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Abstract

It is well known that, in distributions problems, fairness rarely leads to a single
viewpoint (see, for instance, Young (1994)). In this context, this paper provides
interesting bases that support the simple and commonly observed behavior of reach-
ing intermediate agreements when two prominent distribution proposals highlight
a discrepancy in sharing resources. Specifically, we formalize such a conflicting
situation by associating it with a ‘natural’ cooperative game, called bifocal distri-
bution game, to show that both the Nucleolus (Schmeidler (1969)) and the Shapley
value (Shapley (1953a)) agree on recommending the average of the two focal pro-
posals. Furthermore, we analyze the interpretation of the previous result by means
of axiomatic arguments.
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1. Introduction

In the summer of 2010, during an International Meeting on Game Theory, we had a
very interesting conversation about the cost allocation that a major company undertook
after receiving a detailed report carried out by an economics research group. As a
conclusion, the report provided two possible cost distributions and, surprisingly enough,
the company’s final decision was to distribute the cost according to the average of the
two.

This paper aims at providing some new theoretical support for the popular proverb
‘Virtue lies in the middle ground ’ which gathers the previous behavior, so common in
so many and different situations. Particularly, we consider the normative approach to
sharing problems which, as superbly expressed by Young (1994), does not boil down to
a single formula, but represents a balance between different competing principles.

In this context, we introduce bifocal distribution problems by adding, to generic
distribution problems, two prominent proposals for solving them. We then model these
kinds of problems as transferable utility cooperative games (TU-games, hereinafter) by
associating to each coalition the smallest quantity of the ‘good’ to be distributed that
it would receive according to the two proposed allocations. These games, that we call
bifocal distribution games, are the minimum of two additive games and we show that
this specific structure leads to ‘solid’ grounds of intermediate compromises.

Specifically, our main result states that, although these games are not convex in
general, the Shapley value is a Core selection that coincides with the Nucleolus and
recommends the Average value, that is, the average of the two focal distributions.

Finally, we interpret the Average value by means of two different axiomatic char-
acterizations. The first one is based on an adaptation to our context of Additivity, the
well-known property introduced by Shapley (1953b) to propose his value for TU-games.
The main property of our second axiomatic result, which was first studied in the context
of bankruptcy problems by O’Neill (1982), is No Advantageous Merging or Splitting, and
demands a solution immunity to manipulations of regrouping or division of agents.

The paper is organized as follows. Section 2 introduces the main concepts and
definitions. Section 3 provides game-theoretic grounds of intermediate compromises.
Section 4 presents two axiomatic characterizations of the Average value. Section 5
summarizes our conclusions. The Appendices contains the technical proofs.

2. Bifocal distribution problems

We consider situations in which an amount M of a perfectly divisible ‘good’ should be
distributed among a group of agents N = {1, .., n} and there exists discrepancy about
the way of distributing M , which is represented by two different proposals, specified by
the vectors, x = (xi)i∈N and y = (yi)i∈N . It is supposed that each proposal is supported
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by a distinct legal or moral Authority so they represent incompatible agents’ rights on
M since both are considered objective and socially admisible. In our framework the
population of agents involved in a problem, although finite, may vary. Formally, there
is a set of ‘potential’ agents indexed by the natural numbers N and N denotes the
class of non-empty finite subsets of N. For each N ∈ N , BN denotes the class of these
problems.

Definition 1. A bifocal distribution problem is obtained by first specifying a set of
agents N ∈ N , then a triplet (M,x, y) ∈ R++×Rn

+×Rn
+ such that M =

∑
i∈N

xi =
∑
i∈N

yi.

Note that a wide range of situations that have been analyzed in the economic litera-
ture can be modeled in this way. For instance: pure distribution problems, bankruptcy
problems, cost sharing problems and TU-games.

We now demand that any bifocal distribution solution should provide efficient alloca-
tions representing an intermediate agreement between the two focal proposals, for each
agent. Moreover, we define the bifocal distribution solution that compromises between
the two different viewpoints by averaging. Our subsequent analysis provides different
theoretic rationales that support the previous ideas. Formally,

Definition 2. A bifocal distribution solution is a function, ϕ :
⋃

N∈N BN → Rn,
such that for each N ∈ N and each bifocal distribution problem (M,x, y) ∈ BN ,

(a)
∑

i∈N ϕi(M,x, y) = M and (Efficiency)
(b) for each i ∈ N , min{xi, yi} ≤ ϕi (M,x, y) ≤ max{xi, yi}. (Boundedness)

Definition 3. The Average value is the function ϕAv :
⋃

N∈N BN → Rn such that it
associates to each N ∈ N , each bifocal distribution problem (M,x, y) ∈ BN and each
agent i ∈ N, the amount ϕAv

i (M,x, y) = (xi + yi)/2.

