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Abstract

In this paper we consider a sequential allocation problem with n indi-
viduals. The first individual can consume any amount of some endowment
leaving the remaining for the second individual, and so on. Motivated by the
limitations associated with the cooperative or non-cooperative solutions we
propose a new approach. We establish some axioms that should be satisfied,
representativeness, impartiality, etc. The result is a unique asymptotic allo-
cation rule. It is shown for n = 2, 3, 4, and a claim is made for general n. We
show that it satisfies a set of desirable properties.

Key words: Sequential allocation rule, River sharing problem, Cooperative
and non-cooperative games, Dictator and ultimatum games.
JEL classification: C79, D63, D74.

1. Introduction

We analyze the sequential allocation of a divisible resource among agents
who are ordered linearly. A well known example of this particular situation is
the stylized river sharing problem.1 The river flow is equivalent to a resource

1In spite of our sequential allocation problem can be seen as a particular case of a
general river sharing and that we frequently refer to it for intuition and to contextualize
our argumentation, we would like to keep our problem independent by its own as it might
be extended in directions different than a river sharing can possibly be. A river sharing
problem poses different challenges and a solution may employ specific information that we
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or endowment and the countries, states or cities through which it passes
are the individuals. The first individual (in the upstream) can consume any
amount of the available endowment leaving the remaining for the second
individual, and so on.2 Since the property rights are not well-defined, it is
diffi cult to apply the Coase (1960) principle. Therefore, we have an allocation
problem.
Often, a solution is enforced by third parties, but it can also be the re-

sult of negotiations between the individuals. Failures in negotiations are
common and eventually will end up in international courts. Therefore, it is
interesting to discuss the law perspective on river sharing disputes.3 The
absolute territorial sovereignty (ATS) principle states that a country has ab-
solute sovereignty over the flow on its territory regardless of any harm it may
cause to other downstream countries. This prior appropriation principle is
compatible with non-cooperative and strictly self-interested behavior and is
widely recognized as unfair.4 Another principle is the unlimited territorial in-
tegrity (UTS) which states that upstream countries cannot affect the natural
flow of the water into downstream countries. This principle applied to our
setting has no meaning and it is inconsistent. An upstream individual can-
not consume any endowment without damaging other downstream individual
(zero-sum problem). Limited territorial sovereignty (LTS) has become the
most important principle in international water law. Countries must respect
each other’s rights. The doctrine of equitable resources utilization applied to
our setting includes the equal allocation as a particular case. This allocation
coincides with the Adams’s (1963) notion of equity.5

The sequential nature of the problem limits to a great extent the coalition

do not have or assume in our framework.
2There are similarities with the well-known dictator game of Kahneman et al. (1986)

or the ultimatum game of Güth et al. (1982). We do not want to distinguish too much
between these two, as they deliver asymptotically similar equilibria and real life veto power
situations might be ambiguously enforceable. Therefore, it is not clear which we one we
are closer to.

3Ambec, Dinar and McKinney (2013) point out for the vulnerability and monitoring
diffi culties associated with the compliance of existing water sharing arrangements.

4Carraro, Marchiori and Sgobbi (2007) and Ambec and Ehlers (2008a) survey the
literature on non-cooperative and cooperative solutions for the river sharing problem.
Parrachino, Dinar and Patrone (2006) for a general reviews on the literature.

5It is also the allocation that results from the application of the Shapley (1953) value
to a simultaneous version of our problem (addictive characteristic function).

2



possibilities. For example, a coalition between the second and the third agent
that ignores the first agent is innocuous. This is the case because the flow
passes first through the latter. Similarly, a coalition between the first and
the third agents that promises something to the latter, depends crucially on
the consumption of the second agent. Moreover, since the first individual can
consume all the endowment, there may be no incentives to negotiate some-
thing with the second individual. Another diffi culty is that these disputes or
series of negotiations are often deadlocked, i.e., no agreement can be reached.
The questions is what equity agreement would the parties agree to sign?

