
∑∞
k=K+1 pk−π

∑∞
k=K+1 qk >
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0, i.e., ∂αK/∂r > 0. A minimum requirement for the existence of a non-trivial
payoff is at least α0 ≥ 0 or πq0 > π′p0, i.e., when (β − µ) ∆ > ln (π′/π) . Note
also that K ↑ ∞ cannot be an equilibrium.

(iv) Random "good" news model: in this case, the sign of the deriva-
tive is not clear. We follow a different approach. Note that α̃0 = 0 has
three roots in r, i.e., r = − (1 + β∆) /∆, r = − (1 + µ∆) /∆, and r = 0.
Moreover, α̃0 has two asymptotes when πq̃0 = π′p̃0, i.e., at r = −1/∆ and
ra = (π (1 + β∆)− π′ (1 + µ∆)) /∆ (π′ − π) , which is positive if π (1 + β∆) >
π′ (1 + µ∆) . In the latter case, because α̃0 is monotonic in r ∈ (0, ra) with
α̃0 ↑ ∞ when r ↑ ra, it must be the case that α̃0 = 1 for some r ∈ (0, ra) ;
consequently, ∂α̃0/∂r > 0 in equilibrium.
Similar to all cases is that ∂αk/∂r > 0 for k ≥ 0 while enforceability holds,

in which case the sign is reversed (see Proposition 10 and its proof to complete
the argument).

Corollary 17 In a K non-trivial equilibrium

qK
pK
≥

1− δ
∑
k∈Π qk

1− δ
∑
k∈Π pk

≥ π′

π
> 1.

If, in a K non-trivial equilibrium, πqK − π′pK > 0 and α ∈ (0, 1] , then the
numerator in (10) must be non-negative and smaller than the denominator. In
other words, we have

π
(

1− δ
∑

k∈Π
qk

)
− π′

(
1− δ

∑
k∈Π

pk

)
∈ [0, δ (πqK − π′pK)) .

When we switch between a K equilibrium to the following or from the subse-
quent, it is because the numerator has reached one of its bounds.

Proof of Proposition 9. Suppose that monitoring is deterministic, then

∂αK
∂r

=
(π′ − π) ∆

δ∆ (πqK − π′pK)
> 0,

this derivative is positive because πqK > π′pK by Proposition 6. However, the
derivative of (14) gives

∂v

∂r
=

(π′ − π)
((

1−
∑
k∈Π pk

)
qK −

(
1−

∑
k∈Π qk

)
pK
) ∂αK

∂r(∑
k∈Π (pk − qk) + (1− αK) (pK − qK)

)2 .

Then, ∂αK/∂r determines the sign of ∂v/∂r, which is negative if(
1−

∑
k∈Π

qk

)
pK >

(
1−

∑
k∈Π

pk

)
qK . (17)

The last two inequalities together with Corollary 17 impose

1−
∑
k∈Π qk

1−
∑
k∈Π pk

>
qK
pK
≥

1− δ∆∑
k∈Π qk

1− δ∆∑
k∈Π pk

≥ π′

π
.
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In addition, because δ∆ ∈ (0, 1) , we have

1−
∑
k∈Π qk

1−
∑
k∈Π pk

>
1− δ∆∑

k∈Π qk

1− δ∆∑
k∈Π pk

.

and inequality (17) is guaranteed.
In the random monitoring case, these derivatives are more complex. We

show it by contradiction. Suppose instead that ∂ṽ/∂r < 0 with ∂α̃K̃/∂r < 0.
Then, a decrease in r increases the punishment probability. However, because
∂ṽ/∂r < 0, a decrease in r should increase the payoffs, which is possible if we
are adding more events suggesting cooperation. Consequently, for the "bad"
news model, at α̃K̃ = 1 we would have α̃K̃+1 = 0, while in the "good" news
model α̃K̃ = 1 we would have α̃K̃−1 = 0, contradicting Corollary 5. The cases
∂ṽ/∂r > 0 with ∂α̃K̃/∂r > 0 and ∂ṽ/∂r > 0 with ∂α̃K̃/∂r < 0 lead to similar
contradictions.