3. Bifocal distribution TU-games: characteristics and results

A TU-game involving a set of agents N ∈ N can be described as a function V, known
as the characteristic function, which associates a real number to each subset of agents,
or coalition, S contained in N . Formally, for each N ∈ N , a TU-game is a pair
(N,V ), where V : 2N → R. For each coalition S ⊆ N , V (S) is commonly called its
worth and denotes the quantity that agents in S can guarantee for themselves if they
cooperate. Therefore, it is assumed that V (∅) = 0. It is also often supposed that
(N,V ) is superadditive, i.e., for any pair of coalitions S, T ⊂ N such that S ∩ T = ∅,
V (S ∪ T ) ≥ V (S) + V (T ), so that there is incentive for the grand coalition forms. Let
GN denote the family of TU-games with agents set N.
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A solution for TU-games is a correspondence which for each N ∈ N and each
(N,V ) ∈ GN , selects a set of allocations of the worth of the grand coalition among the
agents. If a TU-game solution consists of a unique allocation, it is called a TU-value.

Given (N,V ) ∈ GN , for each i ∈ N and each S ⊂ N , we call the marginal contri-
bution of agent i to coalition S, denoted by ∆iV (S), the amount which his adherence
contributes to the value of the coalition, that is, ∆iV (S) = V (SU{i})− V (S).

A TU-game is convex if the larger the coalition that an agent joins, the larger his
marginal contribution. Formally, (N,V ) ∈ GN is convex if and only if, for all i ∈ N,
∆iV (S) ≤ ∆iV (T ) for all S ⊆ T ⊆ N \ {i} .

We next present three well-known TU-games solution concepts which play a cen-
tral role in our analysis: the Core (Gillies (1953) and Shapley (1953b)), the Nucleolus
(Schmeidler (1969)) and the Shapley value (Shapley (1953b)).

A Core distribution demands that no set of agents can collectively improve it by
their own cooperation. Formally, for each N ∈ N and each (N,V ) ∈ GN , the Core, C,

is the set C(N,V ) =

{
x ∈ Rn :

∑
i∈N

xi = V (N),
∑
i∈S
xi ≥ V (S) ∀S ⊂ N.

}
According to the Shapley value, the worth of the grand coalition is distributed

assuming that all orders of agents’ arrivals to the grand coalition are equally probable
and in each order, each agent gets his marginal contribution to the coalition that he
joins. Formally, for each N ∈ N and each (N,V ) ∈ GN , the Shapley value, γSh,
associates to each i ∈ N , the amount γShi (N,V ) =

∑
S⊆N\{i}

[(s!(n− s− 1)!)/n!]∆iV (S) .

To introduce the next definition we need additional notation. For each N ∈ N and
each (N,V ) ∈ GN , I(N,V ) = {x ∈ Rn :

∑
i∈N xi = V (N), xi ≥ V ({i}) ∀i ∈ N} is the

set of imputations. For each x ∈ Rn and each coalition S ⊆ N, e(x, S) = V (S)−
∑
i∈S
xi

is the excess of coalition S in reference to x and represents a measure of dissatisfaction
of such a coalition. The vector e(x) = {e(x, S)}S⊆N provides the excesses of all the
coalitions in reference to x. Given x ∈ Rn, θ(x) is the vector that results from x by
permuting coordinates in decreasing order, θ1(x) ≥ θ2(x) ≥ ... ≥ θn(x). Finally, ≤L

stands for the lexicographic order, that is, given x, y ∈ Rn, x ≤L y if there is k ∈ N
such that for all j ≤ k, xj = yj and xk+1 ≤ yk+1.

The Nucleolus looks for an individually rational distribution of the worth of the
grand coalition in which the maximum dissatisfaction is minimized. Formally, for each
N ∈ N and each (N,V ) ∈ GN , the Nucleolus, γNu, is the vector γNu(N,V ) = x ∈
I(N,V ) such that θ(e(x)) ≤L θ(e(y)) for all y ∈ I(N,V ).

We define the game corresponding to a bifocal distribution problem by associating
to each coalition the smallest quantity of the ‘good’ that it would receive according to
the two focal solutions.
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Definition 4. Given N ∈ N and B = (M,x, y) ∈ BN , the corresponding bifocal
distribution game is the TU-game (N,V B), summarizes by V B, which associates to

each coalition S ⊆ N , the real value V B(S) = min

{∑
i∈S
xi,
∑
i∈S
yi

}
.