We do not assume explicitly the existence of a third party that can en-
force a particular allocation. Contrary to most of the literature in allocation
problems, we have a consensus maximizing objective, rather than a welfare or
other maximizing objective. Our goal is to present a practical solution built
on strong and realistic arguments that cannot be rejected by the involved par-
ties. We search for a compromise between a game theoretic non-cooperative
and cooperative agreement (a compromise between the ATS and LTS prin-
ciples). Therefore, we do not restrict excessively the solution design. At
the same time we do not want to induce a particular result. We achieve it
through a set of axioms that imply an admissible set of allocations. The
solution must be impartial and representative. It results to be unique. In
order to express these concepts mathematically we consider a discrete ac-
tion space. As a result, the sum of each individual payoffs becomes easier
to find. This sum over the total gives the share of each individual on the
total endowment. In the process, the discretization becomes finer and finer
and the relative difference between allocations vanish. Therefore, we do not
ignore any admissible allocation profile that could possibly be built with a
continuous action space. The result is a unique asymptotic distribution of
the endowment that receives as input any possible individual claim or con-
cern that we consider to be admissible. We show that it satisfies a set of
desirable properties.

Our results are supported by Engel (2011). For instance, if there are
more than one recipient, together they receive substantially more than in a
situation with a single receiver. Therefore, the dictator accepts as natural a
lower allocation. Bahr and Requate (2013) perform an experimental design
with a structure similar to our sequential allocation problem. They found
that when the share of the first individual is in between 50% and 66% the
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share of the second individual is between 21% and 31%. They also found
that the sharing behavior of individual 2 with respect to individual 3 is not
significantly different from the dictator’s behavior in the usual two player
dictator game. These results are close to the ones obtained in the present
paper. Bonein and Serra (2007) performed a similar experiment in a se-
quential dictator game. In one treatment the individuals 2 and 3 played a
ultimatum game while in the other treatment they played a dictator game.
Individual 2’s offer as a percentage of player 1’s offer was around 40%, in the
former case, and around 30%, in the latter case. Our allocation predicts a
40% offer. Empirical support is always important, but in our case it assumes
extra importance because we have a consensus maximizing objective. If the
allocation rule in the present paper replicates the average or representative
human behavior, even in very tricky and subtle situations, then it is more
likely that this objective is achieved.6

Approaches based on cooperative game theory have been extensively ap-
plied to sequential allocation problems such as the river sharing problem.
One that is suffi ciently representative and has received some attention in the
literature is Ambec and Sprumont (2002). Based on the first two principles,
Ambec and Sprumont define,7 respectively, a core lower bound and an aspi-
ration upper bound on the welfare of a coalition of agents. Welfare is derived
from quasilinear preferences over water and money. They show that these
bounds uniquely determine the "downstream incremental distribution" to al-
locate the total welfare among the agents. The marginal contribution of each
member of the coalition determines its share. The compensation between in-
dividuals is guaranteed with monetary transfers. On the contrary, we do not
explicitly consider transfers or any other trading mechanism. For the sake of
generality we do not explicitly define an utility function.8 This is a complex
and subjective issue with profound implications on the results. Therefore,
their approach is not applicable to our setting. In fact, this is true for any

6Cason and Mui (1998) also consider a sequential dictator game, however, their setting
has no immediate translation to ours.

7See Ambec and Ehlers (2008b) for an extension of downstream incremental distribu-
tion for single-peaked preferences. See also Kilgour and Dinar (2001) and Wang (2011),
among others.

8Dinar, Ratner and Yaron (1992) critique the use of game theoretical based transfers
that are not related to market prices, and the representation of the problem in the “utility-
space”. More recently, the same position is defended in Houba (2008).
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coalition approach that we can think about. In addition, our approach is not
a compromise between the ATS and the UTS principles but it is more sim-
ilar to a compromise between the ATS and LTS. In other words, we search
for a compromise in between the non-cooperative and the most cooperative
outcome.
Ansink and Weikard (2012) transform a river sharing problem in a se-

quence of two-agent river sharing problems, and show mathematical equiv-
alence to bankruptcy problems. In spite of possible axiomatization, an ap-
plication of bankruptcy methods eliminates from the river sharing problem
any strategic consideration associated with position, i.e., being the most
upstream or downstream is irrelevant. Actually, even claims are not well
defined. In a real life situation, the simple task of validating any claim is a
harder problem than the river sharing problem itself. Rationing problems,
as in Moulin (2000), follow a sequential structure that can be adapted to
our setting. Priority rules with ordered individuals, first allocate resources
to these ones (on the upstream) until their claim is satisfied. In our setting
this implies that individual 1 consumes the full endowment.
Herings and Predtetchinski (2012) consider a sequential bargaining pro-

tocol in which each individual share in the endowment is sequentially deter-
mined. The sequential structure can be adapted to our setting. Alternating
offer bargaining have in common the threat of delay and the equilibrium
unanimity requirement. Translated to our setting with no delay, all indi-
viduals obtain the same payoff independently of their location because of
unanimity. Therefore, the sequential nature of the problem is lost. We do
not impose unanimity, instead we search for a proposal that maximizes indi-
viduals consensus and reduces the potential of a bargaining impasse. Delay
in negotiations is implicitly in the final allocation. Moreover, in real life
situations the individuals veto power might have enforcement limitations.

