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On reduced games and the lexmax solution

Francesc Llerena and Llúcia Mauri ∗

Abstract

For a family of reduced games satisfying a monotonicity property, we
introduced the reduced equal split-off set, an extension of the equal split-off
set (Branzei et. al, 2006), and study its relation with the core. Regardless
of the reduction operation we consider, the intersection between both sets
is either empty or a singleton containing the lexmax solution (Arin et al.,
2008). We also provide a procedure for computing the lexmax solution for
a class of games that includes games with large core (Sharkey, 1982).

1 Introduction
In the context of transferable utility coalitional games (TU-games, for short), sev-
eral solution concepts have been defined with the aim of accommodate together
egalitarianism and particular interests. That is, to allocate the total worth of a
coalition as equally as possible among its agents, while satisfying some individual
requirements. One of the best known is the weak constrained egalitarian solution
(Dutta and Ray, 1989). For convex games, Dutta and Ray (1989) devise an algo-
rithm for finding their egalitarian allocation and show that it belongs to the core
and Lorenz dominates every other core element. Unfortunately, the class of convex
games is the only standard class of TU-games for which existence is guaranteed.
In order to widen the domain of games for which egalitarian solutions exist, Dutta
and Ray (1991) introduced the strong constrained egalitarian solution, a parallel
concept that selects the Lorenz-maximal imputations in the equal division core
(Selten, 1972). Related studies are Arin and Iñarra (2001), Hougaard et al. (2001)
and Arin et al. (2003, 2008), who introduced other egalitarian solutions based on
the notion of the core. Inspired by the Dutta and Ray (1989) algorithm, Branzei et
al. (2006) introduce the equal split-off set, a non-empty set valued solution for all
TU-game. In this paper, we generalize this solution concept by considering a fam-
ily of reduced games, and study its relation with the core and existing egalitarian
solutions.

∗Dep. de Gestió d’Empreses, Universitat Rovira i Virgili-CREIP,
e-mail: francesc.llerena@urv.cat (Francesc Llerena), llucia.mauri@urv.cat (Llúcia Mauri).



The paper is organized as follows. Section 2 contains notation and terminol-
ogy. In Section 3 we introduce the concept of admissible subgroup correspondence
α and the associated α-max reduced game. For a given α, we define the α-reduced
equal split-off set. This set and the core have different qualitative properties. For
instance, the α-reduced equal split-off set is always non-empty and finite, while the
core is convex and its existence is not granted, except for balanced games. How-
ever, the intersection between them provides surprising results. For any admissible
subgroup correspondence satisfying a monotonicity property, weaker than transi-
tivity of the reduction operation, we find out that when the intersection between
both sets is non-empty, then it becomes a singleton containing the lexmax solution
of Arin et al. (2008) (Theorem 1). In Section 4, for a class of games that includes
games with a large core (Sharkey, 1982), we show that the reduced equal split-off
set associated with the Davis and Maschler (1965) reduced game turns out to be a
singleton and it coincides with the lexmax solution (Theorem 2 and Theorem 3).
Finally, we provide a procedure for computing the lexmax solution on this domain
(Theorem 4).

2 Notation and terminology
The set of natural numbers N denotes the universe of potential players. A coali-
tion is a non-empty finite subset of N and let N := {N | ∅ 6= N ⊆ N, |N | < ∞}
denote the set of all coalitions of N. A transferable utility coalitional game (a
game) is a pair (N, v) where N ∈ N is the set of players and v : 2N −→ R is the
characteristic function that assigns to each coalition S ⊆ N a real number v(S),
with the convention that v(∅) = 0. Given S, T ∈ N , we use S ⊂ T to indicate
strict inclusion, that is, S ⊆ T but S 6= T . By |S| we denote the cardinality of the
coalition S ∈ N . By Γ we denote the class of all games.

Given N ∈ N , let RN stands for the space of real-valued vectors indexed by N ,
x = (xi)i∈N , and for all S ⊆ N , x(S) = ∑

i∈S xi, with the convention x(∅) = 0. For
each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT .
Given two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all i ∈ N . We say that x > y if
x ≥ y and for some j ∈ N , xj > yj. GivenN , a set π = (P1, . . . , Pm), where Pi ⊆ N
for all i ∈ {1, . . . ,m}, withm ≤ |N |, is a partition of N if the following conditions
hold: (i) Pi 6= ∅ for all i ∈ {1, . . . ,m}, (ii) ∪mi=1Pi = N and (iii) Pi ∩Pj = ∅, for all
i, j ∈ {1, . . . ,m}, i 6= j.

The set of feasible payoff vectors of a game (N, v) is defined by X∗(N, v) :=
{x ∈ RN |x(N) ≤ v(N)}. A solution on a class of games Γ′ ⊆ Γ is a mapping
σ which associates with each game (N, v) ∈ Γ′ a subset σ(N, v) of X∗(N, v).
Notice that σ is allowed to be empty. The pre-imputation set of (N, v) is
defined by X(N, v) := {x ∈ RN |x(N) = v(N)}, and the set of imputations
by I(N, v) := {x ∈ X(N, v) |xi ≥ v({i}), for all i ∈ N}. The core of (N, v)
is the set of those imputations where each coalition gets at least its worth, that
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is C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game (N, v) is
balanced if it has a non-empty core. A game (N, v) is convex (Shapley, 1971) if,
for every S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Given N ∈ N , for any x ∈ RN , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained
from x by rearranging its coordinates in a non-increasing order, that is, x̂1 ≥ x̂2 ≥
. . . ≥ x̂n. In a similar way, for ∅ 6= S ⊆ N, x̂|T denotes the vector obtained
from the restriction of x to T by ordering its coordinates in a non-increasing way:
x̂|T 1 ≥ x̂|T 2 ≥ . . . ≥ x̂|T t, where t = |T |. For any two vectors y, x ∈ RN with
y(N) = x(N), we say that y weakly Lorenz dominates x, denoted by y �L x,
if ∑k

j=1 ŷj ≤
∑k
j=1 x̂j, for all k ∈ {1, . . . , |N |}. We say that y Lorenz dominates

x, denoted by y �L x, if at least one of the above inequalities is strict. For
any two vectors x, y ∈ RN , we say that x �lex y if x = y or x1 < y1 or there
exists k ∈ {2, . . . , |N |} such that xi = yi for 1 ≤ i ≤ k − 1 and xk < yk. For
a balanced game (N, v), the lexmax solution (Arin et al. 2008) is defined as
Lmax(N, v) = {x ∈ C(N, v) | x̂ �lex ŷ for all y ∈ C(N, v)}. For any balanced game
(N, v), the lexmax solution is a singleton and it is Lorenz undominated within the
core, and then sometimes we write x = Lmax(N, v).