Note that, for each N ∈ N and each B = (M,x, y) ∈ BN , the bifocal distribution
game, V B, has a non-empty Core, since both x and y belong to it. The next proposition
provides a necessary condition for a proposal to be in the Core of a bifocal distribu-
tion game. This condition coincides with the ‘natural’ Boundedness requirement (see
Definition 2). Therefore, this result shows that the agents’ behavior regarding bifocal
distribution problems has, albeit unconsciously, strong theoretic support. Nevertheless,
it is easy to check that this condition is not sufficient for a proposal to be in the Core.

Proposition 1. Given N ∈ N and B = (M,x, y) ∈ BN , if z ∈ C(V B) then, for all
i ∈ N , min{xi, yi} ≤ zi ≤ max{xi, yi}.

Proof. See Appendix 1.

It is easy to check that bifocal distribution games are not, in general, convex games.
Therefore, it cannot be a guarantee that the Shapley value belongs to the Core. However,
as shown in our main result, the Shapley value is a Core selection and coincides with
the Nucleolus for any bifocal distribution game. The concept of PS-games, introduced
by Kar et al. (2009), is used to justify this coincidence.

A PS-game is a TU-game in which for each player i ∈ N, the sum of i’s marginal
contribution to any pair of coalitions T, T ∗ such that T ∪T ∗ = N\{i} and T ∩T ∗ = ∅ is
a player specific constant. Formally, a TU-game (N,V ) is a PS-game if for each i ∈ N,
there exists ki ∈ R such that, for all T ⊆ N� {i}, ∆iV (T ) + ∆iV (N� [T ∪ {i}]) = ki.

The following result shows that bifocal distribution games are PS-games in which
each ki is the sum of the recommendations made for agent i by the two focal proposals.

Proposition 2. Given N ∈ N and B = (M,x, y) ∈ BN , the associated bifocal distribu-
tion game, V B, is a PS-game such that for all i ∈ N and for all coalition T ⊆ N� {i},
∆iV

B (T ) + ∆iV
B (N� [T ∪ {i}]) = xi + yi.

Proof. See Appendix 2.

Note that this proposition reinforces the subclass of PS-games by identifying within
it a broad range of real situations modeled as TU-games. Up to now, only different
games underlying queueing problems had been identified as PS-games (see Kar et al.
(2009)).

Our main result provides ‘solid’ grounds for selecting the average of the two focal
viewpoints from among all the intermediate compromises when facing bifocal distribution
problems, ratifying the practice regularly observed in these situations.



5

Theorem 3.1. ‘Virtue lies in the middle ground’. For each N ∈ N and each
bifocal distribution game, V B, with B = (M,x, y) ∈ BN , the Shapley value and the Nu-
cleolus coincide with the Average value, that is, γSh(V B) = γNu(V B) = ϕAv (M,x, y)) =
(x+ y) /2.

Proof. See Appendix 3.

Remark 1. The previous theorem can be easily replicated for the modification of our
model in which the two prominent proposals are distribution solutions rather than
problem data. Thus, it could be used as foundation to new solutions concept for certain
classes of distribution problems. By way of example, let us consider a class of TU-
games GNC ⊂ GN , for each N ∈ N , in which fairness is represented by the TU-values
γ1 and γ2. Then, a bifocal TU-game problem in this class is defined by a triplet
((N,VC), γ1(N,VC), γ2(N,VC)) where (N,VC) ∈ GNC , and Theorem 3.1 provides the new
solution concept γ∗ = (γ1 + γ2)/2. A pertinent application of this idea to bankruptcy
problems, where two significant viewpoints arise as any distribution can be observed by
focusing either on gains or losses, can be found in Gadea-Blanco et al. (2010).

Unfortunately, we show through the next example that the previous result cannot
be extended for distribution problems with more than two focal proposals.

Example 1. Let us consider N = {1, 2, 3} and the problem of distributing M = 60
with the following three focal proposals on the table: x = (10, 25, 25), y = (0, 27.5, 32.5)
and z = (10, 22.5, 27.5). Let the associated TU-game be defined by V (M,x,y,z)(S) =

min

{∑
i∈S
xi,
∑
i∈S
yi,
∑
i∈S
zi

}
for each S ⊆ N . It is easy to verify that V (M,x,y,z)({1}) = 0,

V (M,x,y,z)({2}) = 22.5, V (M,x,y,z)({3}) = 25, V (M,x,y,z)({1, 2}) = 27.5, V (M,x,y,z)({1, 3})
= 32.5, V (M,x,y,z)({2, 3}) = 50 and V (M,x,y,z)({1, 2, 3}) = 60. Moreover, γSh(V (M,x,y,z))
= (5.42, 25.42, 29.16) , γNu(V (M,x,y,z)) = (6.25, 25, 28.75) and (x + y + z)/3 =
(6 + (2/3), 25, 28 + (1/3)) . Therefore, the Nucleolus and the Shapley value do not co-
incide, and neither of them corresponds to the average of the three focal allocations.

