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1. Introduction    
One of the implications of the Real Business Cycle (RBC) models is that the per 

capita hours worked rise in response to a positive technology shock. However, recent 

empirical works argue that this is inconsistent with the real data. Not surprisingly, these 

results have attracted a lot of attention since they call into a question the role attributed 

to a technology shock in the business cycle analysis and the ability of the RBC models 

to reproduce the facts presented in the data. If the empirical response of hours to a 

technology shock is indeed negative, the original technology-driven real business cycle 

hypothesis does appear to be dead and RBC models, in general, are unpromising. A 

prominent representative of this stream of literature is Gali (1999), who finds that the 

hours worked fall in response to a positive technology shock. Similar conclusions can 

be found in Gali and Rabanal (2004), Francis and Ramey (2005), Francis et al. (2005) 

and Fernald (2007), among others. From the other side, their findings have in turn been 

contested by Christiano et al. (2003, 2006), Canova et al (2007) and Uhlig (2004) 

among others. 

In general, the current debate on the hours work-productivity puzzle 

concentrates around three issues. The first one focuses on the order of integration of the 

hours worked. Christiano et al. (2003), challenging the results of Gali (1999), argue that 

the sign and the magnitude of the responses of hours to a (positive) technology shock 

depend crucially on whether hours worked are assumed to be integrated of order zero 

(I(0)) or of order one (I(1)). Based on different testing techniques, the authors conclude 

that the hours worked are I(0) and hence that the hours rise in response to a technology 

shock. The second issue in the debate turns around the plausibility of structural vector 

autoregressions (SVAR) to estimate impulse responses that can comparable with 

theoretical responses from economic models. Chari et al. (2008), relying on the 

procedure described in Sims (1989), argue that the SVARs of both Gali (1999) and 

Christiano et al. (2003) are misspecified. The misspecification arises because the model 

fails the auxiliary assumption that the stochastic process for productivity and hours is 

well approximated by an autoregressive representation with small number of lags (a 

VAR(4) in both papers mentioned above). Related, the third issue revolves around the 

ability of the long-run (LR) identification restrictions in a SVAR to estimate reliably the 
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dynamic responses of macroeconomic variables to structural shocks1. Christiano et al. 

(2006) show that under LR restrictions, VAR-based impulse responses exhibit some 

bias as a result of the difficulties in estimating the sum of the VAR parameters 

necessary for the LR identification. These difficulties arise from the fact that the RBC 

model's VAR is, in fact, infinite and econometricians fit a misspecified finite order 

VAR (which is the main point of the critique of Chari et al. (2008)). As a result, 

although individual VAR parameters and variance-covariance matrix are well estimated, 

there is substantial bias in the estimation of the sum of the VAR parameters necessary 

for the LR identification. However, the authors argue that this bias will not result in 

erroneous inference since the sample uncertainty is as well high when long run 

identification is applied. With the short-run (SR) restrictions this problem disappears 

and the SVARs perform remarkably well.  

Regardless of the conclusions obtained, all the aforementioned studies exploit 

VAR approach, always assuming ex-ante the order of integration of hours worked and 

restricting high-lag coefficients in the VAR to be zero. Taking into account the high 

persistence of hours worked both in theoretical models and, especially, in the real data, 

these assumptions may appear to be very restrictive. The objective here is to relax the 

assumption on the order of integration of the hours worked in the VAR and allow for 

the possibility of long memory in the process that reflects the properties of the data. To 

do so, we rely on the fractional integration framework, which encompasses I(0) and I(1) 

type of processes as well as other fractionally integrated possibilities. Impulse responses 

in fractionally integrated VARs (VARFIMA) are identified in a similar way to standard 

VARs, but allowing for the additional interaction between VAR parameters and 

fractional integration polynomials which makes the memory of the process longer. It is 

important to note that the VARFIMA is an infinite VAR with slowly decaying 

coefficients2. Thus, by applying VARFIMA we do not restrict the VAR to have small 

finite number of lags but, rather, we restrict the coefficients of an infinite VAR to 

follow some definite rule. 

In this work we employ five different datasets commonly used in the literature to 

estimate the VARFIMA model and to back up the responses of hours to a technology 

                                                           
1 The first critique of the long-run identification was made by Sims (1972). More recent exponents are 
Faust and Leeper (1997), Uhlig (2004), Fernandez-Villaverde et al. (2007), Erceg et al. (2005), Francis et 
al. (2005), Christiano et al. (2006) among many others. 
2 In this framework, aggregate shocks may vanish at an hyperbolic rather than at an exponential rate. 
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shock under both SR and LR identification schemes. After, we analyze whether the 

impulse responses estimated from the VARFIMA model are comparable to the 

theoretical ones from RBC models. To do so, we follow Chari et al. (2008) and 

Christiano et al. (2006) and we make use of the Sims (1989) procedure. We choose two 

different RBC models that satisfy the LR and (or) the SR identification assumptions and 

simulate data from each of them. Thereafter, we apply the VARFIMA model to the 

simulated data and we uncover the impulse responses under the corresponding set of 

assumptions: LR identification for the data simulated from the RBC model that satisfies 

the long-run assumptions; and the SR identification for the data simulated from the 

RBC model that satisfies short-run assumptions. Then, we compare the mean of the 

estimated impulse responses with the theoretical responses from the corresponding RBC 

model.  

According to our results, hours worked are fractionally integrated, possibly non-

stationary mean reverting. The order of integration of productivity is always not 

statistically different from one. Results are robust to changes in definition of both hours 

and productivity, to changes in the model specification (addition of more variables into 

the model), to the inclusion of seasonal fractional integration and also are stable across 

sub-samples. The sign and the magnitude of the estimated impulse responses of hours 

worked to a positive technology shock depend critically on the identification 

assumption that was used to recover them. Thus, under the SR identification, the 

impulse responses are always positive and statistically significant, being very close in 

magnitude to the responses from the recursive RBC model. If the LR identification is 

applied, the responses are always negative. However, their statistical significance 

depends on the data choice: in all dataset the confidence intervals are very wide and the 

responses are not statistically significant if data is only defined for the non-agricultural 

sector. 

The results of the Sims (1999) procedure indicate that the SR identification 

scheme performs very well and can be used to recover impulse responses of hours to a 

technology shock in a structural VARFIMA model. The LR identification is still 

appropriate. However, the sample uncertainty increases dramatically when it is applied. 

Nevertheless, the coverage rates for confidence intervals confirm that, with very high 

probability, VARFIMA based confidence intervals include the true value of the impulse 

responses no matter the identification scheme chosen by the econometrician.  
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Up to our knowledge, the only work on the topic using fractional integration is 

Gil-Alana and Moreno (2009). The authors test the order of fractional integration of 

hours worked in multivariate settings under different model specifications. After 

choosing the order of fractional integration of hours and estimating the other parameters 

of the model, they apply LR identification concluding that hours fall in response to a 

technology shock3. However, the authors neither check alternative identification 

schemes nor evaluate the validity of their identification assumptions to uncover the 

responses of hours from fractionally integrated models. In the light of our results, these 

issues are crucial to assess the response of hours to a technology shock. 

The paper is organized as follows. In Section 2 we briefly review the 

econometrics of the VARFIMA model, describe the datasets we use, and discuss the 

estimation results. In Section 3 we analyze the identification issue in fractionally 

integrated VAR models and we evaluate the effects of technology shocks on hours 

worked, using structural VARFIMAs with SR and LR identification restrictions. In 

Section 4 we adopt the Sims procedure to evaluate the validity of the impulse responses 

recovered from VARFIMA model. In Section 5 we summarize the main results and 

provide some concluding remarks. 

2. Fractionally integrated VARs 

The central pillar in the Hours worked - Productivity debate is the assumption on 

the order of integration of hours worked. Christiano et al. (2003) argue that this 

assumption has a crucial effect to the sign and the magnitude of the estimated impulse 

responses of hours to a positive technology shock. Thus, assuming that hours worked 

follow an I(0) process, the contemporaneous response of hours is positive. If the hours 

are assumed to be I(1), as in Gali (1999), the estimated responses are negative4.  

In this work, we exploit a fractionally integrated vector autoregressive model 

(VARFIMA) which helps us to relax the assumption on the order of integration of hours 

worked. In the fractional integration framework, variables are allowed to have non-

                                                           
3 Also, the authors do not strictly apply LR identification but a sort of "medium range" restriction (see 
Section 3.2). 
4 On the basis of a series of tests, Christiano et al. (2003) conclude that hours are stationary. Chari et al. 
(2008) also criticize the I(1) assumption of Gali (1999) because in all economic models, hours per person 
are bounded and, therefore, the stochastic process for hours per person cannot literally have a unit root. 
However, the data on hours worked is highly persistent and the unit root hypothesis is often not rejected 
by unit root tests. 
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integer orders of integration which are not assumed but estimated with the other 

parameters of the model. In the following sub-sections we briefly describe the 

VARFIMA model and its estimation procedure. After that, we present the different 

datasets employed in this work and discuss the estimation results. 

2.1 The VARFIMA model and its estimation 

Univariate ARFIMA models can be generalized to multivariate settings leading 

to the VARFIMA model. More specifically, the autoregressive VARFIMA model can 

be written as: 

 ( ) t tD L y v=  (1) 

 ( )( )p t tI F L v w− =  (2) 

where ty  is a 1N ×  vector of variables for 1,...,t T= , L  is the lag operator, I is an 

N N×  identity matrix and tw  is an 1N ×  vector of i.i.d errors with 0 mean and N N×

variance-covariance matrix Ω . The VAR(p) process in (2) is assumed to be stationary. 

( )D L  is a diagonal N N×  matrix with fractional integration polynomials on the main 

diagonal given by: 

 ( ) ( )( ) 1 , 1,...,ndnD L L n N= − =  (3) 

The scalar parameter [ ]0,1nd ∈  indicates the fractional order of integration of the series 

,n ty at frequency zero. If ( )0,0.5nd ∈ , the series is covariance stationary but the 

autocovariances and responses of the variable to a shock take more time to disappear 

than if 0nd = . If [ )0.5,1nd ∈ , the series is not covariance stationary anymore but still 

mean reverting, with the effect of shocks dying away in the long run. In general, the 

larger nd  the more persistent the variable and the stronger the policy actions required to 

bring it to its steady state. 