Proof of Proposition 10. Proposition 6 establishes that πqK > π′pK in a
K equilibrium. Moreover, non-trivial payoffs are obtained while ∂αK/∂r > 0
(by Proposition 7) and enforceability fails when this sign is reversed. Moreover,
increasing r with ∆ > 0 fixed and increasing ∆ with r > 0 fixed must lead to
the same terminal condition. Consequently, the result is valid for variations in
any primitive of the model, including ∆.
Deterministic "bad" news model: suppose that αk ∈ (0, 1] is increasing in

∆ or r for some k ≥ 1. We want to show that a K − 1 exists such that αK−1 is
decreasing in ∆ or r. At αK = 0, we have the binding condition, written in the
convenient format,

π

(
1− δ∆

∑K−2

k=0
qk

)
− π′

(
1− δ∆

∑K−2

k=0
pk

)
= δ∆

(
π
(
qK + qK−1

)
− π′

(
pK + pK−1

))
.

By Corollary 5 at αK = 1, we have αK−1 = 0. If αK−1 > αK = 0 at the
point where αK = 0, we must have ∂αK−1/∂r < 0 or ∂αK−1/∂∆ < 0. Conse-
quently, we plug the αK = 0 binding condition into αK−1 to obtain, after some
rearrangement

αK−1 = − (πqK − π
′pK) /

(
πqK−1 − π

′pK−1

)
> 0,

Because πqK > π′pK in a K equilibrium, it must be the case that πqK−1 <
π′pK−1. After some algebra, we obtain(

β

µ

)K
e−(β−µ)∆ <

π

π′
<

(
β

µ

)K−1

e−(β−µ)∆ (18)

The value of K that satisfies the previous inequality is the last (lowest) K that
enforces cooperation.
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Random "good" news model: we want to show that a K̃+1 exists such that
α̃K̃+1 is decreasing in ∆. At α̃K̃ = 0, we have the binding condition, written in
the convenient format,

π
(

1− E (δx)
∑∞

k=K̃+2
q̃k

)
− π′

(
1− E (δx)

∑∞

k=K̃+2
p̃k

)
= E (δx)

(
π
(
q̃K̃ + q̃K̃+1

)
− π′

(
p̃K̃ + p̃K̃+1

))
,

By Corollary 5 at α̃K̃ = 1, we have α̃K̃+1 = 0. Now we want to show that
α̃K̃+1 > α̃K̃ = 0 at the point where α̃K̃ = 0. To show it, we plug the α̃K̃ = 0
condition into α̃K̃+1, to obtain, after some rearrangement

α̃K̃+1 = −
(
πq̃K̃ − π

′p̃K̃
)
/
(
πq̃K̃+1 − π

′p̃K̃+1

)
> 0,

where the denominator must be negative by Proposition 6. After some algebra,
we obtain(

β

µ

1 + r∆ + µ∆

1 + r∆ + β∆

)K̃
<

π

π′
1 + r∆ + β∆

1 + r∆ + µ∆
<

(
β

µ

1 + r∆ + µ∆

1 + r∆ + β∆

)K̃+1

.

The value of K̃ that satisfies this condition is the last (largest) K̃ that enforces
cooperation.
The random "bad" and the deterministic "good" news model, follow the

same arguments, respectively, πq̃K̃ > π′p̃K̃ and πq̃K̃−1 < π′p̃K̃−1, and πqK >
π′pK and πqK+1 < π′pK+1, deliver conditions(

β

µ

1 + r∆ + µ∆

1 + r∆ + β∆

)K̃
<

π

π′
1 + r∆ + β∆

1 + r∆ + µ∆
<

(
β

µ

1 + r∆ + µ∆

1 + r∆ + β∆

)K̃−1

,

and (
β

µ

)K
e−(β−µ)∆ <

π

π′
<

(
β

µ

)K+1

e−(β−µ)∆.