The paper is organized as follows. Sections 2 and 3 present the model and
motivates our approach, respectively. Sections 4 and 5, define and represent
a set of axioms that we want to be satisfied by our rule. Sections 6 and
7, present our results and investigate their properties. Finally, Section 8
concludes with some extensions and practical issues.

2. The Sequential Allocation Model

Consider a divisible endowment E ∈ R+ to be allocated sequentially to
a group of individuals, whose set is denoted by N = {1, ..., n} . Individuals
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are identified with respect to their relative position. If i < j we say that i is
upstream from j or that j is downstream from i.9 In other words, individual
1 is the first to have access to the endowment and to consume an amount
c1 ∈ [0, E] . The remaining endowment, E − c1, is passed to individual 2,
which consumes c2 ∈ [0, E − c1] and passes the remaining to individual 3,
and so on. The process ends with the individual n, which consumes the
remaining endowment cn = E−

∑n−1
i=1 ci.We denote c ∈ [0, E]

n as the vector
of consumptions.

3. Intuition and Rationale for the Approach

The allocation method that we propose in this paper is new to the lit-
erature. For that reason this section is devoted to justify its existence. We
also address some issues that cannot be ignored in the design of a consensual
allocation proposal.

3.1. The non-cooperative equilibrium is unfair
In a non-cooperative context, without any type of punishment, rational

behavior implies that individual 1 consumes the full endowment c1 = E,
and passes nothing to the other individuals. The structure is similar to the
well-known dictator game, Kahneman et al. (1986), the difference is the
existence of multiple steps. This zero sum decision problem has been used
to test the altruism of individuals and equity concerns about the well being
of others. Empirical studies and controlled experiments show that individual
1 does not consume the full endowment, c1 < E, but passes some non-
negligible endowments to the other individual, contradicting the theory (see
Engel (2011) and Camerer (2003) for surveys).
A more realistic non-cooperative setting is the well known ultimatum

game, Güth et al. (1982). In this case individual 2 has veto power over the
allocation proposed by individual 1, in which case both individuals obtain a
zero payoff. In terms of our setting, this is equivalent to an impasse in the
negotiation process. However, in reality things are not so strict and further
negotiations may take place. Again, in our setting the main difference is
the existence of multiple steps, that is, individual 3 also has veto power
over the allocation proposed by individual 2, and so on. With a continuous

9We can think on E as a river flow that passes through a number of countries, regions
or cities, the individuals in our context.
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consumption space the unique subgame perfect equilibrium is asymptotic
similar to the one in the dictator game. Individual 1 passes some infinitesimal
amount to individual 2 and this one passes some infinitesimal amount to
individual 3, an so on. Since these amounts are infinitesimally small we have
c → (3, 0, 0) . However, empirical evidence shows that individual 2 receives
some non-infinitesimal and measurable amount contradicting the theory (see
Camerer and Thaler (1995) for a survey).
The theoretical result is a consequence of the location advantage of the

upstream over the downstream individuals and the "more the better" prop-
erty of the utility function. This result is very unequal and hard to defend. In
spite of it the payoffs in any allocation proposal must reflect that individual 1
has at least a weak advantage over the subsequent individual, and individual
2 has at least a weak advantage over individual 3, an so on. Actually, this
feature distinguishes this problem from others in the literature.
From an equity point of view it seems consensual that every involved in-

dividual must receive something. What is not clear is the value of this some-
thing. Moreover, the empirical results in the dictator and ultimatum games
point to the existence of altruistic and equity concerned behaviors. It sug-
gests that allocations that are more equitable than the strictly self-interested
non-cooperative allocation receive a natural support from the individuals.
This is also true in our context in which decisions are expected to be more
carefully thought-out (or taken by groups - countries, governments, etc.),
which are often more rational (in game theoretic sense) and self-interested
than individual decisions (Charness and Sutter, 2012).
Note also that the individuals that are farther downstream have less bar-

