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Abstract

Although classic bankruptcy problems take into account a single claims
vector, Pulido et al. (2008) show that there are real bankruptcy situations
where agents face more than one reference vector. In particular, they consider
the claims and an additional reference vector. To analyze these situations,
they propose the extreme and the diagonal approaches. Nonetheless, the
former approach depends on the order of the vectors: if we interchange the
claims and the reference vectors, the result changes. Moreover their study
is limited to the case in which the reference vector is lower than the claims
vector. In the present note, we propose an extension that solves these short-
comings by introducing the idea of impartiality.

Keywords: bankruptcy problems; reference point; compromise solution;
impartiality

1. Introduction

In a bankruptcy situation, a given amount of money (the estate) has to be
allocated among a set of agents, each of whom has a claim on this estate. The
total amount claimed exceeds the estate available, so not all the claims can
be fully honored. This typical bankruptcy problem, introduced by O’Neill
(1982), was enriched with the contributions of Pulido et al. (2002, 2008) who
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show that other references, in addition to the claims, might be relevant to
allocate the estate in some contexts.

The present note attempts to complete their work, by extending the set
of situations in which it can be applied. By considering two independent and
general reference points, we drop out the condition that the reference point is
dominated by the claims. Accordingly, we modify the compromise solutions
introduced by Pulido et al. (2008) in order to make the result independent
on which reference point is taken as claims vector (we call this property
impartiality).

The paper is organized as follows. Next section introduces the model
and main notation. Section 3 extends the extreme and diagonal compro-
mise approaches. Finally, the paper finishes with some comments about the
cooperative game associated to these approaches.

2. The Model and notation

A bankruptcy problem (O’Neill, 1982) is a triple (N,E, z), where N is
the finite set of agents, N = {1, 2, . . . , n}, E ≥ 0 is the estate to be divided
among them, and z ∈ Rn

+ is the vector of claims such that Z =
∑

i∈N zi ≥ E.
A rule is a function ϕ that assigns to every bankruptcy situation (N,E, z)
a vector ϕ(N,E, z) ∈ Rn such that 0 ≤ ϕi(N,E, z) ≤ zi for all i ∈ N
(non-negativity and boundedness), and

∑
i∈N ϕi(N,E, z) = E (efficiency).

In Pulido et al. (2002, 2008) the bankruptcy problem has been extended
by adding an additional point r ∈ Rn

+, called the reference point, such that,
for all i ∈ N, ri ≤ zi. Then, a bankruptcy problem with references is a 4-tuple
(N,E, r, z), where (N,E, z) is a bankruptcy problem and r ≤ z. Moreover,
they distinguish two situations: (CREO) R =

∑
i∈N ri ≥ E; and (CERO)

R =
∑

i∈N ri < E.

We extend this model by considering that the claims vector and the ref-
erence vector are not related. So, we may have ri < zi for some agents, and
ri > zi for some other agents.

Definition 1. A bankruptcy problem with two reference vectors x, y is a
4-tuple (N,E,x,y) , where x ∈ Rn

+ and y ∈ Rn
+ are such that:

X =
∑
i∈N

xi > E, or Y =
∑
i∈N

yi > E.
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Note that we do not assume any condition about the two reference vectors,
x and y, so both the (CERO) and (CREO) cases are included. We extend
these situations by allowing that no vector dominates the other. The only
condition that we ask for (X > E or Y > E) is just to ensure that one of
the problems (either (N,E,x) or (N,E,y)) is a bankruptcy problem.

3. Compromise solutions

Note that given a bankruptcy problem with two references, (N,E,x,y) ,
if we assume xi ≤ yi, for all i ∈ N, and Y =

∑
i∈N yi ≥ E, it corresponds

to the case analyzed in Pulido et al. (2008). In this context they define two
solutions: the extreme compromise and the diagonal compromise solutions.
In order to define their solutions, they consider a given rule ϕ. As they
mention, ϕ “reflects some benchmark rule for evaluating claims and can be
interpreted, e.g., as the method that was used on a previous occasion to solve
a similar bankruptcy problem” (Pulido et al., 2008).