3 Reduced equal split-off set and the core
Branzei et al. (2006) propose a set valued solution concept for arbitrary coalitional
games, called the equal split-off set, inspired by the Dutta-Ray (1989) algorithm
for finding their egalitarian solution for convex games. Each equal split-off alloca-
tion is the output of a sequential procedure where the game is reduced each time
the payoffs to players in a coalition maximizing average worth are assigned. Then,
a reduced game is defined by only taking into account the whole group of players
outside the game. Following this idea, but considering reduced games allowing
more coalitional options, we define a family of solutions that generalize the equal
split-off set and study its relation with the core.

Next we introduce the concept of admissible subgroup correspondence
inspired by the work of Thomson (1990) and also used by Izquierdo et al. (2005).

Definition 1. An admissible subgroup correspondence α : N → N is a corre-
spondence associating with each N ∈ N a non-empty list α(N) of coalitions of
N .

We denote by A the set of all admissible subgroup correspondences. Given
α, α ′ ∈ A, we write α ≤ α ′ if for all N ∈ N , α(N) ⊆ α ′(N). For each α ∈ A, we
define the associated α−max reduced game.

Definition 2. Let (N, v) be a game, α ∈ A, ∅ 6= N ′ ⊂ N and x ∈ RK where
N \ N ′ ⊆ K ⊆ N . The α−max reduced game relative to N ′ at x is the game
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(
N ′, rN

′
α,x(v)

)
defined by

rN
′

α,x(v)(S) =


0 if S = ∅,

max
Q∈α(N\N ′)

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.

(1)

The interpretation of the α-max reduced game is as in Davis and Maschler
(1965) but here the options of members in N ′ to cooperate with members in N \
N ′ are restricted by the admissible subgroup correspondence α. The Davis and
Maschler reduced game is a particular case when α(N) = 2N for all N ∈
N . Other well-known reduced games can also be obtained by taking a suitable
admissible subgroup correspondence. For instance, the complement reduced
game proposed by Moulin (1985) is defined by α(N) = {N} for all N ∈ N ,
or the projected reduced game (Funaki, 1998) by α(N) = {∅} for all N ∈ N .
Another example is α(N) = {∅, N}, for all N ∈ N . This correspondence formalizes
a dichotomous situation where any coalition may stand alone or join the whole
group of players. Other examples of admissible subgroup correspondences can
be given by taking into account several aspects of coordination between players:
communication, hierarchies, geographical areas, or the size of the subgroups. The
above reduction operations will be denoted by αDM , αM , αP and αD, respectively.

A well-known property related with the notion of reduced game is consistency.
Definition 3. Let σ be a solution on Γ′ ⊆ Γ. Given α ∈ A, we say that σ satisfies
α-consistency on Γ′ if for all N ∈ N , all (N, v) ∈ Γ′, all N ′ ⊂ N, N ′ 6= ∅, and all
x ∈ σ(N, v), then

(
N ′, rN

′
α,x(v)

)
∈ Γ′ and x|N ′ ∈ σ

(
N ′, rN

′
α,x(v)

)
.

On the domain of convex games, the weak constrained egalitarian solution of
Dutta and Ray (1989) satisfies αDM -consistency (Dutta, 1990). On the domain
of balanced games, the core also satisfies αDM -consistency (Peleg, 1986). Using
the same proof as Peleg (1986), it can be easily shown that the core satisfies α-
consistency for all α ∈ A.
Proposition 1. On the domain of balanced games, the core satisfies α−consistency,
for all α ∈ A.

It is quite straightforward to see that the lexmax solution is αDM -consistent
on the domain of balanced games. Let (N, v) be a balanced game and x =
Lmax(N, v). Take ∅ 6= N ′ ⊂ N and suppose x|N ′ 6= Lmax

(
N ′, rN

′
αDM ,x

(v)
)
. Since

x|N ′ ∈ C
(
N ′, rN

′
αDM ,x

(v)
)
, it holds ŷ �lex x̂|N ′ , where y = Lmax

(
N ′, rN

′
αDM ,x

(v)
)
.

Notice that z =
(
y, x|N\N ′

)
∈ C(N, v). But ẑ �lex x̂, which leads a contradiction.1

1The following property is well known (see, for instance, Potters and Tijs, 1992). For any
n ∈ N we define the map θ : Rn −→ Rn which arranges the coordinates of a point in Rn in non-
increasing order. Take x, y ∈ Rn such that θ(x) is lexicographically not greater than θ(y). Take
now any z ∈ R p and consider the vectors (x, z), (y, z) ∈ Rn+p. Then, θ(x, z) is lexicographically
not greater than θ(y, z).
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This complete the proof of the following proposition.

Proposition 2. On the domain of balanced games, the lexmax solution satisfies
αDM−consistency.

Associated with α ∈ A we introduce the α-reduced equal split-off set.

Definition 4. Let (N, v) be a game, α ∈ A and π = (T1, . . . , Tt) be a partition of
N . We say that π is an α-ordered partition of N if

T1 ∈ arg max
∅6=S⊆N

{
v(S)
|S|

}
and Tk ∈ arg max

∅6=S⊆N\T1∪...∪Tk−1

r
N\T1∪...∪Tk−1
α,xk−1

(v)(S)
|S|


for each k = 2, . . . , t, where

• x1 =
(
v(T1)
|T1| , . . . ,

v(T1)
|T1|

)
∈ RT1 and

• xk ∈ RT1∪...∪Tk is recursively defined as follows:

xk,i =


xk−1,i if i ∈ T1 ∪ . . . ∪ Tk−1,

rN\T1∪...∪Tk−1
α,xk−1

(v)(Tk)
|Tk|

if i ∈ Tk.
(2)

We call the payoff vector xt ∈ RN as the α-reduced equal split-off allocation
generated by π.