Somehow, the previous example limits our main result. However, the following two
facts, which reinforce its applicability, should be noted. On the one hand, with the aim
of being operative, societies establish mechanisms for reducing the number of proposals
in controversial situations. On the other hand, once a society specifies some equity
principles, the number of acceptable proposals is greatly reduced and they could lead
to the natural form of bipolarity.
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4. Axiomatic arguments of the Average value

We present four axioms for bifocal distribution solutions: Anonymity, P-Impartiality,
Additivity and No Advantageous Merging or Splitting. They can have relevance in
practice and provide two alternative interpretations of the Average value.

Anonymity is a standard fairness principle in many distribution problems. It states
that the identity of the agents should be irrelevant.
Anonymity: for each N ∈ N , each bifocal distribution problem (M,x, y) ∈ BN and
each permutation π1, ϕ(M,π(x), π(y)) = π(ϕ (M,x, y)).

A-Impartiality comes from the fact that the proposals representing the discrepancy
about how to carry out the distribution of a resource are equally valid. It requires that
the solution of a problem sholud not depend on which legal or moral Authority supports
which proposal. A similar property can be found in the context of meta-bargaining
problems (see, for instance, Naeve-Steinweg Naeve-Steinweg (1999)).
A-Impartiality: for eachN ∈ N and each bifocal distribution problem (M,x, y) ∈ BN ,
ϕ (M,x, y) = ϕ (M,y, x) .

Additivity was first proposed, for TU-games, by Shapley (1953b) and from then on,
its fulfilment has been demanded in a huge family of allocations problems analyzed from
a cooperative perspective (see Moretti and Patrone (2008)). This property pertains
to situations in which the amount to divide comes in two parts, each one with its
corresponding pair of proposals. It states that first dividing the first part and then the
second part should yield the same recommendation as consolidating the two parts and
dividing the sum at once.
Additivity: for each N ∈ N and each pair of bifocal distribution problems in BN , B1 =(
M1, x1, y1

)
and B2 =

(
M2, x2, y2

)
, ϕ
(
M1 +M2, x1 + x2, y1 + y2

)
= ϕ

(
M1, x1, y1

)
+

ϕ
(
M2, x2, y2

)
.

No Advantageous Merging or Splitting considers the possibility that a group of agents
consolidates and appears as a single agent, or conversely, that an agent splits as several
agents. It states that such consolidation or splitting should not be beneficial. This
property was introduced, for bankruptcy problems, by O’Neill (1982) and has been
considered afterwards by various authors (see Thomson (2003)).

1A permutation is a bijection applying N to itself. In this paper, and abusing notation, for any
vector x ∈ Rn, π(x) will denote the vector obtained by applying permutation π to its components.
That is, the ith component of π(x) is xj whenever j = π(i). Similar reasoning considerations apply for
π(ϕ(M,x, y)).
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No Advantageous Merging or Splitting: for each P,Q ∈ N , each (M,x, y) ∈ BP
and each (M,x′, y′) ∈ BQ, if P ⊂ Q and there is i ∈ P such that x′i = xi +

∑
j∈Q\P

xj and

for each j ∈ P\{i}, x′j = xj , then ϕi (M,x′, y′) = ϕi (M,x, y) +
∑

j∈Q\P
ϕj (M,x, y).

Next result characterizes the Average value adding A-Impartiality to the set of prop-
erties that Shapley introduced to identify his TU-value (Shapley (1953b)).2

Theorem 4.1. A bifocal distribution solution, ϕ, satisfies Anonymity, A-Impartiality
and Additivity if and only if, for each N ∈ N and each (M,x, y) ∈ BN , ϕ (M,x, y) =
ϕAv (M,x, y).

Proof. See Appendix 5.

Our second axiomatic argument of the Average value corresponds to one of the the-
oretic bases that has provided support to the so commonly principle of proportionality,
which has been applied to different classes of distribution problems.

Theorem 4.2. A bifocal distribution solution, ϕ, satisfies A-Impartiality and No Ad-
vantageous Merging or Splitting if and only if, for each N ∈ N and each (M,x, y) ∈ BN ,
ϕ (M,x, y) = ϕAv (M,x, y) .

Proof. See Appendix 6.

5. Conclusions

Next, we clarify the relations between bifocal distributions games and other well-known
classes of TU-games, which are gathered in the Figure 5.1 below.

It is straightforward to verify that bifocal distributions games are minimum games of
two additive games with equal worth for the grand coalition3. They are also a subclass
of exact games (see Schmeidler (1972)). To our knowledge, no subclass of these games
has been identified for the coincidence of the two prominent single-valued TU-games
solutions, the Shapley value and the Nucleolus. Until the recent paper by Kar et al.
(2009), we have not found results in this sense apart from the work on the so-called

2It can be verified that, in our context, a player who contributes nothing to every coalition, called
dummy player, is an agent for which both proposals provide him with nothing. Hence, Boundedness
(see Definition 2) implies that he receives nothing.