3.1. The impartial extreme solution

Accordingly to some benchmark rule ϕ, Pulido et al. (2008) approach
determines for all agent the combination of references and claims that leads
to the lowest (lϕ) and highest (Lϕ) allocations, defined by1.

lϕi (N,E,x,y) =


ϕi(N,E, (xi,y−i)) if xi +

∑
j 6=i yj ≥ E

E −
∑

j 6=i yj if xi +
∑

j 6=i yj < E

Lϕi (N,E,x,y) =


ϕi(N,E, (yi,x−i)) if yi +

∑
j 6=i xj ≥ E

yi if yi +
∑

j 6=i xj < E

Note that whenever for all i ∈ N xi ≤ yi and Y =
∑

i∈N yi ≥ E, then
lϕi (N,E,x,y) ≤ Lϕi (N,E,x,y).

Then, the compromise solution γϕ is defined as the unique efficient convex
combination of these two vectors (called extreme vectors),

1In the CREO case, only the first part of the definition applies.
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γϕ(N,E,x,y) = αlϕ(N,E,x,y) + (1− α)Lϕ(N,E,x,y),

where α ∈ [0, 1] is such that
∑

i∈N γ
ϕ
i (N,E,x,y) = E.

If we try to extend this solution for general reference vectors x and y, in
which none of them dominates the other, the first decision is to choose which
one plays the role of the claims vector and which one is the reference vector.
The following example illustrates that this question is essential in order to
apply the extreme compromise solution.

Example 1. Consider the bankruptcy problem with references (N,E,x,y)
defined by N = {1, 2, 3}, E = 100 and the reference vectors x = (20, 25, 40)
and y = (35, 50, 20) . Consider that the benchmark bankruptcy rule is the
proportional rule, ϕ = Pr. Following the Pulido et al. (2008) extreme ap-
proach, if we make x the reference vector and y the claims vector, the lower
and upper extreme vectors are, respectively,

lϕ = (30, 45, 32) and Lϕ = (35, 45.45, 20) .

The associated extreme compromise solution is γϕ = (35.35, 45.49, 19.16) ob-
tained with a value of α = −0.0694.

However, if we make x the claims vector and y the reference vector, the
new lower and upper extreme vectors are, respectively,

lϕ = (35, 45.45, 55) and Lϕ = (20, 25, 32) .

The associated extreme compromise solution is γϕ = (25.90, 33.05, 41.05) ob-
tained with a value of α = 0.3935.

The above example shows that when we invert the order of the vectors,
the lower bound vector becomes an upper bound and vice versa. Hence-
forth, the extreme compromise solution depends on which we consider to be
the reference and the claims vectors. In each case, some individuals in the
population N are benefited while others are penalized. Moreover, there are
situations in which none of the extreme vector strictly dominates the other.
It is also clear from the example that each ordering has associated a different
extreme compromise solution. In addition, the value of α may fail to be in
the interval [0, 1] .
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We extend the extreme approach in the sense of treating both vectors
symmetrically (no proposal is more important than the other), either because
we do not want to discriminate one proposal over the other, or because we
do not have sufficient information to take such position (see, for instance,
Marco-Gil et al. (1995) and Gadea-Blanco et al. (2010)).

Impartiality: A solution χϕ for bankruptcy problems with two references
is said to be (reference) impartial if for any bankruptcy problem with two
reference vectors (N,E,x, y) , then χϕ (N,E,x,y) = χϕ (N,E,y,x) .

Definition 2. Let (N,E,x,y) be a bankruptcy problem with two reference
vectors and ϕ a benchmark rule. The impartial extreme vectors are defined
by

mϕ
i (N,E,x,y) = min{lϕi (N,E,x,y), lϕi (N,E,y,x)},

Mϕ
i (N,E,x,y) = max{Lϕi (N,E,x,y), Lϕi (N,E,y,x)}.

In the following result we show that the two impartial extreme vectors in
our general setting satisfy a condition needed to properly define the extreme
compromise solution; namely, one of them is below the other, mϕ ≤Mϕ.