The operator ( )nD L  can be written as the convolution of the Taylor expansions 

of its separate components (see Hassler (1994)): 

 ( ) ( ) ( )
( ) ( )

( )
, ,

0

1 ,
1

nd nn k
n k n k

k n

k d
D L L D L D

k d

∞

=

Γ −
= − = =

Γ + Γ −∑  (4) 
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The gamma function ( )Γ ⋅  satisfies ( ) ( )1z z zΓ + = Γ . 

The spectrum of the VARFIMA process (1) and (2) at frequency

2
, 0,..., / 2j

j
j T

T

πω = = , is a N N× matrix with the spectra of the variables on the 

main diagonal and the cross-spectra out of the main diagonal: 

 ( ) ( ) ( ) ( ) ( )1 11
, 2 ,j ji i

y j v jf D e f D eω ωω θ π ω θ
− −− −=  (5) 

where i  is the imaginary unit and ( )iD e ω  and ( )iD e ω−  are complex conjugates. The 

spectrum of the vector tv  is given by: 

 ( ) ( )( ) ( )( )1 1

, j ji i

v j p pf I F e I F eω ωω θ
− −−= − Ω −

 

being ( ) 1 ...j j ji i pi

p pF e F e F e
ω ω ω= + +  and ( )ji

pF e
ω−  is its complex conjugate. 

  The vector of all parameters of the model θ, contain the fractional integration 

parameters for all variables { } 1,...,n n N
d

= , the autoregressive parameters from the 

polynomial ( )pF L , and the parameters of the variance-covariance matrix of the vector 

of errors, Ω. The total number of parameters is ( )2 1 2N pN N N+ + + . 

To estimate the process given by (1) and (2) we use the approximate frequency 

domain maximum likelihood (Whittle estimator), proposed by Boes et al. (1989). The 

discussion of the multivariate version of the procedure can be found in Hosoya (1996). 

To derive the frequency domain likelihood function for ty , we compute the finite 

Fourier transform of ,n ty , 1,...,n N=  

 ( ) ( )1
, ,

1

1
,

2

T
i t

n n t n t
t

x y y e
T

ωω
π

− −

=

= ∑  (6) 

An approximate log-likelihood function of θ  based on ty  is given up to constant 

multiplication, by: 

 ( ) ( ) ( ) ( )
/2

1

0

ln , lndet , , ,
T

y j y j T j
j

L f trf I yω θ ω θ ω θ ω−

=

 = − + ∑  

with the N N×  periodogram matrix ( ),T jI yω  defined as: 
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 ( ) ( ) ( )*
, , ,T j j jI y x y x yω ω ω=  

where ( ),jx yω  is a complex 1N × vector with entries given by (6) and ( )*
,jx yω  is its 

complex conjugate. For each j , the elements of the main diagonal of ( ),T jI yω  are 

points of the periodogram of each of the series at frequency jω , which are real. The off-

diagonal elements are points of the cross-periodogram, which are complex. 

If the parameters of fractional integration are positive/negative at zero 

frequency, the spectrum tends to infinity/zero and the sample periodogram has 

picks/dips at this frequency. Since the likelihood function is not well defined at this 

point, following standard practice, we exclude it from the estimation.  

2.2 Data description and preliminary analysis 

To assess the response of hours we employ five different datasets which differ 

from each other in their measure of the hours worked and productivity.  

Dataset FR. Francis and Ramey (2005) use a new measure of hours per capita. 

The authors argue that the hours per capita measured in a standard way (dividing private 

hours by the non-institutional population aged 16 and over), are significantly affected 

by low frequency demographic and institutional trends and, as a result, display 

significant low frequency movements. They develop a more sophisticated measure of 

population available for work in the private sector and use it to calculate hours per 

capita in that sector. The FR dataset we use is the updated version of the data employed 

in their paper and it can be found in the official web-page of Ramey, V.A. Data is 

quarterly and covers from 1947:1 to 2007:4. Hours worked are defined as the natural 

logarithm of the ratio hours worked in the private sector to the new measure of 

population available to work in the private sector. Productivity is the natural logarithm 

of the output per hour in the private sector. This dataset is especially interesting since 

the authors find that a positive technology shock (identified through LR restrictions) 

leads always to a decrease in hours, no matter one assumes that hours per capita are 

stationary or not. 

Dataset GR. Gali and Rabanal (2004) use U.S. quarterly data for the period 

1948:1 to 2002:4. The source of the data is the Haver USECON database. The series of 

output in this database corresponds to non-farm business sector output (LXNFO). Labor 
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input series is hours of all persons in the non-farm business sector (LXNFH). Output 

and hours series are expressed in per capita terms, using the measure of civilian non-

institutional population aged 16 and over (LNN). All the series are converted into the 

logarithm form. 

Dataset CEV. This is the data employed by Christiano et al. (2003). It is drawn 

from DRI Basic Economics database and covers period from 1948:1 to 2001:4. They 

use business labor productivity (LBOUT) as a measure of productivity and business 

hours (LBMN) divided by civilian population over the age of 16 (P16) as a measure of 

hours. All the series are converted into logarithm form. 

The following two datasets are constructed by us using data collected from the 

Federal Reserve Bank of St. Louis database (FRED)5. These two datasets run from 

1948:1 to 2009:4 covering a longer period than the other popular datasets in the 

literature.  

Dataset A is similar to the data of Christiano et al. (2003), and contains data 

from all sectors, including farm sector. Total business productivity is the log of the 

output per hour of all persons (OPHPBS) and hours worked is the log of the ratio of the 

business hours of all persons (HOABS) to the civilian non-institutional population over 

the age 16 (CNP16OV). 

Dataset B is close to the dataset of Gali (1999). The only difference is the 

definition of hours worked. Gali (1999) uses the log of total employee-hours in non-

agricultural establishments, while we perform analysis using hours per capita. We use 

per capita specification because the hours worked in the business cycle models are 

usually in per capita terms. Non-agricultural business sector productivity is the log of 

OPHNFB series in FRED, hours worked are constructed by subtraction the log of the 

civilian non-institutional population over the age 16 (CNP16OV) from the log of the 

non-farm business sector hours of all persons (HOANBS). 

In the datasets A and B "the civilian non-institutional population over the age 

16" is converted to quarterly series by taking the simple average of the monthly 

observations inside the quarter. Except of population, all the series in all datasets are 

                                                           
5 http://research.stlouisfed.org/fred2/ 
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seasonally adjusted. The population series is not seasonally adjusted since seasonal 

adjustment is not applicable for this series.  

Figure 1 plots hours worked and productivity series for all data sets. Data is 

quarterly, transformed to natural logarithms, in levels. We do not plot series from the 

CEV dataset because they are very similar to ones from the dataset A, but cover shorter 

period6. 

We perform a set of commonly used unit root tests for the hours worked series in 

each dataset7. The results of the testing procedure may be found in the Table 1. The null 

hypothesis states always that the underlying process is a unit root (with or without drift). 

As it can be seen in the table, the results are not conclusive. In some of the cases the 

null hypothesis cannot be rejected at usual levels of significance, but the p-values of the 

tests are low. However, the null hypothesis is rejected by the tests corrected for serial 

correlation in residuals. On the basis of the results described above, there is no certainty 

about the order of integration of the hours worked. Likely, the order of integration is not 

integer and lies between zero and one. Thus, the estimation of the order of (fractional) 

integration of the hours worked is interesting by itself.  

2.3 Estimation results 

Prior to estimation, we take first difference of the data. This is required to 

receive estimates of the parameter of fractional integration inside the stationary region 

( )0.5,0.5id ∈ −  and is indicative of the strong persistence of both hours and productivity 

series in all datasets. It is very important to note that taking first difference is not 

equivalent to the assumption that the variables are I(1). In the VARFIMA framework, 

the orders of integration of the variables are estimated, not assumed. If a variable is 

over-differenced, its order of fractional integration at zero frequency is expected to be 

negative. The results of estimation are summarized in the Table 2. The estimated orders 

of integration of the series in levels (as they appear in the table) are obtained by adding 

one to the estimated value in differences: ˆ1 id+ . Standard errors of the coefficients are 

computed by numerical evaluation of the Hessian matrix and are presented in 

                                                           
6 The difference between these series is due to not coinciding last revision period. 
7 The unit root hypothesis in productivity is not rejected by any test. These results are not discussed here 
since there is agreement in the literature on the existence of a unit root in that series. 
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parenthesis. The orders of autoregression for all models are chosen by Schwarz 

information criteria. 

  The columns labeled with "1" contain the estimated parameters of the VARFIMA 

model. As expected, the hours series exhibit long memory: the estimated coefficient of 

fractional integration lies between 0.6-0.7 in all datasets. Furthermore, these estimates 

are statistically different from both 0.5 and 1. Thus, hours are found to be non-stationary 

but still mean reverting. In line with previous studies, the coefficient of fractional 

integration of the productivity series is not statistically different from one in any dataset 

considered. Consequently, we estimate a restricted version of the VARFIMA model 

assuming that productivity is I(1)8. The estimation results of the restricted version are 

presented in the Table 2 in columns labeled with "2". 

3. The response of hours to a technology shock 

In this section we first analyze identification in fractionally integrated 

autoregressive processes. After, we compute the impulse responses of hours to a 

technology shock from the estimated VARFIMA model in all datasets.  

3.1 Structural and reduced form models 

We want to analyze identification in the following structural model: 

 ( ) t tAD L y u=  (7) 

 ( )( )p t tI G L u ε− =  (8) 

where A  is the matrix of structural parameters. Let ( )D L to be the diagonal matrix with 

long memory polynomials defined as in (3). The N N×  matrix ( )pG L  contains the 

short memory autoregressive polynomials of order p  and tε  is a 1N ×  vector of 

structural shocks with 0 mean and variance-covariance matrix V . 