gaining power because of their worst strategic location. Actually, individual
n has the least bargaining power to impose any agreement. Consequently,
the only way to protect its position is to rely on the individuals’ sense of
equity and justice. As we will see below, this individual final allocation is
going to have a unique property specific to this fact.
Note that we do not state whether our setting is closer to a multistage

dictator or ultimatum game, rather we leave this as an open issue. In real
life allocation problems of this kind, individual 2 might be forced to conform
with what individual 1 has proposed or it might have power to veto against
it. This issue becomes even more complex when we add more individuals to
the problem.
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3.2. Limitations of the cooperative approach
Our notion of equity follows the "equity theory" of social psychology,

Adams (1963). Therefore, since the ratio of inputs to outcomes is the same
for every individual, each one should be treated in the same way. Therefore,
the most equitable allocation would be c = (E/n, ..., E/n) .
This definition ignores strategic issues such as the position of the indi-

viduals in the sequence. Therefore, if we would consider a simultaneous and
non-sequential setting this allocation matches the well-known Shapley value.
The linearity of the utility function implies that the characteristic function
is additive but not superadditive. The value of the union of two coalitions is
the same as the sum of the coalitions’separate values. In this hypothetical
scenario the problem could be approached through the Shapley value, for
instance. However, our setting is sequential.
There are some other diffi culties when considering coalition games in our

sequential setup. For instance, the coalition between individuals 2 and 3 with
the allocation c = (0, E/2, E/2, 0, ..., 0) is not possible without the individual
1 agreement. Actually, the upstream individual 1 has all bargaining power.
In spite of possible altruistic and equity concerns, it is hard to expect that
individual 1 accepts something different than c1 ∈ [E/n,E] . In the best sce-
nario individual 1 may consume c1 = E/n in order to induce the most equity
allocation. However, individual 2 does not necessarily need to follow this
implicit or explicit recommendation and instead chooses c2 = E (n− 1) /n.
Therefore, reasoning backwards, individual 1 would never chooses c1 = E/n
without a guarantee that all individuals would do the same. Otherwise,
its objective would have been in vain. These diffi culties and the associated
type of reasoning lead us to conclude that any allocation proposal different
from the non-cooperative equilibrium must be suffi ciently consensual (i.e.,
obtain the agreement of the involved parties) in order to later be naturally
enforced. A similar conclusion holds for the coalition between individuals 1
and 3 and the allocation (E/2, 0, E/2, 0, ..., 0) , which is not possible without
the agreement of individual 2.

4. Properties of the solution design

We have pointed out the limitations of game theory as a tool to deal with
sequential allocation problems. We do not assume explicitly the existence of a
third party that can enforce a particular allocation. Instead, our approach is
a hybrid between a non-cooperative and a cooperative agreement. Therefore,

8



we do not restrict excessively the solution design in order to not remove the
non-cooperative nature of the problem or to impossibility a potential equity
oriented agreement. On the same time we do not want to induce a particular
result.

So far, we have conclude that individual i ∈ N cannot get more than
individual i− 1 and no less than individual i+ 1, and that every individual
independently of its position must receive something. The former is an im-
plication of the positional disadvantage and advantage of individual i with
respect to individual i−1 and i+1, respectively, but without ignoring equity
issues. The latter is based on the idea of fairness and justice. Formally,

Axiom 1 (Strategic Advantage). If i < j then ci ≥ cj for all i, j ∈ N.

The strategic advantage of agent i < j over agent j is respected (at least
weakly) in every payoff profile that contributes to the final solution. Indi-
vidual i knows that is better positioned than agent j. Therefore, a proposal
that does not reflect it in terms of payoffs is unacceptable from its perspec-
tive. Note that we do not restrict the equity objective. However, to reach
a consensual agreement among the involved parties we have to be realistic
about the requirements that we impose, as they influence the final solution.

Axiom 2 (Non-zero PayoffRight). ci > 0 for all i ∈ N.

This statement is trivial. However, if we look to the non-cooperative side
of the problem (as a sequential dictator or ultimatum game) the equilibrium
payoffs are c1 → E and ci → 0 for all i ∈ N\1. Therefore, we are imposing
that every individual obtains a measurable share of the total endowment.