Lemma 1. Let (N,E,x,y) be a bankruptcy problem with two reference vec-
tors and ϕ a benchmark rule. Then,

mϕ
i (N,E,x,y) ≤ Mϕ

i (N,E,x,y) ∀i ∈ N.

Proof. We consider four cases.
[Case 1] Suppose xi+

∑
j 6=i yj ≥ E and yi+

∑
j 6=i xj ≥ E. Then by definition

of extreme vectors,

mϕ
i (N,E,x,y) = min{ϕi(N,E, (xi,y−i)), ϕi(N,E, (yi,x−i))}, and

Mϕ
i (N,E,x,y) = max{ϕi(N,E, (xi,y−i)), ϕi(N,E, (yi,x−i))},

so the result obviously holds.

[Case 2] Now consider xi +
∑

j 6=i yj ≥ E and yi +
∑

j 6=i xj < E. Therefore,

mϕ
i (N,E,x,y) = min{ϕi(N,E, (xi,y−i)), E −

∑
j 6=i yj}, and

Mϕ
i (N,E,x,y) = max{ϕi(N,E, (xi,y−i)), yi}.
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Then,
mϕ
i (N,E,x,y) ≤ ϕi(N,E, (xi,y−i)) ≤Mϕ

i (N,E,x,y)

and the result holds.

[Case 3] If xi +
∑

j 6=i yj < E and yi +
∑

j 6=i xj ≥ E we reason as in the
previous case.

[Case 4] Finally, consider xi +
∑

j 6=i yj < E and yi +
∑

j 6=i xj < E. Then,

mϕ
i (N,E,x,y) = min{E −

∑
j 6=i xj, E −

∑
j 6=i yj}, and

Mϕ
i (N,E,x,y) = max{xi, yi}.

Let us suppose, without losing generality, that X =
∑

i∈N xi > E. Therefore
xi > E −

∑
j 6=i xj, which implies mϕ

i (N,E,x,y) ≤Mϕ
i (N,E,x,y) .

From the impartial extreme vectors we define the compromise solution as
the efficient point in the line joining these vectors.

Definition 3. The impartial extreme compromise solution ψϕ is de-
fined by

ψϕi (N,E,x,y) = αmϕ
i (N,E,x,y) + (1− α)Mϕ

i (N,E,x,y) for all i ∈ N,

where α ∈ R is selected such that
∑

i∈N ψ
ϕ
i (N,E,x,y) = E.

Example 2. With the data in Example 1 we obtain:

mϕ = (30, 45, 32) Mϕ = (35, 45.45, 32)

ψϕ = (23.58, 44.42, 32) ,

with a value of α = 2.2833.

The next result shows some consequences of our definition. In particular
the impartial objective is achieved. The immediate proof is omitted.

Proposition 1. Let (N,E,x,y) be a bankruptcy problem with two reference
vectors and ϕ a benchmark rule. Then,

a) The impartial extreme compromise solution is impartial, that is,

ψϕi (N,E,x,y) = ψϕi (N,E,y,x) .

b) ψϕi (N,E,x,y) ≥ 0, for all i ∈ N.
c) α ∈ R+.
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3.2. The extension result

We now prove that our solution concept is an extension of the one defined
in Pulido et al. (2008). Under their assumptions both approaches coincide. As
in that paper, complementary monotonicity is assumed; that is, if the claim
of an individual i ∈ N increases by a certain amount, then the associated
benchmark rule cannot allocate to her less than before.

Proposition 2. Let (N,E,x,y) be a bankruptcy problem with two reference
vectors such that xi ≤ yi for all i ∈ N, and ϕ a benchmark rule satisfying
complementary monotonicity. Then,

a)
mϕ
i (N,E,x,y) = lϕi (N,E,x,y) and

Mϕ
i (N,E,x,y) = Lϕi (N,E,x,y) .

b) ∑
i∈N

mϕ
i (N,E,x,y) ≤ E ≤

∑
i∈N

Mϕ
i (N,E,x,y) .

and α ∈ [0, 1].

c) ψϕi (N,E,x,y) = γϕi (N,E,x,y) , for all i ∈ N.