Substituting (7) into (8), premultiplying both sides of the resulting expression by 

1A−  and simplifying we get the structural MA(∞) representation of ty : 

 ( ) ( ) 11 1 1
t ty D L I A G L A A ε

−− − − = −   (9) 

                                                           
8 More interestingly, this assumption simplifies the long run identification in VARFIMA models 
significantly as will be clear in the next section. 



12 

 

The reduced-form MA(∞) representation of the model given by (1) and (2) is obtained 

by substitution of (1) into (2). After arrangement, the resulting expression is:  

 ( ) ( ) 11

t p ty D L I F L w
−−

 = −   (10) 

Substitution of 1
t tw A ε−=  (follows from (9) and (10)) into the reduced-form 

MA(∞) representation of ty  given by (10) results in: 

 ( ) ( ) ( )11 1
t p t ty D L I F L A Lε ε

−− − = − = Λ   (11) 

The impulse responses of variables to structural shocks in this model are given 

by the coefficients of ( )LΛ  in (11).  To find these coefficients we make the 

convolution of the Taylor expansions of the separate components of ( )LΛ . 

3.2 Identification in fractionally integrated VARs 

The identification in fractionally integrated models is achieved in a similar way 

to the standard VAR.  However, it has some important nuances that must be discussed. 

Without loss of generality we assume that the model in (1) and (2) is bi-variate9. 

We define the first variable in the model to be the first difference of the logarithms of 

the hours worked and the first shock the shock to hours (or demand shock). The second 

variable is the difference of logarithms of productivity and its corresponding shock the 

technology shock.  

The quarterly structural model (9) has ( )2 2 1 2N N N p N N+ + + +  parameters: 

one coefficient of fractional integration for each of the N  variables, 2N  structural 

parameters from matrix A , 2N p  autoregressive parameters from matrix ( )G L  and 

( )1 2N N +  parameters from the variance-covariance matrix V . The reduced-form 

model (10) has only ( )2 1 2N N p N N+ + +  parameters. As a result, to reach 

identification in the bi-variate structural model (N = 2) we have to make 2 4N =  

additional identification restrictions. 

     A standard practice is to assume that the structural shocks are orthogonal and 

have been scaled by their standard deviations which can be expressed by the assumption

                                                           
9 The generalization of the model for N variables is straightforward.  
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V I= . In such a way, we are making ( )1 2 3N N + =  restrictions, but still we require 

one additional assumption. 

Let the matrix of contemporaneous impulse responses 1A−  to be: 

 1 a b
A

c d
−  

=  
 

 

The impulse responses of variables to structural shocks in this model are given by: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1
11 11 12

1
12 11 12

2
21 21 22

2
22 21 22

L L Q L a Q L c

L L Q L b Q L d

L L Q L a Q L c

L L Q L a Q L c

Λ = Ψ +

Λ = Ψ +

Λ = Ψ +

Λ = Ψ +

 (12) 

where ( ) 0 1 ... ... ; , 1,2; 0k
ij ij ij ijkL L L i j kΛ = Λ +Λ + + Λ + = ≥

 
are infinite polynomials 

and ijkΛ
 
denotes the impulse response (IRF) of the variable i to the shock j at lag k. 

( )ijQ L  are infinite order lag polynomials that can be found by solving 

( )( ) ( )1
I F L Q L

−
− =  and ( ) ( )i LΨ  is the inverse of the fractional integration 

polynomial ( )( )iD L .   

Recall that the variables in (1) are defined in first differences, as it was required 

to insure that the estimated coefficients of fractional integration id  lie within the 

stationary interval. To find the IRFs of the variables in levels, one has to sum the IRFs 

of the differenced variable up to the lag of interest: 
0

k

ijk ijl
l=

Λ = Λ∑ , where [ )1,k ∈ ∞ . The 

responses of variables in levels are the coefficients of the polynomial

( ) 0 1 ... ...k
ij ij ij ijkL L LΛ = Λ +Λ + +Λ + . Contemporaneous IRF 0 0ij ijΛ = Λ  ( )0L =  are 

given by the entries of the matrix 1A− . The long-run response of a variable i  to a shock 

j  is given by 
0

k

ijk ijl
l=

Λ = Λ∑  with k → ∞  and is commonly notated as ( )1ijΛ . 

The equations relating the reduced and structural shocks 1
t tw A ε−=  are given by: 
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 1, 1, 1, 2,

2, 2, 1, 2,

t t t t

t t t t

w a ba b

w c dc d

ε ε ε
ε ε ε

+      
= =       +      

 

Since tw  is estimated by the reduced VARFIMA and ( ) ( )1, 2,var var 1t tε ε= =  by the 

assumption V I= , the contemporaneous IRFs of the variables to shocks (the termsa, b
, c  and d in the matrix 1A− ) can be found by solving the following system of 
equations: 

 
1

2

2 2 2

2 2 2

12

a b

c d

ac bd

σ

σ
σ

= +

= +

= +

 (13) 

This system of three equations has four unknowns. To identify this system we 

require one additional restriction. 

3.2.1 Short-run (SR) identification 

The easiest way to make the last identification assumption is to assume that the 

hours are not influenced by the technology shock contemporaneously. This type of 

identification is usually called in the literature as the short-run (SR) or Sims (1972) 

identification. To apply this assumption one has to restrict the matrix of the 

contemporaneous responses 1A−  to be lower-triangular ( )0b = . 

After solving the system (13) and assuming 0b = , the contemporaneous 

responses are defined up to a sign by: 

 [ ] ( ) ( )1/2 1/22 2 212
1 2, , , ,0, ,a b c d c

a

σσ σ = ± ± −  
 (14). 

To identify the responses of hours to a technology shock we assume that the 

contemporaneous response of productivity to technology shock is positive: 0d > 10. In 

this way the responses of hours to a positive technology shock are given by 

( ) ( ) ( ) ( )1
12 12L L Q L dΛ = Ψ . Since fractional integration does not influence directly the 

identification process, the SR assumption can be applied in the same way to the 

standard VAR. 

                                                           
10 Under the short-run identification, the Cholesky decomposition of the variance-covariance matrix of 
the reduced-form errors can be applied. It corresponds to the assumption that the contemporaneous 
impulse response of productivity to a positive technology shock is positive. 
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3.2.2 Long-run (LR) identification 

Another common way to make the last restriction is the Blanchard-Quah (1989) 

procedure or long-run identification (LR). The restriction is that in the long-run, the 

labor productivity is driven by the technology shock only. It means that the long-run 

IRFs of the productivity to a non-technology shock (demand shock) are equal to zero:  

 ( ) ( ) ( ) ( ) ( )( )2
21 21 221 1 1 1 0Q a Q cΛ = Ψ + =  (15) 

If productivity is fractionally integrated, the application of the LR identification 

restriction is not trivial11. Notice that the LR identification restriction (15) does not 

depend on the order of integration of hours worked, just of productivity. If the 

coefficient of fractional integration of productivity is smaller than one: 2
ˆ1 1d+ <  (the 

estimated coefficient in differences 2d̂  is negative), the term ( ) ( )2 1Ψ is equal to zero 

and the coefficients a, c cannot be identified because ( )21 1Λ  is zero for all a, c. Also, in 

this case, the response of productivity to its own shock will converge to zero in the long 

run, contradicting the implications of the RBC model, where the long run response of 

productivity to technology shock is strictly positive. From the other side, if the 

coefficient 2d̂  is positive (productivity has an order of integration higher than one), then 

( ) ( )2 1Ψ = ∞  and the LR scheme cannot be applied without truncation of the infinite sum 

of the terms of the polynomial  ( )21 LΛ
 
up to some lag k << ∞, as in Gil-Alana and 

Moreno (2009). However, this no longer can be understood as the application of the LR 

assumption but a sort of “medium range”  restriction.  

Since the order of integration of productivity is not statistically different from 

one in any dataset, we can overcome these problems by computing the responses of 

hours to a technology shocks from the restricted fractional models only. It is, we restrict 

productivity to be I(1) in the VARFIMA but we leave hours worked unrestricted. In this 

case ( ) ( )2 1 1Ψ =
 
and the long run restriction (15) becomes: 

 ( ) ( ) ( )21 21 221 1 1 0Q a Q cΛ = + =  (16) 

                                                           
11 See Tschernig et al. (2010) for details about LR identification in fractionally integrated systems. 
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From the last expression, we can find the contemporaneous response of productivity to 

a positive demand shock as: 

  c af=  (17) 

where ( ) ( )21 221 1f Q Q= − . Now we have a system of four equations with four 

unknowns given by (13) and (17)12. The solution of this system is given by: 

[ ] ( ) ( ) ( )
1/22 22 2

1/2121 2 12 2 2 2
22 2 2

12 1 2

, , , , , ,
2

a f
a b c d af a f

f f d

σσ σ σ
σ

σ σ σ

   −− = ± ± − 
  − + +  

 (18)

The contemporaneous IRFs are identified up to a sign. The sign assumption we make is 

that the long-run response of productivity to a technology shock is positive: ( )22 1 0Λ > . 

The sign of the parameter a does not influence the response of hours to a productivity 

shock.  

The LR identification assumption is compatible with a wide range of economic 

models and focuses on their long-run properties. However, LR restrictions have very 

serious limitations and have been strongly criticized since the seminal work of Sims 

(1972). The main of these limitations is that they require the estimation of the sum of 

the responses of the variables to shocks. This is computed as the inverse of the matrix of 

the sum of autoregressive coefficients. Thus, even a small bias in the sum of 

autoregressive coefficients is substantially magnified by the application of a non-linear 

transformation. Also, the sum of autoregressive coefficients by itself cannot be precisely 

estimated by two reasons. First, model’s VAR have an infinite number of lags which is 

not feasible for the econometrician. Second, it is not possible to approximate accurately 

the long-run behavior of an economic time series from the short span of data usually 

available. According to Faust and Leeper (1997) such structural VARs are not expected 

to be realistic in finite samples. The same critique applies to whatever model estimated 

with real data, including VARFIMA. Contrary, SR restrictions are applied directly to 

the estimated variance-covariance matrix of the reduced form disturbances and are 

                                                           
12 By a matter of robustness, we have also employed truncation without restricting productivity to be I(1) 
obtaining similar results.  
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immune to the majority of problems that suffers LR identification. However, they tend 

to be model specific13.   