To gain some intuition, consider the deterministic "bad" news model µ > β,
and inequality (18). A change to a lower k due to an increase in r increases
(β/µ)

k and consequently enforceability must fail at a certain point. However, a
change to a lower k due to an increase in ∆ increases (β/µ)

k but, at same time,
allows ∆ to keep increasing via a decrease in e−(β−µ)∆. Because, at a certain
point enforceability fails, it must be the case that the negative effect in the
discount factor (via k) is stronger than the informational gain obtained with a
large ∆ (increase in the variance ratio). The intuition is similar for the "good"
news model; the difference is that β > µ and the transition is made to a higher
k.

Proof of Proposition 11. Deterministic "bad" news model: we start by
looking at the lowest k equilibrium and then generalize it to a larger k via
Proposition 10. Note that

α0 = 1 + (π′ − π) /δ (πq0 − π′p0) ,
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is larger than the unit under the equilibrium condition πq0 > π′p0. Otherwise,
it might be in (0, 1] , but with πq0 < π′p0, which does not satisfy Proposition
6. Consequently, we cannot have an equilibrium with K = 0. Without loss of
generality, note that

α1 = 1−
(
π
(
1− δe−µ∆

)
− π′

(
1− δe−β∆

))
/δ (πq1 − π′p1) ,

has an asymptote when πq1 = π′p1, i.e., at ∆a = ln (πµ/π′β) / (µ− β) , which
is positive if πµ > π′β. Then, α1 ↓ −∞ as ∆ ↑ ∆a. Differentiate α1 w.r.t. ∆
and take the limit ∆ ↓ 0 to obtain the sign relevant expression

−β (π′ (β + r))
2 − µ (π (µ+ r))

2
+ ππ′

((
r2 + βµ

)
(β + µ) + 2r

(
β2 + µ2

))
.

If the sign is negative, then α1 ↑ r (π′ − π) / (πµ− π′β) as ∆ ↓ 0, otherwise
α1 ↓ r (π′ − π) / (πµ− π′β) as ∆ ↓ 0, and where r (π′ − π) / (πµ− π′β) < 1
if π (µ+ r) > π′ (β + r) , which implies πµ > π′β. In the latter case, α1 is
monotonically increasing in ∆ ∈ (0,∆a) , and if α1 = α2 is above the unit, then
there is an interval (∆1,∆2) with a trivial equilibrium where α1 (∆1) = 1 and
α2 (∆2) = 1. In the former case, α1 decreases in ∆ ∈ (0,∆a) , and assuming
that it is monotonic, then α1 must hit zero at some point in this interval,
i.e., ∂α1/∂∆ < 0. In both cases, with π (µ+ r) > π′ (β + r) , following the
Corollary 5 and while enforceability holds, we must have ∂αk/∂∆ < 0 for some
k ≥ 1.For large ∆ by Proposition 10 we must have a shift to ∂αk/∂∆ > 0 for
some k ≥ 1. Consequently, a ∆ interval and an associated k equilibrium exist
in which αk > 0 has an U-shape and αk = 1 in the extreme points. Finally,
note that when π (µ+ r) < π′ (β + r) , there is no enforceable equilibrium for a
small ∆ ↓ 0, but it might exist for larger ∆. This equilibrium is discontinuous,
alternating between enforceable and non-enforceable ∆ intervals.

Random "bad" news model: the proof is similar to the deterministic case.
Again, we cannot have an equilibrium with K̃ = 0 because α̃0 > 1. Note that
α̃1 has asymptotes at πq̃1 = π′p̃1, i.e., when

µπ/βπ′ = ((1 + r∆ + µ∆) / (1 + r∆ + β∆))
2
.