Definition 1 (Admissible Profile). An allocation profile that simultane-
ously satisfies axioms 1 and 2 is called admissible. The set of such allocation
profiles is called the admissible set.10

Axioms 1 and 2 impose the following payoff bounds,

c1 ∈ [E/n,E) , cn ∈ (0, E/n] and ci ∈ (0, E/i) , (1)

10Table 1 presents the set of admissible payoff profiles for n = 3 and m = 1, 2, 3, 4.
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for i ∈ N\ {1, n} . The converse is not true, since the bounds do not imply
axioms 1 and 2. Note that the set of admissible payoff profiles that satisfy
these bounds is uncountable. This aspect leads to some technical issues that
are addressed later.
We can imagine an uncountable set of individuals suggesting different

final allocations. Some of those might be more self-interested while others are
more equity oriented. Among these suggestions there might exist allocations
inside and outside the admissible set.

Axiom 3 (Representativeness). An allocation is context-representative if
it receives as input every allocation in the context.

This principle limits the set of allocation profiles that we consider for the
solution design. The context is the settings that frames the background under
which the solution expresses its representativeness. Based on the arguments
that motivated Definition 1 we exclude from consideration allocations that
are not admissible. Our context is the set of admissible allocations. In tech-
nical terms, representativeness means that each allocation on the admissible
set receives at least one unit of the endowment (strictly positive weight).
We also want the final solution to respect the principle of impartial treat-

ment. Once the decision to consider a given allocation profile is taken, this
must be equally weighted. In other words, there is no payoff profile that is
more or less important than any other.

Axiom 4 (Impartiality). A solution is impartial if every input is uni-
formly weighted.

Impartiality is an important concept and it is fundamental to justice. We
consider it in order to remove from the proposed allocation any potential
bias, prejudice, or any individual preference that is not properly founded.
Contrary to most of the literature in allocation problems, we do not have

a utility or welfare maximizing objective, rather a consensus maximizing
objective. Our goal is to present a practical solution built on strong and
realistic arguments that cannot be rejected by the involved parties. If there
are several of these solutions this objective is at risk as individuals may split
between the available alternatives. Therefore uniqueness is also a desired
property.

Definition 2 (Final Solution). The final solution must be admissible - rep-
resentative, impartial and unique.

10



Note that as in the computation of the Shapley (1953) value the alloca-
tions are equally weighted. The difference is that Shapley constructs alloca-
tions over coalitions while we construct allocations over an admissible set that
satisfies a number of properties. This way we go around the impossibility of
forming meaningful coalitions in sequential settings.

5. The procedure in detail

In this section we describe in detail the construction of our allocation
proposal. In particular, the mathematical representation of the principles
presented in the previous section.

5.1. Continuous versus discrete action space
In a continuous action space, between two admissible allocation profiles

that satisfy the bounds in (1) there is an uncountable set of possible al-
locations. Actually, the meaning of "between" is not well defined, as the
comparison between two profiles always imply that at least some individual
gets better off at expenses of another individual. In order to express these
concepts mathematically we consider a discrete action space. This makes it
easier to account for all admissible allocation profiles of Definition 1 because
this set is countably infinite and has no implications in the objectives of ax-
ioms 3 and 4.11 In other words we move from the usual continuous action
space in which endowments and allocations are values in R+, to a discrete
action space in which endowments and allocations are values in N1. Note that
in the end we obtain an asymptotic distribution that is valid under general
action spaces.
The discretized set of admissible allocations is given in Table 1 for n = 3

and E = 3, 6, 9, 12.

5.2. Construction of the procedure
We start by considering the following example. Suppose that n = 3

and E = 3. In this case there is one admissible allocation that satisfies our
requirements, c = (1, 1, 1) . Any other allocation either fails axiom 1 or axiom
2, or both, and for that reason not admissible. The allocations c = (2, 1, 0)
and c = (3, 0, 0) fail the non-zero requirement of axiom 2. Now, suppose that

11The need of a discrete action space is also motivated by the problem of defining
infinitesimal small or large values on a real numbers system.
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E = 3 E = 6 E = 9 E = 12
1, 1, 1 4, 1, 1 7, 1, 1 10, 1, 1

3, 2, 1 6, 2, 1 9, 2, 1
2, 2, 2 5, 3, 1 8, 3, 1

5, 2, 2 8, 2, 2
4, 4, 1 7, 4, 1
4, 3, 2 7, 3, 2
3, 3, 3 6, 5, 1

6, 4, 2
6, 3, 3
5, 5, 2
5, 4, 3
4, 4, 4

sum(total) sum(total) sum(total) sum(total)
1, 1, 1(3) 9, 5, 4(18) 34, 18, 11(63) 81, 40, 23(144)

Table 1: The set of admissible allocation profiles for n=3 and m=1,2,3,4.