3A game (N,V ) ∈ GN , with N ∈ N , is additive if there exists a ∈ Rn
+ such that for each coalition

S ⊆ N , V (S) =
∑
i∈S

ai. The minimum game generated by a collection of games in GN , {(N,V )t}t∈T ,

denoted by (N,minV min
T ), is defined by V min

T (S) = min
t∈T
{Vt(S)} for each coalition S ⊆ N.
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Bifocal games

Exact games

2-games
PS-games

Figure 5.1: Relations among some classes of TU-games.

2-games, a special class of the k-games defined by Deng and Papadimitriou (1994).
Regarding 2-games, an inclusion relation between them and bifocal distributions games
cannot be established, although the intersection of these two classes of games is non-
empty. Moreover, it is also remarkable that both 2-games and bifocal distribution games
are PS-games, but there are PS-games that are neither 2-games nor bifocal distribution
games.

In conclusion, this paper uses, in a simple way, cooperative game theory to support
the very commonly observed collective decision of meeting people half-way. Therefore,
the analysis therein combines two noteworthy characteristics, the simplicity and the
match of theory with real life.
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APPENDIX 1.

Proof of Proposition 1.
Throughout this appendix, for each x ∈ Rn and each S ⊂ N ∈ N , let X =

∑
i∈N

xi, and

XS =
∑
i∈S
xi. Given N ∈ N and B = (M,x, y) ∈ BN , let z ∈ C

(
V B
)
. Then,

X = Y = Z = V B (N) = M, (5.1)

and zi ≥ V B ({i}) = min {xi, yi} for all i ∈ N. Now, we only have to prove that
zi ≤ max {xi, yi} for all i ∈ N. Let us suppose that there exists i ∈ N such that
zi > max {xi, yi} and, without loss of generality, let us assume that xi ≤ yi. Then,

zi > yi. (5.2)

Let S = N\i. On the one hand, by Conditions 5.1 and 5.2,

ZS < YS . (5.3)

On the other hand, since xi ≤ yi, Condition 5.1 implies

XS ≥ YS . (5.4)

Therefore, by Conditions 5.4 and 5.3, V B (S) = min {XS , YS} = YS > ZS , contradicting
that z ∈ C

(
V B
)
. Thus, zi ≤ max {xi, yi} for all i ∈ N.
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APPENDIX 2.

Proof of Proposition 2.
Throughout this appendix, for each x ∈ Rn and each S ⊂ N ∈ N , let X =

∑
i∈N

xi, and

XS =
∑
i∈S
xi. Given N ∈ N and B = (M,x, y) ∈ BN , by Definition 4:

V B(∅) = 0 and

V B(S) = min {XS , YS} for each S,∅ 6= S ⊆ N.

Let us consider any pair of coalitions T, T ∗ such that T ∪ T ∗ = N\{i} and T ∩ T ∗ = ∅.
Note that, since X = Y = M , for any i ∈ N ,

∆iV
B(T ) + ∆iV

B(T ∗) = min{xi +XT , yi + YT } −min{XT , YT }+

+ min{M −XT ,M − YT } −min{M − xi −XT ,M − yi − YT }. (5.5)

Next, we calculate the sum of the marginal contributions of any agent i ∈ N to T and
T ∗. The following four cases exhaust all the possibilities.

Case 1 : xi +XT ≤ yi + YT and XT ≤ YT .

These inequalities imply that, M−xi−XT ≥M−yi−YT and M−XT ≥M−YT . Then,
by Equation 5.5, ∆iV

B(T )+∆iV
B(T ∗) = xi+XT−XT +M−YT−(M−yi−YT ) = xi+yi.

A similar reasoning can be applied to Case 2: xi +XT ≤ yi + YT and XT ≥ YT , Case
3: xi +XT ≥ yi + YT and XT ≤ YT , and Case 4: xi +XT ≥ yi + YT and XT ≥ YT to
conclude that, in all of them ∆iV

B(T ) + ∆iV
B(T ∗) = xi + yi.

APPENDIX 3.

Proof of Theorem 3.1.
Let N ∈ N and B = (M,x, y) ∈ BN . Considering Proposition 2 and applying to V B the
main result in Kar et al. (?), gathered below, we obtain that for all i ∈ N, γShi (V B) =
γPNu
i (V B) = (xi + yi) /2, where γPNu denotes the Prenucleolus. Now, given that, by

Definition 4, γPNu(V B) satisfies individual rationality, that is, γPNu
i (V B) ≥ V B({i})

for all i ∈ N, we have that γNu(V B) = γPNu(V B).