Definition 5. Let (N, v) be a game and α ∈ A. The α-reduced equal split-off
set of a game (N, v), denoted by RESO(N, v, α), is the set of all α-reduced equal
split-off allocations.

For α = αM we recover the equal split-off set of Branzei et al. (2006). Example
1 illustrates the above procedure.

Example 1. Let (N, v) be a balanced game with set of players N = {1, 2, 3, 4} and
characteristic function:

S v(S) S v(S) S v(S) S v(S)
{1} 0 {12} 10 {123} 13 {1234} 15
{2} 5 {13} 8 {124} 11
{3} 3 {14} 6 {134} 10
{4} 2 {23} 8 {234} 10

{24} 6
{34} 5
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It is not difficult to verify that RESO(N, v, αP ) = {x = (5, 5, 3, 2), y = (4, 5, 4, 2)},
where x is generated by πx = ({1, 2}, {3}, {4}) and y by πy = ({2}, {1, 3}, {4}).
Moreover, RESO(N, v, αM) = RESO(N, v, αD) = RESO(N, v, αDM) = {(5, 5, 3, 2)}.

In order to analyze the relation between the α-reduced equal split-off set and
the core of a game, we consider a family of admissible subgroup correspondences
that satisfies a monotonicity property .

Definition 6. Let α ∈ A. We say that α satisfies monotonicity in payments
if for all N ∈ N , all (N, v) ∈ Γ, and all x ∈ RESO(N, v, α) generated by π =
(T1, . . . , Tt), it holds xi ≥ xj for all i ∈ Tk, all j ∈ Th and all k < h ≤ t.

We denote by Amon the set of admissible subgroup correspondences satisfying
monotonicity in payments.

A natural requirement on α ∈ A is that the associated α-max reduced game
should be transitive, in the sense that the repeated use of the reduced game does
not depend on the order that players leave the game.

Definition 7. Let α ∈ A. The α-max reduced game is said to be transitive if
rN
′′

α,x|N′

(
rN
′

α,x(v)
)

= rN
′′

α,x(v), for all N ∈ N , all (N, v) ∈ Γ, all coalitions ∅ 6= N ′′ ⊂
N ′ ⊂ N and all payoff vector x ∈ RK with N \N ′′ ⊆ K ⊆ N.

We denote by At the set of admissible subgroup correspondences such that
the associated α-max reduced games is transitive. It can be easily checked that
αP , αM ∈ At. To show that αDM ∈ At see, for instance, Chang and Hu (2007).
The next two propositions state that transitivity is a sufficient but not necessary
condition to satisfy monotonicity in payments. The proofs are given in the Ap-
pendix.

Proposition 3. At ⊂ Amon.

Proposition 4. αD ∈ Amon but αD 6∈ At

Our main result in this section (Theorem 1) states that for any α ∈ Amon,
the intersection RESO(N, v, α) ∩ C(N, v) is either the empty set or the lexmax
solution. Before to do this, we need some preliminary results. The first one states
that if the grand coalition N is a coalition maximizing average worth, then any
α-reduced equal split-off set, α ∈ Amon, is a singleton containing the equal split-off
allocation.

Proposition 5. Let (N, v) be a game and α ∈ Amon. If N ∈ arg max
∅6=S⊆N

{
v(S)
|S|

}
,

then RESO(N, v, α) =
{(

v(N)
|N | , . . . ,

v(N)
|N |

)}
.
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Proof. Let (N, v) be a game. IfN ∈ arg max∅6=S⊆N
{
v(S)
|S|

}
, then x =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
∈

RESO(N, v, α). Suppose there is y ∈ RESO(N, v, α), y 6= x, generated by πy =
(S1, . . . , Ss). For all i ∈ S1, yi = xi = v(N)

|N | . By efficiency, y(N) = x(N), and thus
y(N \ S1) = x(N \ S1). Moreover, since α ∈ Amon, yi ≤ v(S1)

|S1| = v(N)
|N | = xi, for all

i ∈ N \ S1. This inequality, together with y(N \ S1) = x(N \ S1), imply xi = yi,
for all i ∈ N .

Combining monotonicity in payments with Proposition 5, we obtain an order
relation between admissible subgroup correspondences α ∈ Amon and the intersec-
tion of the α-reduced equal split-off set with the core.

Proposition 6. Let α, α ′ ∈ Amon such that α ≤ α ′. Let (N, v) be a balanced game
and x ∈ RESO(N, v, α) ∩ C(N, v). Then, x ∈ RESO(N, v, α ′) ∩ C(N, v).

Proof. Let (N, v) be a balanced game and α, α ′ ∈ Amon with α ≤ α ′. Notice first
that for all ∅ 6= N ′ ⊂ N and all y ∈ RN , it holds

rN
′

α ′,y(v)(R) ≥ rN
′

α,y(v)(R), (3)

for all R ⊆ N ′.
Let x ∈ RESO(N, v, α) ∩ C(N, v) generated by πx = (T1, T2, T3, . . . , Tt) and

z1 ∈ RESO(N, v, α ′) generated by πz1 = (T1, S2, . . . , Ss). If t = 1 then, by
Proposition 5, RESO(N, v, α) = RESO(N, v, α ′) =

{(
v(N)
|N | , . . . ,

v(N)
|N |

)}
. Assume

t > 1. For all i ∈ T1, xi = z1
i , and by α ′−consistency of the core

x|N\T1 ∈ C
(
N \ T1, r

N\T1
α ′,z1 (v)

)
. (4)

By monotonicity in payments, for all i ∈ T2 and all j ∈ S2, xi ≥ xj. Since xi = xk
for all i, k ∈ T2, we have xi = x(T2)

|T2| ≥ maxj∈S2{xj} ≥
x(S2)
|S2| . Thus, taking all of this

into account together with (3) and (4), we obtain the chain of inequalities

rN\T1
α,x (v)(T2)
|T2|

= x(T2)
|T2|

≥ x(S2)
|S2|

≥
r
N\T1
α ′,z1 (v)(S2)
|S2|

≥
r
N\T1
α ′,z1 (v)(T2)
|T2|

≥
r
N\T1
α,z1 (v)(T2)
|T2|

=
rN\T1
α,x (v)(T2)
|T2|

,

which implies
rN\T1
α,x (v)(T2)
|T2|

=
r
N\T1
α ′,z1 (v)(S2)
|S2|

=
r
N\T1
α ′,z1 (v)(T2)
|T2|

.