E = 6, in this case there are three allocations that satisfy our admissible
requirements, c = (4, 1, 1) , c = (3, 2, 1) and c = (2, 2, 2) . This process of
generating admissible allocations can be generalized by letting E = nm,
where m = 1, 2, ..., and n is the number of individuals (see Remark 1 in the
end of this section for a detailed explanation). For the case that n = 3 and
m = 1, 2, 3, 4, the set of admissible allocations is given in Table 1.
Following the discussion, with a discrete action space, we can rewrite the

bounds in (1) as

c1 ∈ [m,nm− 1] , cn ∈ [1,m] and ci ∈ [1, nm/i− 1] ,

for i ∈ N\ {1, n} . Subsequently, for a given n and m, we sum vertically
the individual i ∈ N payoffs and denote this sum as sumn

i (m) . There-
fore, every admissible allocation contributes equally for the final allocation,
the impartiality principle of Definition 2. As m grows these sums become
more complex. The objective is to find a general expression or recursion
that characterizes the sum of the values in the sequence for any m. In the
bottom of Table 1 we show each individual sum of payoffs over all ad-
missible allocations. We are interested in the asymptotic ratio rni of the
individual i sum of admissible payoffs with respect to the total sum, i.e.,
rni (m) ≡ sumn

i (m) /
∑n

i=1 sum
n
i (m) as m ↑ ∞. The result is the share of
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individual i on the total endowment. For instance, in the case n = 3, the
ratio of individual 1 grows from r31 (1) = 1/3 to r31 (4) = 9/16 (see Table
1), and converges asymptotically to r31 = r31 (∞) = 11/18 (see Proposition 2
below). In other words, when there are three individuals our allocation rules
states that the most upstream individual must receive 61.1(1)% percent of
the total endowment under dispute (see also Section 8.1 for applied issues).
Formally,

Definition 3. Given n individuals, the individual i ∈ N admissible asymp-
totic allocation is defined as

φni ≡ rni E ≡ lim
m→∞

sumn
i (m)∑n

i=1 sum
n
i (m)

E, (2)

where rni represents the share on the total endowment.

Note the compromise between cooperative (preferred by the most down-
stream individuals) and non-cooperative behavior (preferred by the most up-
stream individuals). For instance, if E = 9 (see Table 1) we are considering
admissible allocations that can be regarded as the result of a more coopera-
tive agreement, (3, 3, 3) or (4, 3, 2) , and admissible allocations that seem to
be the result of a more non-cooperative agreement, (7, 1, 1) or (6, 2, 1) . In
between we also consider admissible allocations that may not fall in any of
these more extreme sets, i.e., (5, 3, 1) , (5, 2, 2) and (4, 4, 1) . Consequently, as
m ↑ ∞ (or equivalently E ↑ ∞) the relative discretization becomes finer and
finer and the relative difference between allocations vanishes. Therefore, we
do not ignore any admissible allocation profile that could possible be built
with a continuous action space.
Recall that we started the discussion justifying the passage from a con-

tinuous to a discrete consumption space. Now, asymptotically, we move back
from the discrete to the continuous space. The result is a unique distribution
of consumptions.
The uniqueness, the equal weight or impartiality and the contribution of

every allocation that can be defended as a final agreement under reasonable
arguments (the set of admissible allocations) are the strongest aspects of our
solution.

Remark 1. Note that we consider E = nm instead of E = 1, ..., n−1, n, n+
1, ..., (for E < n the defined admissible set is empty) that is, the discrete
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endowment grows n units per unit increment on m. We do it to simplify
the computation of the general expressions that characterize the sum of each
individual payoff as a function of m. This way, we always consider the most
equity profile (m, ...,m) . Asymptotically, that is for m ↑ ∞, both approaches
are equivalent.

6. Allocation Results

Our goal is to present a practical solution built on strong and realistic
arguments that cannot be rejected by the involved parties. Such a solution
is unique, impartial and representative. Contrary to most of the literature in
allocation problems, we have a consensus maximizing objective, rather than
a welfare or other maximizing objective.