Main Result in Kar, Mitra and Wutuswami (2009): For each N ∈ N , if a TU-
game (N,V ) is a PS-game, then for all i ∈ N, γShi (N,V ) = γPNu

i (N,V ) = ki/2, where



11

γPNu denotes the Prenucleolus and ki is the player i’s specific constant corresponding to
the sum of his marginal contribution to any pair of coalitions T, T ∗ such that T ∪ T ∗ =
N\{i} and T ∩ T ∗ = ∅.

APPENDIX 4. General Claims

We present two claims which are used in the proofs of appendices 5 and 6.

Claim 1: If a bifocal distribution solution, ϕ, satisfies Anonymity and A-Impartiality,
for each N ∈ N and each (M,x, y) ∈ BN∗ ,

ϕh (M,x, y) = (xh + yh)/2 for each h ∈ N,

where for eachN ∈ N , BN∗ denotes the following subclass of bifocal distribution problems,

BN∗ = {(M,x, y) ∈ BN , N = N1 ∪N2 ∪N3 | xk = yk for each k ∈ N1,

and xi = yj 6= xj = yi for each i ∈ N2 and each j ∈ N3}.

Proof. Given N ∈ N and (M,x, y) ∈ BN∗ , let p denote the cardinality of N2, that is,
p =

∣∣N2
∣∣. Note that p =

∣∣N3
∣∣ .

By Boundedness,

ϕk (M,x, y) = xk = yk = (xk + yk)/2 for each k ∈ N1.

Now, consider the bifocal distribution problem (M,x∗, y∗) in which x∗ = y and y∗ = x.
Note that (M,x∗, y∗) = (M,π(x), π(y)) where π is a permutation such that for each
k ∈ N1, π(k) = k and, for each i ∈ N2 and each j ∈ N3, π(i) = j and π(j) = i.

By A-Impartiality and Anonymity, for each i, i′ ∈ N2 and each j, j′ ∈ N3,

ϕi′ (M,x, y) = ϕi (M,x, y) = ϕi (M,x∗, y∗) = ϕj (M,x, y) = ϕj′ (M,x, y) .

By Efficiency,∑
i∈N2

ϕi (M,x, y) +
∑
j∈N3

ϕj (M,x, y) = p(xi + yi) = p(xj + yj).

Therefore, for each i ∈ N2 and each j ∈ N3,

ϕi (M,x, y) = p(xi + yi)/2p = (xi + yi)/2 = (xj + yj)/2 = p(xj + yj)/2p = ϕj (M,x, y) .
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So we conclude that

ϕh (M,x, y) = (xh + yh)/2 for each h ∈ N.

Next Claim can be proved by straightforwardly adapting to our context the proof
of Proposition 3 in de Frutos (1999), which is a similar result but for the context of
bankruptcy problems.

Claim 2: If a bifocal distribution solution, ϕ, satisfies No Advantageous Merging or
Splitting, then it also fulfills Anonymity.

APPENDIX 5.

Proof of Theorem 4.1

It is straightforward to verify that the Average value satisfies Anonymity, A-Impartiality
and Additivity. Let ϕ be a bifocal distribution rule satisfying these axioms. GivenN ∈ N
and B = (M,x, y) ∈ BN , let us consider three cases.

Case 1: (M,x, y) ∈ BNU , where for each N ∈ N , BNU denotes the subclass of unanimity
bifocal distribution problems, that is,

BNU = {(M,x, y) ∈ BN | xi = yi for each i ∈ N}.

Then, by Boundedness,

ϕi (M,x, y) = xi = yi = (xi + yi)/2 for each i ∈ N.

Case 2: (M,x, y) ∈ BN∗ , where for each N ∈ N , BN∗ denotes the following subclass of
bifocal distribution problems,

BN∗ = {(M,x, y) ∈ BN , N = N1 ∪N2 ∪N3 | xk = yk for each k ∈ N1,

and xi = yj 6= xj = yi for each i ∈ N2 and each j ∈ N3}.

Taking into account that ϕ satisfies A-Impartiality and Anonymity, by Claim 1,

ϕi (M,x, y) = (xi + yi)/2 for each i ∈ N.
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Case 3: (M,x, y) ∈ BN\{BNU ∪ BN∗ }.

Firstly, let us decompose B as a sum of two bifocal distribution problems, B = B1 +B
′
,

in the following way.

Starting from B = (M,x, y), let r ∈ N such that

min{xr, yr} = min
j∈N
{min{xj , yj}xj 6=0,yj 6=0; {xj}yj=0; {yj}xj=0},

and let k ∈ N such that

yk = max
j∈N
{yj}, if min{xr, yr} = xr

and
xk = max

j∈N
{xj}, if min{xr, yr} = yr.