Proof. Part a): As in the proof of Lemma 1 we distinguish four cases.
Note that, in all of them we assume

xi ≤ yi for all i ∈ N and
n∑
i=1

yi ≥ E.

[Case 1] Suppose xi+
∑

j 6=i yj ≥ E and yi+
∑

j 6=i xj ≥ E. Then by definition
of extreme vectors,

lϕi (N,E,y,x) = Lϕi (N,E,x,y) and

Lϕi (N,E,y,x) = lϕi (N,E,x,y)

so the result follows from Lemma 1 in Pulido et al. (2008).

7



[Case 2] Now consider xi +
∑

j 6=i yj ≥ E and yi +
∑

j 6=i xj < E. Therefore,

lϕi (N,E,x,y) = ϕi(N,E, (xi,y−i)) and lϕi (N,E,y,x) = E −
∑
j 6=i

xj

Then,
mϕ
i (N,E,x,y) = lϕi (N,E,x,y) .

On the other hand,

Lϕi (N,E,x,y) = yi and Lϕi (N,E,y,x) = ϕi(N,E, (yi,x−i))

and the result holds.

[Case 3] If xi +
∑

j 6=i yj < E and yi +
∑

j 6=i xj ≥ E, then

lϕi (N,E,x,y) = E −
∑

j 6=i yj and lϕi (N,E,y,x) = ϕi(N,E, (yi,x−i))

Then, as the second element is bigger than E −
∑

j 6=i xj,

mϕ
i (N,E,x,y) = lϕi (N,E,x,y) .

On the other hand,

Lϕi (N,E,x,y) = ϕi(N,E, (yi,x−i)) and Lϕi (N,E,y,x) = xi

and the result holds.

[Case 4] Finally, consider xi +
∑

j 6=i yj < E and yi +
∑

j 6=i xj < E. Then,

lϕi (N,E,x,y) = E −
∑

j 6=i yj and lϕi (N,E,y,x) = xi,

Lϕi (N,E,x,y) = yi and Lϕi (N,E,y,x) = E −
∑
j 6=i

xj,

and the result holds.

Parts b) and c) are immediate from part a) and the results in Pulido et al.
(2008).

In our general setting with arbitrary reference vectors in some cases the
left-hand side inequality in Part b) of Proposition 2 is not guaranteed. The
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example 2 above shows this issue. If we add the elements in the vector mϕ

we obtain
∑

i∈N m
ϕ
i = 107 which is above the estate value E = 100. The

implication is that the value of α is outside the interval [0, 1] . However, from
the proof of the above result it is clear that whenever the reference vectors are
in Case 1, then Proposition 2 is always true, even in the case that no vector
dominates the other. Then, we have the following immediate consequence.

Corollary 1. Let (N,E,x,y) be a bankruptcy problem with two reference
vectors such that xi +

∑
j 6=i yj ≥ E and yi +

∑
j 6=i xj ≥ E, for all i ∈ N, and

ϕ a benchmark rule satisfying complementary monotonicity. Then,

a)
mϕ
i (N,E,x,y) = lϕi (N,E,x,y) and

Mϕ
i (N,E,x,y) = Lϕi (N,E,x,y) .

b) ∑
i∈N

mϕ
i (N,E,x,y) ≤ E ≤

∑
i∈N

Mϕ
i (N,E,x,y) .

and α ∈ [0, 1].

c) ψϕi (N,E,x,y) = γϕi (N,E,x,y) , for all i ∈ N.