3.3 Estimated IRFs  

The responses of the hours worked to the technology shock from the restricted 

VARFIMA model (where productivity is assumed to be I(1)) together with the 95% 

confidence intervals are plotted in the Figure 2. The confidence intervals for the IRFs 

are computed by multivariate non-parametric bootstrap in frequency domain (see 

Berkowitz and Diebold (1998)14). To compare our results with other’s in the literature, 

we also plot the IRFs from two VAR(4) models with different assumption on the order 

of integration of hours worked (I(0) and I(1)). We compute IRFs for all models under 

both sets of identification assumptions: SR and LR. 

Under SR identification, the contemporaneous response of hours to a technology 

shock is equal to zero in all models by assumption (b=0). The estimated VARFIMA 

response of hours to a positive technology shock after one period is positive and 

statistically significant in all datasets. The speed of decline of the impulse responses 

depends on the estimated coefficient of fractional integration of hours worked: the 

higher 1̂d  the slower the decline of the impulse responses. The IRFs uncovered from 

both VAR models are as well positive and significant in all datasets analyzed.  The 

responses from VAR(4) with I(1) hours do not approach zero in the long run because 

hours are non-stationary in this model. It worth also to notice that the responses 

recovered with VARFIMA are much closer in magnitude to the theoretical ones arising 

from RBCs, as it will be clearer in Section 4. 

Under LR identification, results are less homogeneous. The estimated 

VARFIMA responses of hours are negative. However, they are only statistically 

significant in the datasets FR, CEV and A. In fact there is a huge increase of the 

sampling uncertainty associated to the LR scheme and the confidence intervals are 

much wider than those obtained with SR identification. In line with the results of 

Christiano et al. (2003), the estimated responses of hours to technology shock of the two 

                                                           
13  We thank the referee for pointing out the existence of this “ trade-off” . 
14 To compute confidence intervals we produce 500 bootstrap replications treating the estimated model as 
the true data generating process. Conditions on the spectral density of VARFIMA process for the 
application of the bootstrap are satisfied for all frequencies except for frequency zero. Since we exclude 
frequency zero from the estimation, we do not bootstrap the periodogram for this frequency. 
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VAR models are of opposite sign and very different from the responses of VARFIMA. 

If hours are assumed I(0), the estimated VAR responses uncovered with LR scheme are 

positive and strong, as in Christiano et al. (2006) or Chari et al. (2008). Opposite, when 

hours are assumed I(1), the estimated responses become negative in all datasets.  

Summarizing, when relaxing the assumption on the order of integration of hours 

worked, the estimated responses obtained with the SR identification are positive and 

statistically significant in all datasets. Further, the responses are very similar to the ones 

derived from RBC models. LR identification results in negative but often not 

statistically significant responses. In fact, the responses are never significant if 

productivity and hours are defined only for the non-agricultural sector. We analyze the 

robustness of these results in the following subsection.  

3.4 Robustness checking 

We perform a robustness checking of the previous results along three different 

dimensions. First we analyze the stability of the results across sub-samples. Second we 

extend the estimation framework to account for seasonal fractional integration. Finally, 

we investigate whether the inclusion of more variables into the model has effect on the 

estimated IRFs. 

3.4.1 Stability across sub-samples 

Chari et al. (2008) argue that that the responses of hours to a technology shock 

are not stable across sub-samples. As a robustness checking exercise, we produce the 

estimation in the sub-sample starting from 1959:1 for all datasets considered. The 

estimated VARFIMA parameters of fractional integration at zero frequency of hours are 

0.58, 0.64, 0.60, 0.57, and 0.63 in the datasets FR, GR, CEV, A, and B, 

correspondingly. The estimated coefficients in the sub-sample are slightly lower than in 

the full data sample, but still they point out the non-stationary mean reverting behavior 

of hours worked. The estimated coefficients of productivity in all datasets are again not 

statistically different from one. As a consequence, we conclude that the results on the 

orders of fractional integration of the variables are stable across sub-samples. The 

responses of the hours worked to the technology shock from the restricted VARFIMA 

are very similar to the ones obtained with the full sample and are not reproduced in the 
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article to conserve space15. However, it is important to note that the responses recovered 

with LR assumption in the dataset FR become statistically not significant. In this way, if 

the SR assumption is applied, the IRFs in the sub-sample starting from 1959:1 are 

positive and statistically significant in all datasets analyzed. The responses uncovered 

with LR identification are negative but with very wide confidence intervals, and 

statistically not significant in three out of five datasets (FR, GR, and B).  

3.4.2 Seasonal fractional integration 

The VARFIMA model can be expanded to a more general case that includes 

fractional integration not at the zero frequency only, but also at seasonal frequencies 

(VARFISMA)16. Seasonal fractional integration is a very common feature of many 

seasonally not adjusted economic time series documented in Porter-Hudak (1990), Gil-

Alana and Robinson, (2001), etc. However, even if the data is seasonally adjusted, it 

still may be seasonally fractionally integrated with negative orders of integration due to 

seasonal over-differencing17. The omission of the negative seasonal fractional 

integration may result in biased estimates of the coefficient of fractional integration at 

zero frequency (Lovcha and Perez-Laborda (2010)). Also, the seasonal fractionally 

integrated model will help us to account for the influence of high frequency (with period 

less or equal to one year) movements that may be present in the data, which, as noted in 

Francis and Ramey (2005), can influence the responses of hours to a technology shock. 

The estimation results of the VARFISMA model for the five datasets are also provided 

in Table 2 in the columns labeled with "3". In line with the results from the previous 

section, the estimated order of integration of the productivity series is again not 

statistically different from one in any dataset considered. The coefficients of fractional 

integration at seasonal frequencies are negative and significant for the hours worked 

series but not for productivity in any dataset. Consequently, we estimate a restricted 

version of the VARFISMA model assuming that productivity is I(1) at zero frequency 

                                                           
15 These results may be obtained upon request to the authors. 
16 For quarterly data, the flexible seasonal autoregressive VARFISMA specification can be defined as in 
(1) and (2), with the fractional integration polynomials on the diagonal of the N×N matrix D(L) now 

given by ( ) ( ) ( ) ( ) 10 2 21 1 1
nn n

dd d

nD L L L L= − + + , where dn0, dn2, dn1 are the parameters of fractional 

integration for the series ynt at frequency zero and at seasonal frequencies π/2  and π correspondingly. 
 
17 Seasonal adjustment leads often to seasonal over-differencing, and produces the so-called dips in the 
sample periodogram at seasonal frequencies that correspond to negative seasonal fractional integration 
(see e.g. Lovcha et al (2012)).  
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and I(0) at seasonal frequencies. The results of the estimations of the restricted version 

of the VARFISMA model are presented in the Table 2 in the columns labeled with "4".  

As can be seen in the table, although the hours worked exhibit long memory in 

both specifications, the main difference in the results between the two fractionally 

integrated models (VARFISMA vs. VARFIMA) is that the estimated parameters of 

fractional integration at zero frequency of hours worked are always smaller for the 

VARFISMA specification. As can be seen in Figure 2, this is important to analyze the 

speed of decline of the impulse responses of hours, since the impulse responses 

recovered from VARFISMA will decline considerably faster than the ones from 

VARFIMA. Nevertheless, the IRFs from VARFISMA are always inside the VARFIMA 

confidence intervals. Overall, the omission of seasonal fractional integration does not 

seem to alter previous results significantly. 

3.4.3 Model specification 

To check the robustness of the results to changes in the model specification, we 

construct two expanded datasets, Dataset A3 and Dataset B3, including the investment-

output ratio to datasets A and B respectively18. The choice of the third variable is 

dictated by two considerations. First, according to Chari et al. (2008) the inclusion of a 

capital like variable may improve the results of the empirical model. Second, as the 

same authors show, the investment-output ratio is the only capital-like variable that 

produces invertible moving average representation of the RBC model in state space 

form. That is why the IRFs from the empirical model with the investment-output ratio 

can be compared with the ones from RBC. We estimate IRFs from a VARFIMA model 

with three variables for the datasets A3 and B3. 

The results on the order of fractional integration of hours are robust to the 

specification change with the coefficients of the fractional integration lying in the same 

range: 0.6-0.7. The orders of integration of productivity and the investment-output ratio 

appear to be not statistically different from one. As a result, we restrict both variables to 

be I(1). To identify the IRFs with SR assumptions in a three variables system we 

assume that neither  the hours nor the investment-output ratio are influenced by the 

                                                           
18 The investment-output ratio is computed as the natural logarithm of the ratio of real gross private 
domestic investment (GPDIC96 in FRED) to the corresponding series of output. The later is computed as 
the product of productivity times hours worked from the corresponding two-variable dataset. 
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technology shock contemporaneously; and the hours are not influenced by the shock to 

investment-output ratio19. The long-run identification is produced assuming that the 

technology shock is the only shock that influences productivity in the long run; and the 

investment-output ratio is not influenced by the shock to hours in the long-run20.  

Figure 3 plots the IRFs uncovered from the three-variable VARFIMA together 

with the responses and confidence intervals from the corresponding two-variable model. 

As can be seen in the figure, the responses from the three-variable model are always 

inside the confidence intervals of the VARFIMA with two variables and very close to 

each other. We also plot in the same figure the responses computed from the two 

standard VARs (with the same three variables), with the I(0) and I(1) assumptions on 

hours worked. As can be seen in the Figure 3, the results are not influenced significantly 

by the inclusion of the third variable, being analogous  two the ones plotted in the 

Figure 2. 