If µπ > βπ′ we have one negative and one positive root ∆a. Then, α̃1 ↓ −∞ as
∆ ↑ ∆a and α̃1 ↑ r (π′ − π) / (πµ− π′β) as∆ ↓ 0.20 Where r (π′ − π) / (πµ− π′β) <
1 if π (µ+ r) > π′ (β + r) which is implied by πµ > π′β. Consequently, α1 must
decrease monotonically in ∆ ∈ (0,∆a) and reach zero at some point in this
interval, implying ∂α̃1/∂∆ < 0. When π (µ+ r) < π′ (β + r) , there is no en-
forceable equilibrium for a small ∆, but they might exist for larger ∆. For
π (µ+ r) > π′ (β + r) , following Corollary 5 and while enforceability holds, we
must have ∂α̃k/∂∆ < 0 for some k ≥ 1. Then, for large ∆ by Proposition 10,
we must have ∂α̃k/∂∆ > 0 for some k ≥ 1. Consequently, a ∆ interval and an

20We also have the case where

−β
(
π′ (β + r)

)2 − µ (π (µ+ r))2 + ππ′
((
r2 + βµ

)
(β + µ) + 2r

(
β2 + µ2

))
.

is positive and α1 ↓ r (π′ − π) / (πµ− π′β) as ∆ ↓ 0.
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associated k equilibrium exist in which α̃k > 0 has an U-shape and α̃k = 1 in
the extreme points.
Deterministic "good" news model: Note that α0 is given by

α0 =
(
1− e−r∆

)
(π′ − π) /e−r∆

(
πe−µ∆ − π′e−β∆

)
.

Moreover, α0 = 0 has a root at ∆ = 0 from below, i.e., ∂α0/∂∆ = −r at ∆ ↓ 0.
Consequently, α0 /∈ (0, 1] for very small ∆ > 0 and is always above zero for
all ∆ > 0. Now, and away from the limit, we want to show that at α0 = 1
we have ∂α0/∂∆ < 0 for small ∆ and ∂α0/∂∆ > 0 for large ∆. Note that
α0 has an asymptote when π′p0 = πq0, i.e., at ∆a = ln (π′/π) / (β − µ) > 0,
because π′ > π and β > µ always. Then, α0 ↓ −∞ if ∆ ↑ ∆a while α0 ↑ ∞ if
∆ ↓ ∆a. Now, take ∆ ↑ ∞ and observe that α0 ↑ ∞. Because α̃0 is continuous
and differentiable in ∆ ∈ (∆a,∞) , then α0 must be convex with a U-shape in
(∆a,∞) and have a minimum in this interval. If at this minimum α0 < 1, then
there are two values of ∆ > ∆a such that α0 = 1. Consequently, for a suffi ciently
small ∆ > ∆a, we have ∂α0/∂∆ < 0, while for a suffi ciently large ∆, we have
∂α0/∂∆ > 0. Following Corollary 5 and while enforceability holds (Proposition
10), ∂αk/∂∆ > 0 for k > 0. Note that if the minimum of α0 in ∆ ∈ (∆a,∞) is
larger than one, then enforceability fails for all ∆.
Random "good" news model: the proof is similar to the deterministic case.

Note that α̃0 = 0 has three roots at ∆ = 0, ∆ = −1/ (r + β) , and ∆ =
−1/ (r + µ) . Consequently, α̃0 6= 0 for ∆ ∈ (0,∞) . We want to show that
at α̃0 = 1 we have ∂α̃0/∂∆ < 0 and ∂α̃0/∂∆ > 0 for small and large ∆,
respectively. Note that α̃0 has an asymptote when π′p̃0 = πq̃0, i.e., at ∆a =
(π′ − π) / (π (r + β)− π′ (r + µ)) , where ∆a > 0 for π (r + β) > π′ (r + µ) . The
more informative the signal structure is, the lower the monitoring intensity that
enforces cooperation. Then, α̃0 ↓ −∞ if ∆ ↑ ∆a while α̃0 ↑ ∞ if ∆ ↓ ∆a. Now,
take ∆ ↑ ∞ and observe that α̃0 ↑ ∞, providing that π (r + β) > π′ (r + µ) .
Because α̃0 is continuous and differentiable in ∆ ∈ (∆a,∞) , then α̃0 is convex
U-shaped in (∆a,∞) and has a minimum in this interval. If, at this minimum,
α̃0 < 1, then there must be two values of ∆ > ∆a such that α̃0 = 1. For a
suffi ciently small ∆ > ∆a, we have ∂α̃0/∂∆ < 0, while for a suffi ciently large
∆, we have ∂α̃0/∂∆ > 0. In the latter case, following Corollary 5 and while
enforceability holds (Proposition 10) ∂α̃k/∂∆ > 0 for k > 0. If the minimum of
α̃0 in ∆ ∈ (∆a,∞) is larger than one, then enforceability fails for all ∆.