Thus, there is z2 ∈ RESO(N, v, α ′) generated by πz2 = (T1, T2, R3, . . . , Rr)
and such that z2

i = xi for all i ∈ T1 ∪ T2. Again by α ′-consistency of the core we
have x|N\T1∪T2 ∈ C

(
N \ T1 ∪ T2, r

N\T1∪T2
α ′,z2 (v)

)
, and by monotonicity in payments
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xi ≥ xj, for all i ∈ T3, j ∈ R3. Since xi = xk for all i, k ∈ T3, we have xi = x(T3)
|T3| ≥

maxj∈R3{xj} ≥
x(R3)
|R3| . Thus, as before, we have that

rN\T1∪T2
α,x (v)(T3)

|T3|
=
r
N\T1∪T2
α ′,z2 (v)(R3)

|R3|
=
r
N\T1∪T2
α ′,z2 (v)(T3)

|T3|
.

Hence, there is z3 ∈ RESO(N, v, α ′) generated by πz3 = (T1, T2, T3, P4, . . . , Pp)
and such that z3

i = xi for all i ∈ T1 ∪ T2 ∪ T3.
Following this process step by step we find that x ∈ RESO(N, v, α ′)∩C(N, v).

Remark 1. Observe that RESO(N, v, α)∩C(N, v) ⊆ RESO(N, v, α ′)∩C(N, v),
whenever α ≤ α ′. However, in general, RESO(N, v, α) * RESO(N, v, α ′), as
shown Example 1.

Now we have all the tools to state the main result of this section.

Theorem 1. Let (N, v) be a balanced game, α ∈ Amon and x ∈ RESO(N, v, α) ∩
C(N, v). Then, Lmax(N, v) = {x}.

Proof. Let (N, v) be a balanced game, α ∈ Amon and x ∈ RESO(N, v, α) ∩
C(N, v). Since α ≤ αDM , from Proposition 6 we know that x ∈ RESO(N, v, αDM).
Let π = (S1, S2, . . . , Ss) be an αDM−ordered partition of N generating x. If s = 1,
then, by Proposition 5, x =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
= Lmax(N, v). If s > 1 suppose, on

the contrary, x 6= Lmax(N, v). Let y = Lmax(N, v). As αDM ∈ Amon, we know
that for all i ∈ S1, xi = v(S1)

|S1| ≥ xj for all j ∈ N . Since y ∈ C(N, v), there is i1 ∈ S1

such that yi1 ≥
v(S1)
|S1| , and thus ŷ1 ≥ yi1 ≥

v(S1)
|S1| . This inequality together with the

fact that ŷ �lex x̂ imply yi1 = xi1 . If S1\{i1} 6= ∅, then y(S1\{i1}) = y(S1)− v(S1)
|S1| ≥

v(S1)− v(S1)
|S1| = |S1\{i1} |v(S1)

|S1| . Hence, there exists at least some player i2 ∈ S1\{i1}
such that yi2 ≥

v(S1)
|S1| = xi2 . Since ŷ|N\{i1} �lex x̂|N\{i1}, we conclude that yi2 = xi2 .

Following this process we can check that yk = xk for all k ∈ S1, and so ŷ|N ′ �lex x̂|N ′
where N ′ = N \ S1. Now consider the reduced game

(
N ′, rN

′
αDM ,y

(v)
)
. Since y|S1 =

x|S1 , by αDM−consistency of the core, x|N ′ , y|N ′ ∈ C
(
N ′, rN

′
αDM ,y

(v)
)
. Moreover, as

αDM ∈ At, x|N ′ ∈ RESO
(
N ′, rN

′
αDM ,y

(v), αDM
)
being π|N ′ = (S2, . . . , Ss) a αDM -

ordered partition of N ′ generating x|N ′ . On the other hand, by αDM -consistency of
the lexmax solution y|N ′ = Lmax

(
N ′, rN

′
αDM ,y

(v)
)
. Now from the reasoning above

we can see that yk = xk for all k ∈ S2. Following this line of argument we conclude
that x = y.

From Theorem 1 a natural question arises: given a balanced game (N, v), is
there some α ∈ Amon such that Lmax(N, v) ∈ RESO(N, v, α)? Although in
general this fact is not true (see Example 2 below), in Section 4 we will see that for
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some classes of games the lexmax solution can be interpreted as an αDM -reduced
equal split-off allocation.

Example 2. Let (N, v) be a balanced game with set of players N = {1, 2, 3} and
characteristic function:

S v(S) S v(S) S v(S)
{1} 0 {12} 1 {123} 1
{2} 0 {13} 1
{3} 0 {23} 0

For all α ∈ A, RESO(N, v, α) = {(0.5, 0.5, 0), (0.5, 0, 0.5)} and Lmax(N, v) =
(1, 0, 0).

4 Davis and Maschler reduced equal split-off set
and the lexmax solution

In this section, we show that on a class of games that includes games with large core
(Sharkey, 1982) the lexmax solution turns out to be the unique αDM -reduced equal
split-off allocation. This result provides an alternative procedure for computing the
lexmax solution for games with large core.2 Before proving it, we need a technical
lemma.