Overall, an interesting conclusion arises from the empirical results of Section 2: 

the sign and the magnitude of the responses of hours to a technology shock depend 

crucially on the identification assumption employed to uncover them. Given the 

robustness of the results to the definition of hours and productivity, to the inclusion of 

seasonal fractional integration and to the changes in model specification, the only 

possible reason to get a negative response of hours seems to be the application of the 

LR assumption. Moreover, even if it is the case, the negative responses are statistically 

different from zero only in three datasets from five in the full sample and in two datasets 

from five in the sub-sample starting from 1959. 

4. Simulation study 
Given that the sign and magnitude of the responses of hours to a technology 

shock in all datasets analyzed depend crucially on the assumptions employed to identify 

them, we check the validity of the identification assumptions in a structural fractionally 

integrated autoregressive settings. To do so, we employ the procedure described in Sims 

                                                           
19 In other words, to apply the Cholesky decomposition to the variance-covariance matrix of the 
(fractional) VAR disturbances, we order hours as the first variable in the vector, followed by the 
investment-output ratio and, finally, productivity. However, the results do not change if we change the 
order of hours and investment-output ratio in the vector. 
20 Results on IRFs do not change if we assume instead that hours are not influenced by investment-output 
ratio shock in the long run. 
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(1989) and after applied by Christiano et al. (2006) and Chari et al. (2008) among 

others.  

4.1 The Sims procedure 

The Sims procedure (Sims (1989)) can be divided into three steps. First, 

artificial datasets are simulated from a parameterized RBC model. Second, the 

estimation procedure examined is applied to this artificial datasets and the impulse 

responses are recovered with the identification assumptions satisfied in the model. 

Third, the mean of the impulse responses estimated from the artificial datasets is 

compared with the theoretical responses from the RBC model. If they are close enough 

to each other, the estimation procedure and the set of the identification assumptions 

applied are appropriate to uncover the impulse responses in the structural empirical 

model. The basic idea of the procedure is the following. The researcher knows that the 

DGP is a particular RBC model. Under some conditions (satisfied in the model we use), 

this RBC has infinite order VAR representation21. Since an infinite VAR is not feasible 

model for estimation, the researcher has to apply a set of auxiliary assumptions. For 

example, to assume that this infinite VAR is well represented by a VAR(4) with I(1) 

hours worked as in Gali (1999), by a VAR(4) with I(0) hours worked as in Christiano et 

al. (2003), or by a VARFIMA with fractionally integrated hours, as in this paper. All 

three are different versions of a restricted infinite VAR. The first two models restrict the 

order of integration of variables and the number of lags of the process. The last one 

relaxes these two assumptions, but it still restricts the coefficients of the infinite VAR to 

be of a particular form22. The objective here is to check if the applied auxiliary and 

identification assumptions are reasonable to uncover the impulse responses of the 

variables to structural shocks. The weakness of the approach is that it is difficult to 

separate the effect of the auxiliary and the identification assumptions to the quality of 

the estimated responses. To overcome this problem, we follow Christiano et al. (2006) 

and use two versions of the RBC model which differ in the timing assumptions. The 

first version is a standard RBC where all time t decisions are taken after the realization 

of the shocks. This model satisfies LR identification assumptions. The second version is 

a recursive RBC, where the labor decision at period t  is made before the realization of 

                                                           
21 For the details, see Fernandez-Villaverde et al. (2007) and Christiano et al. (2006). 
22 VARFISMA model is a restricted infinite VAR with coefficients that can be found multiplying the 
matrix of infinite long memory polynomial D(L) by the matrix of finite low lag short memory 
polynomials (I-F(L)). 
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the period's t  technology shock.  The recursive version satisfies both LR and SR 

identification. Making use of the recursive version of the RBC in the Sims procedure, 

we can separate the effect of the auxiliary assumptions from the effect of the 

identification assumption. Given that to the VARFIMA model estimated using data 

from the recursive RBC can be applied both identification schemes, results will be both 

data and model invariant. We briefly describe the two versions of the model in the 

following subsection. 

4.2 RBC model 
According to our previous analysis, the inclusion of the third variable does not 

alter the results. We henceforth focus on the two-variable case and employ the two 

shocks version of the RBC model of Christiano et al. (2006) as the true DGP23. 

The representative agent maximizes expected utility over per capita 

consumption, tc , and per capita hours worked, tl : 

 ( )( ) ( )1

0
0

1 1
1 ln

1

t t
t

t

l
E c

σ

β γ ϕ
σ

−∞

=

 − −
+ + 

−  
∑  

subject to the household budget constraint: 

 ( ) ( ),1 1t x t l t t t t t tc i w l rk Tτ τ+ − ≤ − + +  

where capital accumulation is given by: 

 ( ) ( )11 1t t ti k kγ δ+= + − −  

and the resource constraint: 

 t t tc i y+ ≤  

                                                           
23 Also, focus on the two-variable model help us to alleviate the huge computational burden associated to 
the estimation of the VARFIMA model which is crucial given the high number of simulations required 
for the exercise. Additionally, results using data simulated from a three-variable RBC are not expected to 
be different to the ones provided in the text. Chari et al. (2008) show that the inclusion into the VAR of 
the log investment-output ratio generated by RBC with three shocks does not change the results since the 
highest eigenvalue of the decay matrix in the infinite VAR representation is as higher as the 
corresponding one from the two-variable case. Nevertheless, by a matter of robustness, we evaluate the 
responses simulating data from a three-variable version of the RBC model of Christiano et al. (2006) and 
producing estimation with the two-variable VARFIMA. This is done to evaluate whether the inclusion 
additional state variables produces finer results, even when restraining the VAR to incorporate only two 
variables, as it is sometimes the case. The results are analogous to the ones obtained using data simulated 
from the two-variable RBC model and not provided in the text to save space, but they are available from 
the authors upon request. We thank the referee for suggesting this robustness checking. 
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Here, tk  is the per capita capital stock at the beginning of period t , tw  and tr  are the 

wage and the rental rate on capital at t, correspondingly, xτ  is an investment tax, ,l tτ  is 

the tax rate on labor income, ( )0,1δ ∈  is the depreciation of capital, γ  is the growth 

rate of the population, tT  is lump-sum taxes, σ  is the curvature parameter in the utility 

function, β  is the discount factor and, ϕ  is the preference parameter.  

The representative firm's production function is: 

 ( )1

t t t ty k Z l
αα −=  

where tZ  is the time t state of the technology and ( )0,1α ∈ . 

Non-stationary technology process represented by a random walk: 

 1ln ln z
t z t z tZ Zµ σ ε−= + +  

that can be rewritten as: 

 
1

ln ln zt
t z z t

t

Z
z

Z
µ σ ε

−

= = +  

The process for the demand shock (labor tax shock in this paper) is represented 

by stationary (but persistent) AR(1) process. 

 ( ), , 1
l

l t l l l t l l tτ τ ρ τ τ σ ε−− = − +  

The shocks z
tε  and l

tε  are i.i.d random variables orthogonal to each other with 

zero mean and variance equal to one. The constants zµ  and lτ  are the mean growth rate 

of technology and the mean labor tax rate, correspondingly. The autoregressive 

coefficient lρ  is restricted to be less than one in absolute value. Under these 

assumptions on the dynamic of the technology and the labor tax rate, the hours per 

capita should be stationary. 

 Following Christiano et al. (2006), we consider two versions of the RBC model 

with different timing assumptions: the standard (or non-recursive) and the recursive 

version.  In the standard version, all time t  decisions are made after the realization of 

the time t  shocks. The log-linearized equilibrium laws of motion for capital and hours 

in this version of the model can be written as: 
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l k u

k k u
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γ γ γ γ τ+
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= + + +

ɶ

ɶ ɶ
 (19) 

where lnt t zu z µ= − , , ,l t l t lτ τ τ= −  and 1 1t t tk k Z+ +=ɶ 24. 

From the two equations above and the log-linearized production function, it is 

clear that the technology and labor tax shocks only have a temporary impact on ln tl  

and ln tk , but the technology shock z
tε  has a permanent effect on log labor productivity. 

Thus, the technology shock is the only shock that influences productivity in the long 

run, and the standard version of the model satisfies the LR assumption. 

In the recursive version, the labor decision in period t  is made before the 

realization of the period's t  technology shock. The log-linearized equilibrium laws of 

motion for capital and hours can now be written as follows: 

 
0 1 ,

1 0 , ,1 1

ln ln

ln ln

t k t z t l l t

t k t z t l l t z t

l k u

k k u u

ξ ξ ξ ξ τ

γ γ γ γ τ γ
−

+ −

= + + +

= + + + +

ɶ

ɶ ɶ
 (20) 

As before, the only shock that affects the labor productivity in the long run is the 

technology shock, and again LR identification is satisfied. However, due to the timing 

assumption, the labor decision at t is not affected by the time t technology shock, and 

SR identification can also be used to uncover the response of hours. 

The RBC impulse responses of hours to a technology shock are calculated as 

follows. The technology shock is set 0 0zε = ∆ > at period 0 (steady state), and zero 

afterwards ( 0z
tε =  for 1t ≥ ). The labor tax shock is switched off ( 0,l

t tε = ∀ ). The 

responses of hours to the technology shock can be calculated recursively from the laws 

                                                           
24 Details on the variables' transformation, log-linearization, model' solution, and state space form 
representation may be found in the Appendix A on the authors' web-pages. 
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of motion of capital and hours given by equation (19) for the standard version of the 

model and equation (20) for the recursive25.  

4.3 Parameterization and simulation setup 

As in Christiano et al. (2006), we employ standard parameterization of the RBC 

model: 1/ 40.98β = , 0.33α = , ( )1/4
1 1 0.06δ = − − , 2.5ϕ = , 1/41.01 1γ = − , 0.3xτ = , 

0.242lτ = , 1/41.016 1zµ = − , 0zρ = , 1σ = .  