6.1. Two Individuals
This case is particularly simple.

Proposition 1. Suppose that n = 2. The admissible asymptotic endowment
allocation is

φ2 =

(
3

4
,
1

4

)
E.

The literature on the dictator and ultimatum game is extensive, see
Camerer (2003), Camerer and Thaler (1995). Engel (2011) aggregates in-
formation of 129 published papers on the topic and found that dictators on
average keep a share of 71.65%, which is very closed to the 75% proposed
by our allocation rule. We compare our results with this particular paper
because of the benefits associated with the use of a large sample size. Other
papers predict different but close values, depending on which treatment is
used.

6.2. Three Individuals
The set of admissible payoff profiles for the case of three individuals are

presented in Table 1. The sum of payoff profiles for each individual and the
aggregate sum for m = 1, 2, 3, 4, are shown in the last row.

Proposition 2. Suppose that n = 3. The admissible asymptotic endowment
allocation is

φ3 =

(
11

18
,
5

18
,
2

18

)
E.
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Bahr and Requate (2013) perform an experimental design with a struc-
ture similar to our sequential allocation problem. They found that when
individual 1 share is in between 50% and 66% the share of individual 2 is
between 21% and 31%. Our allocation rule suggests approximately 61% and
28%, respectively. Bonein and Serra (2007) performed similar experiments in
a sequential dictator game. In one treatment the individuals 2 and 3 played
a ultimatum game while in the other treatment they played a dictator game.
The offer of individual 2, as a percentage of the offer of individual 1 was
around 40%, in the former case, and around 30%, in the latter case. Our
allocation rules predicts a 40% offer.

6.3. Four Individuals
The four individuals case is more complex. There are more payoffprofiles

to consider and the expressions for the general sum, sum4
i (m) for i = 1, 2, 3, 4,

are given by non-trivial recursions.

Proposition 3. Suppose that n = 4. The admissible asymptotic endowment
allocation is

φ4 =

(
25

48
,
13

48
,
7

48
,
3

48

)
E.

6.4. General: n Individuals
This paper is the first step in what we believe to be a new class of allo-

cation rules for sequential problems. The ultimate objective is to derive a
general expression for the asymptotic share φni , as a function of the number of
individuals n and the identity of the individual i ∈ N. In the cases n = 2, 3, 4,
we obtain the value of each individual asymptotic allocation. However, the
construction of general recursions sumn

i (m) with i = 1, 2, ..., n, for n = 5 or
larger becomes impracticable and beyond the scope of this paper. In spite of
it, using the information that we have obtained so far and based on a method
similar to one usually employed to construct the Lorenz curve we found that
is possible to obtain directly the n asymptotic share values in the vector rn.
The result is a system of 2n−1 equations and 2n unknowns (Figure 1 provides
an illustration, see the proof of Conjecture 1 for a more detailed explanation),
which cannot be solved without an additional linearly independent equation.
This is achieved by noting that the most downstream individual obtains a
share of the total endowment equal to r22 = 1/4, r33 = 1/9, r44 = 1/16, for
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n = 2, 3, 4, respectively. Based on this observation we claim that individual
n share is given by

rnn =
1

n2
. (3)

The refered method holds for n = 2, 3, 4. We claim that it holds for general
n. The result is stated as a claim because we want to be careful on deriving
general conclusions from sequences with three numbers.

Conjecture 1 (Claim). The admissible asymptotic endowment allocation
is,

φni = (n− 1)
∑n−1

k=i r
n−1
k −

∑n
k=i+1 r

n
k

n− i E

for i = 1, ..., n and n = 2, 3, ..., where rnn is given by (3).

7. Properties of the Allocation Rule

In this section we study some of the basic properties of the solution. We
show that it satisfies a set of desirable properties. We conclude with cross-
comparison comments on the Herings and Predtetchinski (2012) allocation
rule (for general discount factor on the unit interval).

P1: (monotonic decreasing with i) φni > φni+1, for i = 1, 2, ..., n− 1.

It is the most natural property. The higher the individual in the stream,
the larger its share on the total endowment. This property is connected with
the strategic advantage principle of axiom 1.

P2: (monotonic decreasing with n) φn1 > φn+11 and φni > φn+1i+1 , for
i = 1, 2, ..., n.