Lemma 1. Let (N, v) be a game,M1 = arg max∅6=T⊆N
{

(T )
|T |

}
, N1 = {i ∈ S |S ∈M1}

and x ∈ RESO(N, v, αDM) generated by the αDM -ordered partition πx = (T1, . . . , Tt).
Let T1 ∪ . . . ∪ Tq∗ = {i ∈ N |xi ≥ xj for all j ∈ N}. If N1 6= N , then
N1 = T1 ∪ . . . ∪ Tq∗ .3

The proof of Lemma 1 is given in the Appendix.
The next result states that the Davis and Maschler reduced equal split-off set

becomes a singleton when intersects with the core.4

Theorem 2. Let (N, v) be a balanced game. If x ∈ RESO(N, v, αDM) ∩ C(N, v),
then RESO(N, v, αDM) = Lmax(N, v) = {x}.

Proof. Let x ∈ RESO(N, v, αDM) ∩ C(N, v). From Theorem 1 we know that
Lmax(N, v) = {x}. Suppose there is y ∈ RESO(N, v, αDM) \ C(N, v). Let πx =

2On the class of games with large core, Arin et al. (2003) design a procedure for finding the
lexmax solution. Klijn et al. (2003) provide an algorithm for calculating the lexmax solution of
neighbor games.

3As shown Example 2, Lemma 1 does not hold if N1 = N.
4For arbitrary α ∈ Amon this statement is not true. Indeed, in Example 1, RESO(N, v, αP ) =

{(5, 5, 3, 2), (4, 5, 4, 2)} and (5, 5, 3, 2) ∈ C(N, v). Moreover, in general the α-reduced equal split-
off set is a discrete set containing more than one element (see Example 2).

9



(T1, . . . , Tt) and πy = (S1, . . . , Ss) be two αDM -ordered partitions of N generating
x and y, respectively. Let

T1 ∪ . . . ∪ Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}
S1 ∪ . . . ∪ Sp∗ = {i ∈ N | yi ≥ yj for all j ∈ N}.

(5)

Let M1 = arg max
∅6=T⊆N

{
v(T )
|T |

}
and N1 = {i ∈ S |S ∈ M1}. We distinguish two

cases.

• Case 1: N1 = N
If T1 = N then, by Proposition 5, RESO(N, v, αDM) = {x}. If T1 6= N , for
all i ∈ T1, xi = v(T1)

|T1| . Let k ∈ {2, . . . , t} and i ∈ Tk. Since N = N1, there is
R ∈M1 such that i ∈ R. As x ∈ C(N, v), x(R) = x(R\T1)+x(R∩T1) ≥ v(R)
or, equivalently, x(R \ T1) ≥ v(R) − x(R ∩ T1) = v(R) − |R ∩ T1|v(T1)

|T1| =
v(R)

(
1− |R∩T1|

|R|

)
= v(R)

|R| |R \ T1| = v(T1)
|T1| |R \ T1|. Since αDM ∈ Amon, for all

i ∈ R\T1, xi ≤ v(T1)
|T1| . Combining both inequalities we obtain, for all i ∈ R\T1,

xi = v(T1)
|T1| . Therefore, for all i, j ∈ N , xi = xj. Finally, by efficiency, x =(

v(N)
|N | , . . . ,

v(N)
|N |

)
and, by Proposition 5, we conclude RESO(N, v, αDM) =

{x}.

• Case 2: N1 6= N
Let q∗ and p∗ as defined in (5). Notice that q∗ < t and p∗ < s since, otherwise,
N ∈ M1 contradicting N1 6= N . From Lemma 1, N1 = T1 ∪ . . . ∪ Tq∗ =
S1 ∪ . . .∪ Sp∗ , which implies xi = yi for all i ∈ N1. Thus, the reduced games(
N \N1, r

N\N1
αDM ,x

(v)
)
and

(
N \N1, r

N\N1
αDM ,y

(v)
)
coincide. By αDM -consistency

of the core, x|N\N1 ∈ C
(
N \N1, r

N\N1
αDM ,x

(v)
)
. Since αDM ∈ At,

x|N\N1 , y|N\N1 ∈ RESO
(
N \N1, r

N\N1
αDM ,x

(v), αDM
)
.

Now define

Tq∗+1 ∪ . . . ∪ Tk = {i ∈ N \N1 | xi ≥ xj for all j ∈ N \N1}
Sp∗+1 ∪ . . . ∪ Sh = {i ∈ N \N1 | yi ≥ yj for all j ∈ N \N1}.

Let M2 = arg max
∅6=T⊆N\N1

{
rN\N1
αDM ,x

(v)(T )
|T |

}
and N2 = {i ∈ S |S ∈M2}.

If N2 = N \N1 then, as in Case 1, xi = yi for all i ∈ N \N1, and thus x = y. If
not, again from Lemma 1, we have that N2 = Tq∗+1∪. . .∪Tk = Sp∗+1∪. . .∪Sh
and xi = yi for all i ∈ N2. Repeating this line of reasoning we conclude that
x = y.

10



Now, we show that for games with large core the αDM -reduced equal split-off
set coincides with the lexmax solution.

The concept of large core is based on the notion of aspiration. An aspiration
of the game (N, v) is a vector x ∈ RN such that x(S) ≥ v(S) for all S ⊆ N . We
denote by A(N, v) the set of aspirations of the game (N, v).

Definition 8. The core of a game (N, v) is large if for all y ∈ A(N, v), there
exists x ∈ C(N, v) such that x ≤ y.

Theorem 3. Let (N, v) be a game with large core. Then, RESO(N, v, αDM) =
Lmax(N, v).

Proof. Let (N, v) be a game with large core and x ∈ RESO(N, v, αDM) generated
by π = (T1, . . . , Tt).

If t = 1, by Proposition 5, RESO(N, v, αDM) = Lmax(N, v) =
{(

v(N)
|N | , . . . ,

v(N)
|N |

)}
.

If t > 1, let M1 = arg max
∅6=S⊆N

{
v(S)
|S|

}
and N1 = {i ∈ S |S ∈M1}.