Proof of Proposition 13. The diffi culty here is that we have two equations
and three unknowns, i.e., v, αK and the associated optimal value of K, which
depends on r. Corollary 8 tell us how K varies with r. Proposition 9 describes
how v varies with r. Corollary 5 tells us how events are connected. Altogether,
we know that more events improve payoffs.
Consider the "bad" news model. Note that K ↑ ∞ implies

∑
k∈Π pk ↑ 1

and
∑
k∈Π qk ↑ 1, while pK ↓ 0 and qK ↓ 0. Recall that αK = 0 ⇐⇒ αK+1 =

1. A transition to a higher K occurs when r decreases. Suppose that r ↓ 0
implies K ↑ ∞, then we must have αK ↓ 0. In any case, because αK ∈ (0, 1] ,
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in the limit,
∑K−1
k=0 pk and

∑K−1
k=0 qk are equivalent to

∑K
k=0 pk and

∑K
k=0 qk,

respectively. Then, in the limit, we can ignore the terms pK (∆) (1− αK) and
qK (∆) (1− αK) from lK .

The adjusted likelihood ratio in the deterministic "bad" news model is given
by

l′
K
≡ 1−

∑K
k=0 qk

1−
∑K
k=0 pk

=
1− Γ(K+1,µ∆)

Γ(K+1)

1− Γ(K+1,β∆)
Γ(K+1)

,

Note that K takes discrete values; however, because
∑K
k=0 pk and

∑K
k=0 qk

are expressed as regularized incomplete gamma functions with derivatives that
converge suitably fast at infinity, we can compute the asymptotic expansion of
the ratio of two gamma functions. Consequently, the first order expansion of
the adjusted likelihood ratio about ∞ is given by21

e1+ln 1
K+O( 1

K
)
2

(∆µ)
K

(
e−µ∆

(
1
K

)3/2

+O
(

1
K

)5/2
)

+O
(

1
K

)
e1+ln 1

K+O( 1
K

)
2

(∆β)
K

(
e−β∆

(
1
K

)3/2

+O
(

1
K

)5/2
)

+O
(

1
K

) .
Then, for K ↑ ∞ and because µ > β, we obtain lK ↑ ∞. Note that the distinct
elements are (µ/β)

K
e−(µ−β)∆, which converge to ∞.

Consider now the random monitoring case. The adjusted likelihood ratio is

l′
K̃
≡
(

∆µ

1 + ∆r + ∆µ
/

∆β

1 + ∆r + ∆β

)K̃+1

.

Because, ∂ (x/ (1 + x)) /∂x > 0 and µ > β, the ratio inside brackets is larger
than one and at the limit we have l′

K̃
↑ ∞.

Consider the "good" news model. Now, at the limit we haveK ↓ 0.We begin
with the deterministic monitoring case. Before the limit K ↓ 0,

∑
k∈Π pk (∆) =

1− e−β∆ and
∑
k∈Π qk (∆) = 1− e−µ∆ stabilize. Replace αK into lK to obtain

lK =

Γ(K,µ∆)
Γ(K)

− (µ∆)K

K!
e−µ∆

π

(
1−δ∆

(
1−Γ(K,µ∆)

Γ(K)

))
−π′

(
1−δ∆

(
1−Γ(K,β∆)

Γ(K)

))
δ∆

(
π

(µ∆)K

K!
e−µ∆−π′ (β∆)K

K!
e−β∆

)

Γ(K,β∆)
Γ(K)

− (β∆)K

K!
e−β∆

π

(
1−δ∆

(
1−Γ(K,µ∆)

Γ(K)

))
−π′

(
1−δ∆

(
1−Γ(K,β∆)

Γ(K)

))
δ∆

(
π

(µ∆)K

K!
e−µ∆−π′ (β∆)K

K!
e−β∆

)
.