We define B1 =
(
M1, x1, y1

)
, with M1 = min{xr, yr} and x1, y1 such that:

if min{xr, yr} = xr,

x1r = xr, x
1
i = 0 for each i 6= r, and

y1k = xr, y
1
i = 0 for each i 6= k;

and if min{xr, yr} = yr,

y1r = yr, y
1
i = 0 for each i 6= r, and

x1k = yr, x
1
i = 0 for each i 6= k.

Then, B = B1 + B′ where B′ = (M ′, x′, y′) with M ′ = M − M1, x′ = x − x1 and
y′ = y−y1. On the one hand, by construction, B1 =

(
M1, x1, y1

)
∈
{
BNU ∪ BN∗

}
. On the

other hand, if B′ = (M ′, x′, y′) ∈
{
BNU ∪ BN∗

}
, some of the previous cases can be applied

to both B1 and B′, and we have that, for each i ∈ N, ϕi

(
M1, x1, y1

)
= (x1i + y1i )/2 and

ϕi (M ′, x′, y′) = (x′i + y′i)/2. Therefore, by Additivity, for each i ∈ N ,

ϕi (M,x, y) =
[
(x1i + y1i )/2

]
+
[
(x′i + y′i)/2

]
= (xi + yi)/2.

If B′ = (M ′, x′, y′) ∈ BN\
{
BNU ∪ B∗

}
, we decompose B′ as a sum of two bifocal distri-

bution problems, B
′

= B2 + B′′, in the same way as we did it for B, but now starting
from B′ = (M ′, x′, y′). Again, by construction, B2 =

(
M2, x2, y2

)
∈
{
BNU ∪ BN∗

}
and

B′′ = (M ′′, x′′, y′′) is such that M ′′ = M ′ −M2, x′′ = x′ − x2 and y′′ = y′ − y2. Now, if
B′′ ∈

{
BNU ∪ BN∗

}
, some of the previous cases can be applied to both B2 and B′′, and we
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have that, for each i ∈ N, ϕi

(
M2, x2, y2

)
= (x2i +y

2
i )/2 and ϕi (M ′′, x′′, y′′) = (x′′i +y′′i )/2.

Therefore, by Additivity, for each i ∈ N ,

ϕi

(
M ′, x′, y′

)
=
[
(x2i + y2i )/2

]
+
[
(x′′i + y′′i )/2

]
= (x′i + y′i)/2

and for each i ∈ N ,

ϕi (M,x, y) =
[
(x1i + y1i )/2

]
+
[
(x′i + y′i)/2

]
= (xi + yi)/2.

If B′′ = (M ′′, x′′, y′′) ∈ BN\
{
BNU ∪ B∗

}
, we continue the process until we have decom-

posed B as a sum of p bifocal distribution problems, B = B1 + B2 + ... + Bp, with
Bj =

(
M j , xj , yj

)
∈
{
BNU ∪ B∗

}
for each j ∈ {1, ...p}. Note that, since this process ends

in at most 2(n−1) steps, p ≤ 2n−1. Then, by using a similar reasoning to the previous
one, we have that for each i ∈ N ,

ϕi (M,x, y) =
[
(x1i + y1i )/2

]
+
[
(x2i + y2i )/2

]
+ · · ·+ [(xpi + ypi )/2] = (xi + yi)/2.

Therefore, we conclude that

ϕ (M,x, y) = (x+ y)/2 = ϕAv (M,x, y) .

Next, we show the independence of the axioms. Let us consider the function ϕAv
ω that

associates to each N ∈ N and each B = (M,x, y) ∈ BN , ϕAv
ω (M,x, y) = γShω (V B) where

γShω is the weighted Shapley value with weight system ω (see Shapley Shapley (1953a)).
It can be easily checked that ϕAv

ω is a bifocal distribution rule that satisfies A-Impartiality
and Additivity, but fails to satisfy Anonymity. Obviously, the bifocal distribution rule
ϕx, defined by associating to each N ∈ N and each B = (M,x, y) ∈ BN ϕx(M,x, y) = x,
satisfies Anonymity and Additivity, but fails to satisfy A-Impartiality. Finally, let ϕCEL

denote the function that associate to each N ∈ N , each B = (M,x, y) ∈ BN , and each
i ∈ N,

ϕCEL
i (M,x, y) = max{min{xi, yi},max{xi, yi} − β},

where β is such that
∑
i∈N

max{min{xi, yi},max{xi, yi}-β} = M. It is straightforward

to verify that ϕCEL is a bifocal distribution rule that satisfies Anonymity and A-
Impartiality, but fails to satisfy Additivity.

APPENDIX 6.