Take S ∈M1 and define y1 ∈ RN1 as follows:

y1
i := v(S)

|S|
, for all i ∈ N1. (6)

We distinguish two cases.

• Case 1: N1 = N

Notice first that y1 ∈ A(N, v). Since (N, v) has a large core, there exists z ∈
C(N, v) such that z ≤ y1. Take i ∈ N . Since, by assumption, N1 = N , there
exists Ri ∈ M1 such that i ∈ Ri and y1(Ri) = v(Ri). Thus, z(Ri) = v(Ri)
and y1

i = y1(Ri) − y1(Ri \ {i}) ≤ z(Ri) − z(Ri \ {i}) = zi, which implies
y1
i = zi, for all i ∈ N . Hence, y1 ∈ C(N, v). Now we claim that N ∈ M1.
Indeed, suppose N 6∈ M1. Let S ∈ M1. For all i ∈ N , y1

i = v(S)
|S| . By

efficiency, v(N) = y1(N) = |N |v(S)
|S| > v(N), getting a contradiction. Hence,

N ∈M1 and, by Proposition 5, we have RESO(N, v, αDM) = Lmax(N, v) ={(
v(N)
|N | , . . . ,

v(N)
|N |

)}
.

• Case 2: N1 6= N
Let T1 ∪ . . .∪Tq∗ = {i ∈ N | xi ≥ xj for all j ∈ N}. Notice that q∗ < t since,
otherwise, N ∈M1, in contradiction with N1 6= N . Since T1 ∪ . . .∪ Tq∗ = N1
(Lemma 1), we have that x|N1 = y1.
Let (N \ N1, w

1) be the reduced game relative to N \ N1 at y1 defined as
follows:

w1(∅) = 0 and w1(R) = max
Q⊆N1

{v(R ∪Q)− y1(Q)}, for allR ⊆ N \N1. (7)

11



Let M2 = arg max
∅6=S⊆N

{
w1(S)
|S|

}
and N2 = {i ∈ S |S ∈M2}.

Take S ∈M2 and define y2 ∈ RN1∪N2 as follows:

y2
i := y1

i if i ∈ N1, and y2
i := w1(S)

|S|
, if i ∈ N2, (8)

where y1 is defined in (6).
• If N2 = N \ N1, from (7) and (8) it is not difficult to verify that (a):
y2 ∈ A(N, v) and (b): for a given i ∈ N , there is Ri ⊆ N such that i ∈ Ri

and y2(Ri) = v(Ri). Since (N, v) has a large core, there is z ∈ C(N, v) such
that z ≤ y2. This inequality, together with both conditions (a) and (b),
imply y2

i ≤ zi for all i ∈ N . Hence, y2 = z ∈ C(N, v). From the efficiency of
y2, it follows that

M2 = arg max∅6=S⊆N
{
w1(S)
|S|

}
= arg max∅6=S⊆N

{
r
N\N1
αDM,x(v)(S)

|S|

}
,

and rN\N1
αDM ,x

(v)(S) = w1(S), for allS ∈M2.

(9)

We claim that N2 = N \N1 ∈M2. Indeed, suppose that N2 6∈M2. For all i ∈
N2, y2

i = w1(S)
|S| , where S ∈M2. Since y2 is efficient, v(N) = y2(N1)+y2(N2) =

y1(N1)+|N2|w
1(S)
|S| > y1(N1)+w1(N2) ≥ y1(N1)+v(N1∪N2)−y1(N1) = v(N),

getting a contradiction. Thus, N2 ∈ M2. By Proposition 5, and taking into
account (9), we have that RESO

(
N \N1, r

N\N1
αDM ,x

(v), αDM
)

=
{
y2
|N\N1

}
. By

definition, and considering that N1 = T1 ∪ . . . ∪ Tq∗ and αDM ∈ At, we get
x|N\N1 ∈ RESO

(
N \N1, r

N\N1
αDM ,x

(v), αDM
)
. Thus, x|N\N1 = y2

|N\N1
. Since

x|N1 = y1, we have that x = y2. As y2 ∈ C(N, v), from Theorem 2 we
conclude that RESO (N, v, αDM) = Lmax(N, v) = {x} .
• IfN2 6= N\N1, first observe that expression (9) holds. Let Tq∗+1∪. . .∪Tp∗ =
{i ∈ N \ N1 |xi ≥ xj for all j ∈ N \ N1}. From Lemma 1 we know that
N2 = Tq∗+1 ∪ . . . ∪ Tp∗ .
Let (N \ N1 ∪ N2, w

2) be the reduced game relative to N \ N1 ∪ N2 at y2

defined as follows:

w2(∅) = 0 and w2(R) = max
Q⊆N1∪N2

{v(R∪Q)−y2(Q)}, for allR ⊆ N \N1∪N2.

(10)

Let M3 = arg max
∅6=S⊆N

{
w2(S)
|S|

}
and N3 = {i ∈ S |S ∈M3}.

Take S ∈M3 and define y3 ∈ RN1∪N2∪N3 as follows:

y3
i := y2

i if i ∈ N1 ∪N2, and y3
i := w2(S)

|S|
, if i ∈ N3, (11)
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where y2 is defined in (8).
• If N3 = N \ N1 ∪ N2, following the arguments above, we obtain that
x = y3 ∈ C(N, v) and RESO(N, v, αDM) = Lmax(N, v) = {x}.
• If N3 6= N \N1 ∪N2, repeating the same procedure, in a finite number of
steps we will get the result.

Remark 2. The proofs of the above theorems provides a procedure for calcu-
lating the lexmax solution for some classes of games working as follows. Let
(N, v) be a balanced game: Step 1: Let M1 = arg max∅6=S⊆N

{
v(S)
|S|

}
and N1 =

{i ∈ S |S ∈M1}. Every player in N1 receives v(T1
|T1| , where T1 ∈ arg max∅6=S⊆N

{
v(S)
|S|

}
.