3.3. The extended diagonal solution

The diagonal approach proposed by Pulido et al. (2008) does not change
with the order of the reference vectors, since the parameter λ ∈ [0, 1] adjusts
to make the compensation. Consequently, the obtained vectors are lower and
upper bounds, respectively. However, when extended for general reference
vectors it suffers from other problem. In order to see it consider the Pulido
et al. (2008) definition. The diagonal approach is defined by a lower value,

l
ϕ

i (N,E,x,y) = min
λ∈[0,1]

hϕ,λi (N,E,x,y),

and a upper value,

L
ϕ

i (N,E,x,y) = max
λ∈[0,1]

hϕ,λi (N,E,x,y),

for all i ∈ N, where,

hϕ,λi (N,E,x,y) =

{
ϕi(N,E, λx + (1− λ) y)

λxi + (1− λ) yi + ϕi(E
λ
,d

λ
)

if λX + (1− λ)Y ≥ E,
if λX + (1− λ)Y < E,

9



with
E
λ

= E − (λX + (1− λ)Y ) ,

and
d
λ

= y − (λx + (1− λ) y) . (1)

In our general setting, vectors can be arbitrary and xi ≤ yi is not assumed.

Therefore, the residual vector d
λ

must be adjusted in order to not deliver

negative values (d
λ

i = λ(yi − xi) < 0 in the case xi > yi). Otherwise, we
may obtain nonsense and counter-intuitive results. In expression (1) the first
value of yi is replaced by max {xi, yi} .

Definition 4. Let us consider a bankruptcy problem with two reference vec-
tors (N,E,x,y) , and a benchmark rule ϕ. The adjusted residual vectors are
defined as

d̂λi = max {xi, yi} − (λxi + (1− λ) yi) > 0, (2)

for all i ∈ N. The adjusted diagonal compromise solution is

ψ̂ϕ(N,E,x,y) = αl̂ϕ(N,E,x,y) + (1− α) L̂ϕ(N,E,x,y),

where α ∈ [0, 1] is such that
∑

i∈N ψ̂
ϕ
i (N,E,x,y) = E.

The properties of the solution stated in Lemma 1 of Pulido et al. (2008)
hold true for the adjusted diagonal compromise solution. Note also that the
diagonal solution is a particular case of the adjusted diagonal solution. If
xi ≤ yi for all i ∈ N, then ψ̂ϕi (N,E,x,y) = γϕi (N,E,x,y) .

The following example compares our solution with the diagonal compro-
mise one.

Example 3. With the data in Example 1, the diagonal compromise solution
equals to

γϕ = (32.29, 45.68, 22.02) ,

and the adjusted diagonal compromise solution equals to

ψ̂ϕ = (29.48, 41, 29.52) ,

both obtained with a value of α = 0.5.

Note that individual i = 3 diagonal allocation equals 22.02 which is too
close to 20 and too far from 40, while the adjusted diagonal allocation equals
29.52 which is a better compromise between the reference claims 20 and 40.
The same argument holds for i = 1, 2.
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4. Final remarks

In Pulido et al. (2008) a cooperative analysis of their solutions has been
carried out. Their main result shows that the compromise solutions (both
the extreme and the diagonal ones) can be obtained as the τ value (see,
Tijs (1981), Driessen and Tijs (1985)) of a bankruptcy cooperative game,
by defining appropriate characteristic functions. An analogous study can be
carried out in our general setting, just by introducing in the characteristic
functions the same modifications done in both compromise solutions.

In the case of the extreme compromise solution, Pulido et al. (2008) define
a characteristic function vϕ to introduce the so-called extreme game. This
function depends on the subset of agents S ⊆ N considered and the reference
vectors (x,y), vϕ(S,x,y). We easily note that this function is not (reference)
impartial. To solve this problem, we can define:

vψ(S,x,y) = min{vϕ(S,x,y), vϕ(S,y,x)},

that is, for all coalition S we consider the worst scenario over the two games
vϕ(S,x,y) and vϕ(S,y,x).

Within this framework, we obtain (the proof runs parallel to the one in
Pulido et al. (2008)) that the τ value of this game coincides with the impartial
extreme compromise solution:

ψϕ = τ(vψ).

A similar reasoning can be made with respect to the adjusted diagonal
compromise solution. The adjusted diagonal game follows closely the original
diagonal game but with the elements in the residual vector (1) defined as in
(2).
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