Now, let K = 0; after some algebra, we obtain e−µ∆/e−β∆. Consequently, while
α̃0 ∈ (0, 1] , ṽ is constant and does not depend on r.

21This result is obtained using Mathematica R©.
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Consider now the random monitoring case. After substituting α̃K̃ into lK̃
we obtain

lK̃=

1−
(

µ∆
1+r∆+µ∆

)K̃+1

− (1+r∆)(µ∆)K̃

(1+r∆+µ∆)K̃+1

π

1− ( µ∆
1+r∆+µ∆ )

K̃+1

1+r∆

−π′
1− ( β∆

1+r∆+β∆ )
K̃+1

1+r∆


1

1+r∆

(
π

(1+r∆)(µ∆)K̃

(1+r∆+µ∆)K̃+1
−π′ (1+r∆)(β∆)K̃

(1+r∆+β∆)K̃+1

)

1−
(

β∆
1+r∆+β∆

)K̃+1

− (1+r∆)(β∆)K̃

(1+r∆+β∆)K̃+1

π

1− ( µ∆
1+r∆+µ∆ )

K̃+1

1+r∆

−π′
1− ( β∆

1+r∆+β∆ )
K̃+1

1+r∆


1

1+r∆

(
π

(1+r∆)(µ∆)K̃

(1+r∆+µ∆)K̃+1
−π′ (1+r∆)(β∆)K̃

(1+r∆+β∆)K̃+1

)
.

Let K̃ = 0; after some algebra, we obtain

lK̃ =
1 + r∆ + β∆

1 + r∆ + µ∆
.

Finally, for r = 0 the result is obtained.

Proof of Proposition 14. "Bad" news deterministic - We need to show
that when ∆ ↓ 0, we have αK ↑ ∞ for the general K > 1, while α1 −→
r (π′ − π) /µπ − βπ′ and K = 0 cannot be an equilibrium. Because by Propo-
sition 11 and Corollary 12 αK+1 > αK for K ≥ 1, it is enough to show that
K = 2 cannot be part of a K limit equilibrium. Expand the numerator and the
denominator around zero to obtain

α2 = 1− − (π′ − π) r∆ +O (∆)
2

O (∆)
2 .

Because O (∆)
2 goes to zero faster than ∆, then α2 ↑ ∞. Consequently, α2 = 1

must occur (when it occurs) at some ∆ > 0. Now, we will focus on α1. A similar
expansion for α1 returns

α1 = 1− (π (r + µ)− π′ (r + β)) ∆ +O (∆)
2

(πµ− π′β) ∆ +O (∆)
2 .

In the limit, we obtain r (π′ − π) / (πµ− π′β) . This number is in (0, 1] if πµ >
π′β and π (µ+ r) ≥ π′ (β + r) , respectively. The latter implies the former. In
addition, we have

α0 = 1− π − π′
e−r∆ (πe−µ∆ − π′e−β∆)

,

where the denominator must be strictly negative for α0 ∈ (0, 1] contradicting
Proposition 6. The limit trivially goes to zero. Moreover,

∂α0

∂∆
= (π′ − π)

πe−µ∆ (r + µ)− π′e−β∆ (r + β)

e−r∆ (πe−µ∆ − π′e−β∆)
2 ,

and the limit ∆ ↓ 0 is equal to (π (r + µ)− π′ (r + β)) / (π′ − π) , which is non-
negative because π (µ+ r) ≥ π′ (β + r) . Consequently, in the limit, we must
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have K > 0 and K < 2, i.e., K = 1. Then, for π (µ+ r) ≥ π′ (β + r) and K = 1,
to take the limit of (14), i.e.,

v =

(
1− e−r∆

) (
πe−µ∆µ∆− π′e−β∆β∆

)
(1− e−r∆e−β∆) e−µ∆µ∆− (1− e−r∆e−µ∆) e−β∆β∆

,

we expand it around zero to obtain

v ≈ πµ− π′β
µ− β +O (∆) ,

and the result is obtained. Moreover, the limit of

lim
∆↓0

∂v

∂∆
= βµ

π (2r + µ)− π′ (2r + β)