Step 2: If N1 6= N , let us denote w = r
N\N1
αDM ,x1(v), being x1 =

(
v(T1)
|T1| , . . . ,

v(T1)
|T1|

)
∈

RN1. Let M2 = arg max∅6=S⊆N\N1

{
w(S)
|S|

}
and N2 = {i ∈ S |S ∈M2}. Every player

in N2 receives w(T2)
|T2| , where T2 ∈ M2. The process stops when a partition of N of

the form (N1, N2, . . . , Nt), for some 1 ≤ t ≤ |N |, is reached.

Let us denote Fv the payoff vector generated by the above procedure. Note
that Fv is just the allocation constructed to proof Theorem 2 and Theorem 3.
In general, Fv is not a core element. For instance, in Example 2, N1 = N and
Fv = (0.5, 0.5, 0.5) is not efficient. We claim that when Fv belongs to the core it
coincides with the lexmax solution.

Theorem 4. Let (N, v) be a balanced game. If Fv ∈ C(N, v), then Fv = Lmax(N, v).

Proof. Let (N, v) be a balanced game and π = (N1, . . . , Nt) be the parti-
tion of N generating Fv. Recall that N1 = {i ∈ S |S ∈ M1}, where M1 =
arg max∅6=S⊆N

{
v(S)
|S|

}
. If N1 = N then, by efficiency, Fv =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
,

and thus Fv = Lmax(N, v). If N1 6= N, let y = Lmax(N, v) and suppose
y 6= Fv. Let S ∈ M1. Since αDM ∈ Amon, the same argument used in the
proof of Theorem 1 leads to Fv

i = yi for all i ∈ S. Consequently, Fv
i = yi for all

i ∈ N1. Hence, ŷ|N\N1 �lex F̂v
|N\N1

. Now consider the reduced game (N \N1, w),
where w = r

N\N1
αDM ,Fv(v). Since y|N1 = Fv

|N1
, by αDM−consistency of the core

Fv
|N\N1

, y|N\N1 ∈ C (N \N1, w). Moreover, by αDM−consistency of the lexmax
solution y|N\N1 = Lmax (N \N1, w). Since Fv

|N\N1
= Fw, as before we can check

that yi = Fv
i for all i ∈ N2. Following this process step by step, and considering

that αDM ∈ At, we conclude that Fv = Lmax(N, v).
As we have seen in the Theorem 3’s proof, for games with large core Fv is a

core element. This fact, together with Theorem 4, provide a necessary condition
for a game to have large core.

Corollary 1. Let (N, v) be a balanced game. If Fv 6∈ C(N, v), then C(N, v) is not
large.
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We end the paper linking the αDM -reduced equal split-off set with the egali-
tarian solution of Dutta and Ray (1989).

On the domain of convex games, Dutta and Ray (1989) show that the weak
constrained egalitarian solution (WCES, for short) is the unique Lorenz maximal
allocation in the core, and hence it coincides with the lexmax solution. This,
together with the fact that convex games have large core, lead to the following
corollary.

Corollary 2. Let (N, v) be a convex game. Then, RESO(N, v, αDM) = WCES(N, v).
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Appendix
Proof of Proposition 3. Let (N, v) be a game, α ∈ At and x ∈ RESO(N, v, α)
generated by π = (T1, . . . , Tt), with t > 1. For k ∈ {1, . . . , t − 1}, let us denote
Nk = N \ T1 ∪ . . . ∪ Tk. Let N0 = N and v = rN0

α,x(v). For k ≤ t − 1, i ∈ Tk and
j ∈ Tk+1, we have

xi = r
Nk−1
α,x (v)(Tk)
|Tk|

and xj = r
Nk
α,x(v)(Tk+1)
|Tk+1|

=
r
Nk
α,x|Nk−1

(
r
Nk−1
α,x (v)

)
(Tk+1)

|Tk+1|
. (12)

We distinguish two cases:

• Case 1: Tk+1 = Nk. In this situation, for j ∈ Tk+1,

xj =
rNk−1
α,x (v)(Nk−1)− rNk−1

α,x (v)(Tk)
|Nk|

. (13)

Suppose xj > xi, for i ∈ Tk and j ∈ Tk+1. Then, combining (12) and (13) we
obtain

rNk−1
α,x (v)(Nk−1) >

rNk−1
α,x (v)(Tk)
|Tk|

(|Nk|+ |Tk|)

or, equivalently,
rNk−1
α,x (v)(Nk−1)
|Nk−1|

>
rNk−1
α,x (v)(Tk)
|Tk|

,

in contradiction with the fact that Tk ∈ arg max∅6=T⊆Nk−1

{
r
Nk−1
α,x (v)(T )
|T |

}
.
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• Case 2: Tk+1 ⊂ Nk. In this case, there is Q∗ ∈ α(Tk) such that, for all
j ∈ Tk+1,

xj =
rNk−1
α,x (v)(Tk+1 ∪Q∗)− |Q∗| r

Nk−1
α,x (v)(Tk)
|Tk|

|Tk+1|
. (14)

If xj > xi for i ∈ Tk, then combining (12) and (14) we have

rNk−1
α,x (v)(Tk+1 ∪Q∗) >

rNk−1
α,x (v)(Tk)
|Tk|

(|Tk+1|+ |Q∗|)

or, equivalently,

rNk−1
α,x (v)(Tk+1 ∪Q∗)
|Tk+1 ∪Q∗|

>
rNk−1
α,x (v)(Tk)
|Tk|

,

in contradiction with the fact that Tk ∈ arg max∅6=T⊆Nk−1

{
r
Nk−1
α,x (v)(T )
|T |

}
.