Proof of Theorem 4.2

It is straightforward to verify that the Average value satisfies A-Impartiality and No
Advantageous Merging or Splitting. Let ϕ be a bifocal distribution rule satisfying these
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axioms. Given N ∈ N and B = (M,x, y) ∈ BN , let us consider N = N1 ∪ N2, where
N1 = {i ∈ N : xi = yi} and N2 = {i ∈ N : xi 6= yi}. For each i ∈ N2, let us define
αi = min{xi, yi}.

Let us assume that each agent i ∈ N2 splits what proposals x and y provide him, under
the names of i1 and i2, as follows: xi = x′i1 +x′i2 and yi = y′i1 +y′i2 , where x′i1 = y′i1 = αi,
x′i2 = xi−αi and y′i2 = yi−αi. Let N ′ denote the new set of agents, N ′ = N1 ∪P ∪Q,
where P = {j = i1 : i ∈ N2} and Q = {k = i2 : i ∈ N2}. For each i ∈ N1, let
x′i = y′i = xi = yi. Then, we have that N ′ ∈ N and (M,x′, y′) ∈ BN ′ . Note that for
each k ∈ Q either x′k = 0 and y′k > 0 or vice versa.

For each k ∈ Q, let zk = max{x′k, y′k}. Then, we express zk as the ratio of the two
smallest natural numbers, that is, zk = nk/mk such that there are no n′k,m

′
k ∈ N

verifying zk = n′k/m
′
k and n′k < nk. Now, let us consider the least common multiple of

the set {mk : k ∈ Q}, denoted by h. That is, h = LCM({mk : k ∈ Q}). Next, let us
define hk = (hnk)/mk for each k ∈ Q.

Let us assume that each agent k ∈ Q is split in hk agents, each of one receiving an
identical part of both x′k and y′k. Let N ′′ denote the new set of agents,

N ′′ = N1 ∪ P ∪
k∈Q

Hk,

where for each k ∈ Q, Hk = {lk = kr, r = 1, .., hk}.

Now, for each i ∈ N1, let x′′i = x′i and y′′i = y′i. For each j ∈ P , let x′′i = x′i and y′′i = y′i,
and for each k ∈ Q and each lk ∈ Hk, let x′′

lk
= x′k/hk and y′′

lk
= y′k/hk. Note that,

by construction, for each agent belonging to any Hk, for k ∈ Q, either x′′
lk

= 0 and

y′′
lk

= 1/h or vice versa. Then, we have that N ′′ ∈ N and (M,x′′, y′′) ∈ BN
′′

∗ .

By Boundedness,

ϕi

(
M,x′′, y′′

)
= xi = yi = (xi + yi)/2 for each i ∈ N1,

and

ϕj

(
M,x′′, y′′

)
= αj for each j ∈ P.

Moreover, given that ϕ satisfies No Advantageous Merging or Splitting, by Claim 2, it
also fulfills Anonymity. Then, by Efficiency and Claim 1,

ϕlk
(
M,x′′, y′′

)
= M ′/

∑
k∈Q

hk for each k ∈ Q and each lk ∈ Hk,
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where M ′ = M −
∑

i∈N1

xi−
∑
j∈P

αj .

Now, let us consider the bifocal distribution problem (M,x′, y′), in which each group of
agents in each Hk, for each k ∈ Q, merges under the name of k. Then, by Boundedness,

ϕi

(
M,x′, y′

)
= xi = yi = (xi + yi)/2 for each i ∈ N1,

and

ϕj

(
M,x′, y′

)
= αj for each j ∈ P.

Furthermore, by No Advantageous Merging or Splitting,

ϕlk
(
M,x′, y′

)
= hkM

′/
∑
k∈Q

hk = hzkM
′/
∑
k∈Q

hzk =zkM
′/
∑
k∈Q

zk =

= zkM
′/2M ′ = zk/2 = (x′k + y′k)/2 = [(xk + yk)/2]− αk.

Finally, let us consider the bifocal distribution problem B = (M,x, y), in which each
pair of agents {j = i1, k = i2} with i1 ∈ P and i2 ∈ Q, merges under the name of i, for
each i ∈ N2. Then, by Boundedness,

ϕi (M,x, y) = xi = yi = (xi + yi)/2 for each i ∈ N1,

and by No Advantageous Merging or Splitting,

ϕi (M,x, y) = (xi + yi)/2− αi + αi = (xi + yi)/2 for each i ∈ N2.

Therefore,
ϕ (M,x, y) = (x+ y)/2 = ϕAv (M,x, y) .

To show the independence of the axioms it is enough to consider the bifocal distribu-
tion rule ϕy defined by associating to each N ∈ N and each B = (M,x, y) ∈ BN ,
ϕy(M,x, y) = y. Obviously, ϕy satisfies No Advantageous Merging or Splitting, but fails
to satisfy A-Impartiality.
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