The laws of motion for the exogenous shocks are given by: 

 
( ), 1 , 1

ln 0.00953

1 0.986 0.986 0.0056

z
t z t

l
l t l l t t

z µ ε
τ τ τ ε+ +

= +

= − + +
 

We simulate 500 artificial datasets from the standard and recursive versions of 

the parameterized RBC. Initial state (or period t=0) is the steady state, the number of 

observations in each simulated series is 240, corresponding to 60 years26. The errors z
tε  

and l
tε  are generated from the standard normal distribution.  

For each of the simulated datasets we produce estimation with the VARFIMA. 

As in the real data analysis, we restrict the productivity series generated by the RBC 

models to be I(1) and we assume that the process is well approximated by the 

VARFIMA model with one lag in autoregressive, as chosen by Schwarz criteria in the 

empirical part. We recover the impulse responses under the same set of assumptions 

that are satisfied in the DGP. Hence, we apply both identification schemes when we 

produce estimation with the data simulated from the recursive RBC and the LR 

identification when we analyze the data simulated from the standard model. However, 

for demonstrational purposes, we also recover the IRFs under the SR identification with 

data simulated from the standard model, even if it is not applicable. After, to assess the 

estimation bias, we compare the mean of the estimated impulse responses with true 

                                                           
25

 Thus, the contemporaneous impulse responses are zξ ∆  and 0  in the standard and recursive models, 

correspondingly. The responses in period 1t ≥  can be computed as 
1t

k z zγ ξ γ− ∆  for the standard model 

and ( )z k zξ ξ γ+ ∆ɶ ɶ  for 1t = , ( )2t
k k k z zξ γ γ γ γ− ′+ ∆ɶ ɶ  for 2t ≥  for the recursive. 

26 This are the same number of observations as contained in the datasets of Christiano et al. (2003, 2006), 
Francis and Ramey (2005) or Gali and Rabanal (2004). 
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responses from the corresponding RBC model. As well we compute the 95% confidence 

intervals for the estimated mean of responses. 

As in Christiano et al. (2006), we assess the accuracy of the confidence intervals 

by computing coverage rates. The coverage rate is the fraction of times that the 

confidence intervals contain the true value of interest. If the 95% confidence intervals 

were perfectly accurate, the coverage rate would be 95%. To compute coverage rates, 

we simulated 100 datasets from both types of RBC models: the standard and the 

recursive. For each dataset we estimate the impulse responses under the two sets of 

identification assumptions and we compute confidence intervals by non-parametric 

bootstrap in frequency domain. To do so we make 200 bootstrap replication for each 

estimated model27. The confidence interval is defined as mean plus and minus 1.96 

standard deviations across 200 bootstrapped impulse responses.  

4.4 Results of the Sims procedure 

Figure 4 depicts the results of the Sims procedure. Figure 4.a plots the mean of 

500 estimated VARFIMA impulse responses of hours to a positive technology shock 

and their 95% confidence intervals, using the data generated by the recursive version of 

the RBC model. Figure 4.b shows analogous results for the standard RBC model. The 

first and second columns of each figure draw the response of hours uncovered with the 

SR (first column) and the LR (second column) identification schemes. In both cases we 

include the true impulse responses from the corresponding RBC model. To make our 

results comparable with the ones reported in the literature, we also plot the responses 

from the two standard VAR(4) with I(0) and I(1) hours. 

As can be seen in the Figure 4.a, the mean of the VARFIMA responses 

uncovered with SR identification using data from the recursive RBC are positive and 

statistically significant in the short run. They follow zero contemporaneous response 

resulting from the SR identification restriction. The mean of the estimated responses is 

very close to the responses from the theoretical model. The results are similar to the 

ones achieved with VAR assuming that hours are I(0). Nevertheless, the responses 

recovered from VARFIMA seem to have been estimated more precisely with smaller 

                                                           
27 The results of this procedure should be evaluated with caution since 100 simulated datasets and 200 
bootstrap replications are few to accurately assess precision. Unfortunately, even these relatively few 
numbers already imply 20000 estimations of the VARFIMA model, which is computationally much more 
complex than the estimation of a standard VAR.  
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confidence intervals. Notice that VARFIMA responses are statistically different from 

zero up to ninth lag whereas the responses from VAR are not statistically significant 

after the third lag. The mean of VAR IRFs assuming that hours are I(1) are as well 

positive and statistically significant for the first three lags, but the estimated mean is 

further away from the real responses from the model and presents slower decay.  This 

result is not surprising since assuming that hours are non-stationary, we make a 

misspecification with respect to RBC model, where hours are stationary. It is also 

important to notice, that, unlike VAR responses, the estimated VARFIMA responses 

with real data (Figure 2) are very similar in magnitude to the theoretical ones and to the 

ones recovered from the model.   

Give that the recursive version of the model also satisfies the LR identification, 

we can apply this assumption to uncover the responses of hours from this model too. 

Results may be found in the second column of the Figure 4.a. The first result that pops 

out is that the mean of the VARFIMA responses is again very close to the real one from 

the recursive RBC model.  The second is that there is a huge increase in the wideness of 

the confidence intervals: they are three times wider than ones resulting from the SR 

identification and always include zero. Thus, the sampling uncertainty associated to the 

LR identification is substantially larger than in the SR case. Similar conclusion is drawn 

from the estimation of a VAR with I(0) hours. However, if the responses are estimated 

by a VAR with I(1) hours, the mean of estimated responses is negative, statistically not 

different from zero and the responses from the RBC model are not even inside the 

confidence intervals. Note than in this last case the confidence intervals for the LR 

identification shrink. So, the mean of the estimated responses is not significant not 

because the sample uncertainty is higher, but because the mean is very close to zero.  

The difference between the first and the second column of the Figure 4.a is 

especially interesting. Since we use the same artificial datasets and the same estimation 

procedure, the only difference in the estimated mean responses of hours plotted is the 

identification assumption used to recover them. Thus the differences between the results 

of the first and the second columns for the third row evidence the unsuitability of the 

I(1) assumption on hours for data generated from the model. Furthermore, for the 

VARFIMA case (first row), the assumption on the order of integration of hours should 

not exert any influence since it is relaxed. Thus the only reason of the increase in the 

sampling uncertainty is the use of the LR identification assumption. 
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To proceed with the evaluation of the LR identification we employ data 

simulated by the standard (non-recursive) RBC model. As commented before, the non-

recursive RBC satisfies only the LR identification assumption. However, we also 

recover the impulse responses applying SR as an illustrative counterexample. 

The mean responses estimated under the LR restrictions from the data simulated 

with the standard RBC model and their 95% confidence intervals are plotted in the 

Figure 4.b, second column. The mean of the estimated VARFIMA responses is very 

close to the real responses from the standard RBC model. The confidence intervals are 

wide and include zero, indicating high sampling uncertainty, as in the recursive version. 

The results from VAR with I(0) hours are again similar to the ones from VARFIMA. 

Results obtained from VAR with I(1) hours once more confirm the inappropriateness of 

the I(1) assumption for the simulated data: the mean response of hours is negative and 

the real responses are outside the confidence intervals. 

For demonstrational purposes the first column of Figure 4.b presents the mean 

response of hours recovered with the SR assumption, even if it is not satisfied by the 

DGP. It is clear from the results that the SR is not applicable in this case: the mean of 

the estimated responses is very close to zero and the responses from the standard RBC 

model are not inside the confidence intervals of any model.  

To check the precision of the VARFIMA confidence intervals, we compute their 

coverage rates. The Figure 5 (left panel) depicts the coverage rates for the confidence 

intervals using data generated by the recursive RBC, for both SR and LR identification 

assumptions. The coverage rate at lag zero when the SR identification is employed is 

one due to the identification assumption. The figure exhibit two striking features. First, 

both coverage rates are high. With very high probability, the VARFIMA based 

confidence intervals include the true value of the impulse response coefficients no 

matter the identification scheme chosen by the econometrician.  Second, the coverage 

rate is higher for SR identification: if the true DGP is a recursive RBC, the SR 

identification is expected to give slightly better results. The right panel of Figure 5 

presents the coverage rates for the confidence intervals computed with VARFIMA 

using data generated by the standard RBC model. If the LR identification is applied, the 

coverage rates are very high and relatively close to 0.95. Contrary, if we apply SR 

identification (not satisfied in the standard RBC model), the coverage rates are very 

low: it is very improbable that the confidence intervals based on this procedure contain 
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the true value of the impulse response coefficients. Also, the confidence intervals 

always contain zero. This is important since it means that the responses uncovered with 

the SR scheme are never statistically significant when the SR is not valid. Thus, it 

seems that data tells whether SR can be used or not. 

In general, based on the results of the Sims procedure, an econometrician, in 

general, would not be misled in inference by using a standard practice to compute the 

confidence intervals for impulse responses in VARFIMA, no matter the identification 

scheme she applies. 

Summarizing, we do not find the evidence of the bias in the impulse responses 

estimated with VARFIMA under the SR and LR identification assumptions. The SR 

identification gives very good results. Application of the LR identification leads to a 

substantial increase in the sample uncertainty. However, the confidence intervals for the 

impulse responses of hours worked to a technology shock are found to be precise 

enough to make inference. The results are in line with results of Christiano et al. (2006) 

who studied performance of the short-run and long-run identification schemes in a 

structural VAR with I(0) hours worked. It is not surprising since both models are 

different types of approximation to the infinite VAR representation of the RBC model. 

As argued in Christiano et al. (2006), the main reason of the increase of the sampling 

uncertainty when LR identification is applied are the difficulties in approximating the 

infinite sum of VAR coefficients by a finite VAR. Unfortunately, application of 

fractional models does not help to solve this problem. Although fractional models do 

not restrict VAR to have a finite number of lags, the sum of autoregressive coefficients 

in the infinite VAR representation of VARFIMA is equal to zero or infinity depending 

on the coefficients of fractional integration of variables. What we do show in this 

section is that the VARFIMA process is applicable if the true DGP is an RBC model 

and that the impulse responses recovered with real data are comparable with the 

theoretical ones. This is very important because it is clear that the hours generated by 

the RBC model are much less persistent than the real data. The evidence that real hours 

are fractionally integrated, possibly non-stationary and mean reverting is very strong 

and not influenced by the definition of hours28. Hence the I(0) assumption appears to be 

too much restrictive when assessing the responses with real data.  