Hence, xj ≤ xi for all i ∈ Tk, all j ∈ Tk+1 and all k ∈ {1, . . . , t−1}, which concludes
the proof.
Proof of Proposition 4. Let (N, v) be a game and x ∈ RESO(N, v, αD) gen-
erated by π = (T1, . . . , Tt), with t > 1. For k ∈ {1, . . . , t − 1} let us denote
Nk = N \ T1 ∪ . . . ∪ Tk. Let N0 = N and v = rN0

αD,x
(v). For k ≤ t − 1, i ∈ Tk and

j ∈ Tk+1 we have

xi = r
Nk−1
αD,x

(v)(Tk)
|Tk|

and xj = r
Nk
αD,x

(v)(Tk+1)
|Tk+1|

. (15)

If k < t− 1, we distinguish two cases:

• Case 1: xj = v(Tk+1)
|Tk+1|

.
In this situation,

xj = v (Tk+1)
|Tk+1|

≤
rNk−1
αD,x

(v)(Tk+1)
|Tk+1|

≤
rNk−1
αD,x

(v)(Tk)
|Tk|

= xi, (16)

where the first inequality follows from the definition of αD and the second

one from the fact that Tk ∈ arg max∅6=T⊆Nk−1

{
r
Nk−1
αD,x

(v)(T )
|T |

}
.

• Case 2: xj = v(T1∪...∪Tk∪Tk+1)−x(T1∪...,∪Tk)
|Tk+1|

.

15



Notice first that x(Tk) = rNk−1
αD,x

(v)(Tk). Then,

xj = v (T1 ∪ . . . ∪ Tk ∪ Tk+1)− x (T1 ∪ . . . ,∪Tk−1)− x(Tk)
|Tk+1|

≤
rNk−1
αD,x

(v)(Tk ∪ Tk+1)− x(Tk)
|Tk+1|

=
rNk−1
αD,x

(v)(Tk ∪ Tk+1)− rNk−1
αD,x

(v)(Tk)
|Tk+1|

≤
rNk−1
αD,x

(v)(Tk)
|Tk|

= xi,

where the first inequality follows from the definition of αD and the second

one from the fact that Tk ∈ arg max∅6=T⊆Nk−1

{
r
Nk−1
αD,x

(v)(T )
|T |

}
.

If i ∈ Tt−1 and j ∈ Tt, then xj = v(T1∪...∪Tt−1∪Tt)−x(T1∪...,∪Tt−1)
|Tt| . Thus, as in the above

Case 2 it can be shown that xj ≤ xi.
To see that αD 6∈ At, consider the game (N, v) with set of player N = {12345}

and characteristic function as follows:

v({4}) = 0.95, v({14}) = v({134}) = 1.9, v({23}) = v({123}) = 1.05, v({34}) = 1,

v({234}) = 2.8, v({1234}) = 2, v({12345}) = 3.8 and v(S) = 0, otherwise.

Take
(
0.95, 0.63̂, 0.63̂, 0.95, 0.63̂

)
. Routine verification shows that

r{235}
αD,x|{1235}

(
r{1235}
αD,x

(v)
)

({23}) = 1.85 > r{235}
αD,x

(v)({23}) = 1.05.

Proof of Lemma 1. Let (N, v) be a game and x ∈ RESO(N, v, αDM) generated
by πx = (T1, . . . , Tt). Let T1 ∪ . . . ∪ Tq∗ = {i ∈ N |xi ≥ xj for all j ∈ N}.
Notice first that q∗ < t since, otherwise, x =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
which implies N ∈

arg max∅6=T⊆N
{
v(T )
|T |

}
, in contradiction with N1 6= N .

First we show that T1 ∪ . . .∪ Tq∗ ⊆ N1. Let i ∈ T1 ∪ . . .∪ Tq∗ . If i ∈ T1, clearly
i ∈ N1. If i ∈ Th for some h ∈ {2, . . . , q∗}, then there is Q∗ ⊆ T1 ∪ . . . ∪ Th−1 such
that

xi = v(T1)
|T1|

=
rN\T1∪...∪Th−1
αDM ,x

(v)(Th)
|Th|

=
v(Th ∪Q∗)− |Q∗|v(T1)

|T1|

|Th|
. (17)

Reordering terms in (17), we have that v(T1)
|T1| = v(Th∪Q∗)

|Th∪Q∗|
, which implies Th ∪ Q∗ ∈

arg max∅6=T⊆N
{
v(T )
|T |

}
, and thus i ∈ N1.

To show the reverse inclusion, take i ∈ N1 and suppose i 6∈ T1 ∪ . . . ∪ Tq∗ .
Then, there is R∗ ∈ M1 such that i ∈ R∗. Next we show that R∗ \ T1 ∪ . . . ∪
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Tq∗ 6= Tq∗+1 ∪ . . . ∪ Tt. Indeed, if R∗ \ T1 ∪ . . . ∪ Tq∗ = Tq∗+1 ∪ . . . ∪ Tt, then
N = T1∪ . . .∪Tq∗∪R∗. As we have seen before, T1∪ . . .∪Tq∗ ⊆ N1. This inclusion,
together with R∗ ∈ arg max∅6=T⊆N

{
v(T )
|T |

}
, imply N1 = N , a contradiction. Hence,

v(T1)
|T1| >

r
N\T1∪...∪Tq∗
αDM,x (v)(Tq∗+1)

|Tq∗+1|
≥ r

N\T1∪...∪Tq∗
αDM,x (v)(R∗\T1∪...∪Tq∗ )

|R∗\T1∪...∪Tq∗ |

≥ v(R∗)−x(R∗∩{T1∪...∪Tq∗}
|R∗\T1∪...∪Tq∗ |

=
v(R∗)−|R∗∩{T1∪...∪Tq∗}|

v(T1)
|T1|

|R∗\T1∪...∪Tq∗ |
,

(18)

where the first inequality follows from the definition of T1 ∪ . . . ∪ Tq∗ , the second

one from Tq∗+1 ∈ arg max∅6=T⊆N\T1∪...∪Tq∗

{
r
N\T1∪...∪Tq∗
αDM,x (v)(T )

|T |

}
, and the last one from

the definition of the αDM -max reduced game and the fact that R∗ \ T1 ∪ . . . ∪
Tq∗ 6= Tq∗+1 ∪ . . . ∪ Tt. From (18) it follows v(T1)

|T1| >
v(R∗)
|R∗| , in contradiction with

R∗ ∈ arg max∅6=T⊆N
{
v(T )
|T |

}
. Hence, i ∈ T1 ∪ . . . ∪ Tq∗ and N1 = T1 ∪ . . . ∪ Tq∗ .
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