2r (µ− β)
,

is positive if π (2r + µ) > π′ (2r + β) and negative otherwise. In the former
case, v converges from above, otherwise it converges from below, as in (12).
"Bad" news random - Similarly for a small ∆, K̃ = 0 cannot enforce coop-

eration, and limit payoffs above the static Nash are possible if a

α̃1 = 1− π (r + µ) (1 + r∆ + β∆)− π′ (r + β) (1 + r∆ + µ∆)

πµ 1+r∆+β∆
1+r∆+µ∆ − π′β

(1+r∆+µ∆)
(1+r∆+β∆)

exists belonging to (0, 1] . The limit of α̃1 is equal to r (π′ − π) / (µπ − βπ′) ∈
(0, 1] because π (µ+ r) ≥ π′ (β + r) .Notice that for r > 0, ∂ ((r + β) / (r + µ)) /∂r >
0. Consequently, for any parameterization satisfying these conditions, for small
∆, in equilibrium K̃ = 1 and ṽ converge to (µπ − βπ′) / (µ− β) . The argument
is just as explained above, an expansion around ∆ = 0. Note that

lim
∆↓0

∂ṽ

∂∆
= βµ

π (2r + µ)− π′ (2r + β)

r (µ− β)
,

which is positive if π (2r + µ) > π′ (2r + β) and negative otherwise. Then{
↑ µπ−βπ

′

µ−β
↓ µπ−βπ

′

µ−β

2r+β
2r+µ >

π
π′ ≥

r+β
r+µ

π
π′ ≥

2r+β
2r+µ ≥

r+β
r+µ

,

which is equal to (12).
Otherwise, i.e., for π (µ+ r) < π′ (β + r) , we have in the limit α1 > 1.

Consequently, for any parameterization satisfying this condition, for a small ∆,
in equilibrium v ↓ 0. Moreover, there might not exist a real ∆2 > 0 that solves
α2 = 1, below which the equilibrium degenerates. In this case we cannot enforce
cooperation for any ∆.
"Good" news deterministic - We know from Proposition (11) that for a small

∆ we must have K = 0. To take the limit of

v =

(
1− e−r∆

) (
πe−µ∆ − π′e−β∆

)
(1− e−r∆ (1− e−β∆)) e−µ∆ − (1− e−r∆ (1− e−µ∆)) e−β∆

,
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at K = 0, we expand around zero to obtain

v ≈ − π′ − π
(β − µ) ∆

+
π′ + π

2
+O (∆) ,

which trivially goes to −∞.
"Good" news random - Similarly, take the limit of

ṽ =
π (1 + r∆ + β∆)− π′ (1 + r∆ + µ∆)

∆ (β − µ)
,

at K̃ = 0 to trivially obtain −∞ since π < π′. Consequently, degeneracy occurs
even before the limit.

Proof of Proposition 15. "Bad" news model: to take the limit of the ratio
ṽ/v for K = 1, we expand it around ∆ = 0 to obtain

ṽ

v
≈ 1 + βµ∆

π (2r + µ)− π′ (2r + β)

2r (µπ − βπ′) +O (∆)
2
.

In the limit, this quantity is larger than one if π (2r + µ) > π′ (2r + β) and
smaller otherwise.
"Good" news model: to take the limit of the ratio ṽ/v for K = 1, we expand

it around ∆ = 0 to obtain

ṽ

v
≈ r∆2 β − µ

π′ − π +O (∆)
3
,

which trivially goes to 0. Assuming that ṽ and v do not cross, the result is
obtained.
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