                                                           
28 The most common explanation for the existence of fractional integration is the strong aggregation 
produced in real data (see e.g. Granger (1980)). 
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5. Conclusion 
In this paper we relax the arguable assumption on the order of integration of 

hours worked when estimating the impulse responses of the hours to a (positive) 

technology shock. This assumption has been the subject of a debate in the literature for 

last ten years. Christiano et al. (2003) show that the response of hours is positive if 

hours are assumed to be integrated of order zero but negative otherwise. 

To do so, we use VARFIMA model to estimate the order of fractional 

integration of hours at zero frequency together other parameters of the model. We 

estimate impulse responses under SR and LR identification assumptions. To assess the 

plausibility of the empirical model and the identification assumptions to identify the 

technology shock, we apply approach described in Sims (1989). We use parameterized 

RBC model (standard and recursive) as a data generating mechanisms to simulate a set 

of artificial series for hours and productivity. Thereafter, we estimate the simulated data 

with the VARFIMA model and recover the impulse responses under the same set of 

assumptions that are satisfied in the DGP. These impulse responses are compared with 

the ones from the theoretical RBC model.  

According to our results, hours worked are found to be fractionally integrated, 

possibly non-stationary mean reverting. The order of integration of productivity is 

always not statistically different from one. Once the assumption of the order of 

integration is relaxed, the sign and the magnitude of the estimated responses of hours to 

a technology shock from the real data seem to depend on the identification scheme 

exclusively. This result is robust to changes in the specification and not influenced by 

movements at high frequencies or by the choice of the sample. 

In the real data analysis, SR identification produces positive and statistically 

significant impulse responses that are very stable across datasets. It is interesting to note 

that the estimated from the data IRFs have not only the same sign as the theoretical 

IRFs from the recursive RBC model but also they are very close in magnitude. 

According to the Sims procedure, SR identification performs remarkably well: there is 

no evidence of bias in the estimated responses and confidence intervals seem to be 

enough precise to make inference.  
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The LR identification is still appropriate to back up the responses of hours in the 

VARFIMA model however, the sample uncertainty increases dramatically when it is 

applied. Nevertheless, the coverage rates for confidence intervals confirm that with very 

high probability VARFIMA based confidence intervals include the true value of the 

impulse response coefficients. With real data, the LR scheme produces negative impulse 

responses yet with wide confidence intervals. In fact, if productivity and hours are 

defined only for the non-agricultural sector, the responses become not statistically 

significant. Moreover, the results on the significance seem to be also sample-dependent. 

In the sub-sample started from 1959:1 the responses are not significant already in one 

additional dataset. Thus, significance of the responses uncovered with LR identification 

is both data and sample dependent.  

In this study we were primary concerned with the apparent contradiction 

between the real data analysis and the standard RBC model. Thus, in order to ensure 

that empirical VARFIMA responses recovered from the real data can be compared with 

those from the RBC, we have employed this model for the simulation study. However, 

it would be interesting to assess if the VARFIMA responses can be also compared with 

those arising from models that cause a drop in hours up front. Specially, if one considers 

that the RBC is not a valid model to explain the behavior of hours. To address these 

issues, additional studies featuring, for example, RBC model augmented with sticky 

prices and wages, and a monetary policy rule not responding aggressively to the output 

gap are required. We leave these interesting questions open for future research. 

 

References 
 

Berkowitz, J. and F.X. Diebold (1998) Bootstrapping multivariate spectra. The review of 

economics and statistics 80(4), 664-666. 
Blanchard, O.J. and D. Quah (1989) The dynamic effects of aggregate demand and supply 
disturbances, The American Economic Review 79(4), 655-673. 

Boes, D.C., Davis, R.A. and S.N. Gupta (1989) Parameter estimation in low order fractionally 
differenced ARMA processes, Stochastic Hydrology and Hydraulics 3,  97-110. 

Canova, F., Lopez-Salido, D., and C. Michelacci (2007) The labor market effects of technology 
shocks. Documentos de Trabajo No. 0719. Banco de España. 



33 

 

Chari, V.V., Kehoe, P.J., and E.R. McGrattan (2008) Are structural VARs with long-run 
restrictions useful in developing Business Cycle Theory? Journal of Monetary Economics 
55(8), 1337-1352. 

Christiano, L. J., Eichenbaum, M., and R. Vigfusson (2003) What happens after a technology 
shock? FRB International Finance Discussion Paper No. 768. Board of Governors of the Federal 
Reserve System. 

Christiano, L. J., Eichenbaum, M., and R. Vigfusson (2006) Assessing structural VARs. 
International Finance Discussion Paper 866. Board of Governors of the Federal Reserve 
System. 

Erceg, C.J., Gust C., and L. Guerrieri (2005) Can long-run restrictions identify technology 
shocks? Journal of the European Economic Association 3 (6), 1237-1278. 

Faust, J. and E. Leeper (1997) When do long-run identifying restrictions give reliable results? 
Journal of Business and Economic Statistics 15(3), 345-353. 

Fernandez-Villaverde, J., Rubio-Ramirez, J.F., Sargrnt, T.J, and M.W. Watson (2007) A, B, C's 
(and D's) for understanding VARs. American Economic Review 97 (3), 1021-1026. 

Fernald, J.G. (2007) Trend breaks, long-run restrictions, and contractionary technology 
improvements. Journal of Monetary Economics 54 (8), 2467-2485 

Francis, N., Owyang, M.T., and J.E. Roush (2005) A flexible finite-horizon identification of 
technology shocks, International Finance Discussion Paper Number 832. Board of Governors of 
the Federal Reserve System.  

Francis, N. and V.A. Ramey (2005) Is the technology-driven real business cycle hypothesis 
dead? Shocks and aggregate fluctuations revisited. Journal of Monetary Economics 52, 1379-
1399. 

Gali G. (1999) Technology, employment, and the business cycle: Do technology shocks explain 
aggregate fluctuations? The American Economic Review 89 (1), 249-271. 

Gali, J. and P. Rabanal (2004) Technology shock and aggregate fluctuations: How well does the 
RBC model fit post War US data? CEPR Discussion Paper No. 4522. 

Gil-Alana, L.A., A. Moreno (2009) Technology shocks and hours worked: A fractional 
integration perspective. Macroeconomic Dynamics 13, 580-604. 

Granger, C. W. J.  (1980) Long memory relationships and the aggregation of dynamic models.  
Journal of Econometrics 14, 227-38. 
 
Hassler U., (1994) (Mis)specification of long memory in seasonal time series. Journal of Time 
Series Analysis 14 (1), 19-30. 

Hosoya, Y. (1996) The quasi-likelihood approach to statistical inference on multiple time-series 
with long-range dependence. Journal of Econometrics 73, 217-236. 

Gil-Alana, L.A. and P.M. Robinson (2001) Testing of seasonal fractional integration in the UK 
and Japanese consumption and income. Journal of Applied Econometrics 16, 95-114 



34 

 

Lovcha, Y, Perez-Laborda, A and L.A. Gil-Alana (2012) On the Invertibility of seasonal series 
adjusted by TRAMO-Seats. Typescript.  

Lovcha, Y and A. Perez-Laborda (2010) Seasonal misspecification in long memory processes: a 
simulation study, Typescript. 

Porter-Hudak, S., (1990) An application of the seasonal fractionally differenced model to the 
monetary aggregates. Journal of the American Statistical Association 85, 338-344. 

  Robinson, P.M. (1994) Semi-parametric analysis of long-memory time series. The Annals of 
Statistics 22 (1), 515-539. 

Ray, B.K. (1991) Fractionally differenced ARMA processes: seasonality and forecasting issues, 
PhD thesis, Graduate School of Arts and Science, Columbia University, USA. 

Ray, B.K. (1993) Long-range forecasting of IBM product revenues using a seasonal fractionally 
differenced ARMA model. International Journal of Forecasting 9, 255-269. 

Sims, C. (1972) The role of approximate prior restrictions in distributed lag estimation. Journal 
of the American Statistical Association 67 (337), 169-175. 

Sims, C. (1989), Models and their uses. American Journal of Agricultural Economics 71, 489-
494. 

Tschernig, R., Weber, E., and R. Weigand, (2010) Long-run identification in fractionally 
integrated system. University of Regensburg Working Papers in Business, Economics and 
Management Information Systems, 447. 

Uhlig, H. (2004) Do technology shocks lead to a fall in total hours worked? Journal of the 
European Economic Association 2(2-3), 361-371. 

 

 

 

 

 

 

 

 

 

 

 



 

Graphs and Tables 
 
Figure 1. Hours worked and Productivity in different data sets. 
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Notes: (a) FR corresponds to the data set of Francis and Ramey (2004), GR - Gali and Rabanal (2004), data sets A 
and B are extended versions of the data sets of Christiano, Eichenbaum and Vigfusson (2003) and Gali (1999). (b) All 
variables are transformed to the logarithm form. 
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Figure 2. Impulse responses of hours worked to a positive technology shock estimated 
from two-variable datasets.  
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Notes: (a) in grey - 95% confidence intervals computed with non-parametric bootstrap for IRFs from VARFIMA 
model with productivity restricted to be I(1). (b) Left, SR identification; Right, LR identification. (c) FR corresponds 
to the data set of Francis and Ramey (2004), GR - Gali and Rabanal (2004),  CEV - Christiano, Eichenbaum and 
Vigfusson (2003). Data sets A and B are extended versions of the data sets of Christiano, Eichenbaum and Vigfusson 
(2003)and Gali (1999). 
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Figure 3. Impulse responses of hours worked to a positive technology shock estimated 
from three-variable datasets (including investment-output ratio). 
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Notes:  (a) in grey - 95% confidence intervals computed with non-parametric bootstrap for IRFs from VARFIMA 
model with productivity restricted to be I(1). (b) Left, SR identification; Right, LR identification. . (c) Data sets A3 
and B3 are extended versions of the data sets of Christiano, Eichenbaum and Vigfusson (2003) and Gali (1999) 
including investment-output ratio as third variable. 
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Figure 4. Simulations results: mean of estimated impulse responses of hours worked to 
a positive technology shock; Data generated from: Recursive RBC (panel up), Standard 
RBC (panel down). 
 

 Fig 4.a Recursive RBC 
Model SR identification LR identification 

 
 
VARFIMA 

 
 
 

VAR, I(0) 

 
 

VAR, I(1) 

 
 

 

 Standard RBC 
Model SR identification LR identification 

 
 
VARFIMA 

 
 

VAR, I(0) 

 
 
 

VAR, I(1) 

 
 

Notes: (a) in grey - 95% confidence intervals. (b) SR identification is not satisfied in the standard RBC model.
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Figure 5. Coverage rates for confidence intervals from VARFIMA computed with 
short-run (SR) and long-run (LR) identification; Data generated from: Recursive RBC 
(left), Standard RBC (right). 
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Notes: (a) The coverage rate is the fraction of times that the confidence intervals contain the true value of interest. If 
the 95% confidence intervals were perfectly accurate, the coverage rate would be 95%. (b) SR identification 
assumptions are not satisfied in the standard RBC model. 

 
 
 
 
Table 1. Unit root testing of Hours, p-values of the tests. 
 
 dfARDTest dfARTest dfTSTest ppARDTest ppARTest ppTSTest 

FR 
GR 
CEV 
A 
B 

0.0054* 
0.0094* 
0.1403 
0.3007 
0.0195* 

0.4701 
0.6077 
0.5222 
0.9219 
0.8129 

0.0194* 
0.0418* 
0.3996 
0.2882 
0.0989 

0.1336 
0.4000 
0.2622 
0.7483 
0.7763 

0.3427 
0.5774 
0.3959 
0.9852 
0.8849 

0.4357 
0.6858 
0.5823 
0.8799 
0.9668 

 
Notes: (a) H0: the true underlying process is a unit root process with or without drift; (b) dfARDTest - Augmented 
Dickey-Fuller unit root test based on AR model; dfARTest - Augmented Dickey-Fuller unit root test based on zero 
drift AR model; dfTSTest - Augmented Dickey-Fuller unit root test based on trend stationary AR model; ppARDTest 
– Phillips Perron unit root test based on AR(1) model with drift; ppARTest - Phillips-Perron unit root test based on 
zero drift AR(1) model; ppTSTest - Phillips-Perron unit root test based on trend stationary AR(1) model; dfARDTest, 
dfARTest, dfTSTest are corrected for serial correlation of residuals in the underlying OLS; (c) *  H0 is rejected at 
10% significance level. 
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Table 3. Estimation results. 
 

Estimates 
FR GR CEV A B 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

d10 
0.660 

(0.087) 
0.635 

(0.084) 
0.481 

(0.106) 
0.460 

(0.099) 
0.693 

(0.093) 
0.682 

(0.093) 
0.458 

(0.100) 
0.441 

(0.096) 
0.689 

(0.093) 
0.653 

(0.082) 
0.561 

(0.118) 
0.506 

(0.103) 
0.678 

(0.089) 
0.655 
(0.080) 

0.531 
(0.113) 

0.508 
(0.103) 

0.709 
(0.091) 

0.712 
(0.088) 

0.501 
(0.103) 

0.506 
(0.090) 

d11 - - 
-0.138 
(0.076) 

-0.151 
(0.075) 

- - 
-0.231 
(0.081) 

-0.243 
(0.080) 

- - 
-0.116 
(0.079) 

-0.145 
(0.071) 

- - 
-0.113 
(0.075) 

-0.138 
(0.074) 

- - 
-0.192 
(0.069) 

-0.204 
(0.067) 

d12 - - 
-0.219 
(0.076) 

-0.228 
(0.075) 

- - 
-0.286 
(0.077) 

-0.318 
(0.077) 

- - 
-0.164 
(0.083) 

-0.197 
(0.079) 

- - 
-0.175 
(0.077) 

-0.162 
(0.075) 

- - 
-0.239 
(0.068) 

-0.217 
(0.069) 

d20 
1.078 

(0.080) 
- 

0.979 
(0.083) 

- 
1.070 

(0.083) 
- 

0.994 
(0.094) 

- 
0.914 

(0.085) 
- 

0.998 
(0.088) 

- 
1.078 
(0.08) 

- 
0.963 

(0.086) 
- 

1.036 
(0.087) 

- 
0.945 

(0.097) 
- 

d21 - - 
-0.085 
(0.067) 

- - - 
-0.020 
(0.067) 

- - - 
-0.055 
(0.074) 

- - - 
-0.100 
(0.071) 

- - - 
-0.026 
(0.067) 

- 

d22 - - 
0.126 

(0.116) 
- - - 

0.153 
(0.098) 

- - - 
0.201 

(0.121) 
- - - 

0.143 
(0.111) 

- - - 
0.114 

(0.102) 
- 

F11 
0.793 

(0.066) 
0.807 

(0.063) 
0.817 

(0.070) 
0.822 

(0.065) 
0.800 

(0.064) 
0.804 

(0.065) 
0.820 

(0.066) 
0.818 

(0.064) 
0.778 

(0.075) 
0.816 

(0.064) 
0.801 

(0.085) 
0.833 

(0.070) 
0.816 

(0.070) 
0.843 

(0.062) 
0.852 

(0.074) 
0.871 

(0.063) 
0.811 

(0.064) 
0.820 

(0.062) 
0.839 

(0.065) 
0.850 

(0.057) 

F12 
0.174 

(0.056) 
0.183 

(0.055) 
0.164 

(0.057) 
0.144 

(0.056) 
0.128 

(0.059) 
0.140 

(0.057) 
0.105 

(0.061) 
0.082 

(0.057) 
0.175 

(0.060) 
0.182 

(0.056) 
0.171 

(0.061) 
0.159 

(0.057) 
0.187 

(0.057) 
0.206 

(0.056) 
0.174 

(0.058) 
0.175 

(0.057) 
0.147 

(0.056) 
0.1531 
(0.055) 

0.101 
(0.058) 

0.102 
(0.057) 

F21 
-0.169 
(0.049) 

-0.167 
(0.047) 

-0.160 
(0.050) 

-0.163 
(0.049) 

-0.173 
(0.051) 

-0.167 
(0.049) 

-0.183 
(0.051) 

-0.187 
(0.057) 

-0.160 
(0.052) 

-0.163 
(0.046) 

-0.150 
(0.054) 

-0.150 
(0.049) 

-0.161 
(0.046) 

-0.162 
(0.043) 

-0.148 
(0.047) 

-0.136 
(0.044) 

-0.144 
(0.046) 

-0.148 
(0.044) 

-0.148 
(0.046) 

-0.159 
(0.044) 

F22 
-0.147 
(0.100) 

-0.075 
(0.065) 

0.091 
(0.151) 

-0.054 
(0.065) 

-0.139 
(0.105) 

-0.053 
(0.067) 

0.121 
(0.159) 

-0.046 
(0.067) 

-0.158 
(0.105) 

-0.075 
(0.064) 

0.154 
(0.161) 

-0.050 
(0.065) 

-0.143 
(0.100) 

-0.053 
(0.064) 

0.126 
(0.151) 

-0.049 
(0.064) 

-0.049 
(0.109) 

-0.008 
(0.063) 

0.183 
(0.164) 

-0.005 
(0.063) 

σ1
2 0.536 

(0.049) 
0.536 

(0.034) 
0.508 

(0.047) 
0.512 

(0.033) 
0.562 

(0.054) 
0.560 

(0.036) 
0.515 

(0.050) 
0.511 

(0.035) 
0.595 

(0.058) 
0.548 

(0.034) 
0.566 

(0.056) 
0.525 

(0.034) 
0.563 

(0.051) 
0.559 

(0.034) 
0.538 

(0.050) 
0.548 

(0.034) 
0.527 

(0.048) 
0.524 

(0.033) 
0.490 

(0.045) 
0.504 

(0.033) 

σ2
2 

0.736 
(0.068) 

0.731 
(0.039) 

0.720 
(0.067) 

0.724 
(0.039) 

0.784 
(0.076) 

0.776 
(0.043) 

0.736 
(0.072) 

0.778 
(0.042) 

0.782 
(0.076) 

0.730 
(0.039) 

0.775 
(0.077) 

0.719 
(0.039) 

0.725 
(0.066) 

0.723 
(0.039) 

0.701 
(0.065) 

0.720 
(0.039) 

0.718 
(0.065) 

0.707 
(0.038) 

0.684 
(0.063) 

0.687 
(0.038) 

σ12 
0.006 

(0.041) 
0.014 

(0.041) 
-0.001 
(0.040) 

0.014 
(0.040) 

0.113 
(0.046) 

0.123 
(0.046) 

0.121 
(0.046) 

0.131 
(0.043) 

0.025 
(0.047) 

0.020 
(0.041) 

0.026 
(0.047) 

0.018 
(0.041) 

0.025 
(0.041) 

0.030 
(0.041) 

0.021 
(0.041) 

0.029 
(0.041) 

0.099 
(0.040) 

0.108 
(0.040) 

0.116 
(0.039) 

0.129 
(0.039) 

 
Notes: 1 – the data is fit with VARFIMA; 2 – the data is fit with VARFIMA restricting productivity to be I(1); 3 – the data is fit with VARFISMA model; 4 - the data is fit with VARFISMA, 
restricting productivity to be I(1) process at zero frequency and I(0) at seasonal frequencies; standard errors are presented in parenthesis; In all models, the order of autoregression is chosen by 
Schwarz information criteria. 
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