The allocation of the most upstream and downstream individuals always
decreases as the number of individuals increases. This property should be
natural for every individual allocation. The diffi culty is that there is some
ambiguity in the comparisons. For instance, when passing from n = 3 to
n = 4 it is not clear whether we should compare the individual i = 2 in n = 3
with the individual i = 2 or i = 3 in n = 4. On the contrary, the position of
the two most extreme individuals is unambiguous. A monotonic decreasing
relation with n holds for downward diagonal comparisons. In this sense the
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n = 2 n = 3 n = 4 n = 5 n = 6
i = 1 0.75000 0.6111(1) 0.5208(3) 0.4566(6) 0.4083(3)
i = 2 0.25000 0.2777(7) 0.2708(3) 0.2566(6) 0.2416(6)
i = 3 0.1111(1) 0.1458(3) 0.1566(6) 0.1583(3)
i = 4 0.06250 0.09000 0.1027(7)
i = 5 0.04000 0.0611(1)
i = 6 0.0277(7)

Table 2: Individual asymptotic shares of the total endowment for n=2,3,4,5,6.

comparison uses the bottom as reference, for instance, between the worst
individuals, the second worst individuals, etc. Table 2 provides a numeric
illustration. Note also the existence of a monotonic increasing relation with
n in the upward diagonal, i.e., φni+1 < φn+1i , for i = 1, 2, ..., n− 1.

P3: (monotonic decreasing relative bargaining power with i) φni /φ
n
i+1 >

φni+1/φ
n
i+2, for i = 1, 2, ..., n− 3.

The result states that the individual i allocation is not only larger than
that of individual i + 1 (see P1) but it is relatively much larger than the
one that i+ 1 obtains with respect to i+ 2. The allocation of the upstream
individuals allocation is increasing larger with respect to that of the down-
stream individuals. In other words, as we decrease from i = n to i = 1 the
individual allocations increase convexly. However, the result is not valid for
i = n− 2 as stated in the following property.
The last three properties are empirically supported by Bahr and Requate

(2013), Bonein and Serra (2007) and Engel (2011).

P4: (individual n weak relative bargaining power) φnn−2/φ
n
n−1 < φnn−1/φ

n
n.

The monotonic relation of P3 is interrupted in the last comparison. The
bargaining power of individual i = n − 2 over i = n − 1 is lower than the
bargaining power of individual i = n−1 over i = n. This is because individual
n is the last in the sequence. Consequently, the decisions of individual n has
no influence over the decisions of the others. Virtually, individual n has
no bargaining power. Note that there are two factors that play a role in
each individual allocation. The first factor is the equity concern of the other
individuals. The second factor is the strategic position of each individual.
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Figure 1: Lorenz curve (perfect equality curve in blue, n = 2 in red, n = 3 in brown, n = 4
in green)

The last individual does not benefit from the latter. For that reason its
allocation falls abruptly relatively to the allocation of individual i = n− 1.12
Bahr and Requate (2013) tested the individual 2 sharing behavior with

respect to individual 3 against the behavior in the usual two players dictator
game and found no significant difference. These observations are important.
Recall that we have a consensus maximizing objective. If the allocation rule
in the present paper replicates the average or representative human behavior,
even in very tricky and subtle situations, then it is more likely that this
objective is achieved.

12It seems clear that the equity concerns of the others toward individual i = 1 is negative
and equal to φn1 − 1 while the strategic positioning value is equal to 1. On the other
hand, the strategic positioning value of individual n is equal to 0 but the benefits from
positive equity concerns is equal to φnn. The distinction between the equity concerns and the
strategy positioning components, for each individual allocation, seems to be an interesting
topic for further research.
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P5: (monotonic decreasing relative bargaining power with n) φni /φ
n
i+1 >

φn+1i /φn+1i+1 , for i = 1, 2, ..., n− 1.

Similar to property P3, as the number of involved individuals increases,
the relative individual bargaining power decreases. The relative bargaining
power is measured by the ratio between allocations.

P6: (Lorenz inequality increases with n)∑n
k=i φ

n
k −

∑n−1
k=i φ

n−1
k

n+1−i
n
− n−i

n−1

∣∣∣∣ ><
∣∣∣∣ 1 if n− in

∣∣∣∣ ><
∣∣∣∣ 12 , for i = 2, ..., n.

The larger the number of individuals, the larger the area between the
line of perfect equality and the Lorenz curve. In spite of the allocations
distribution being adjusted for the increasing number of individuals and that
everybody obtains less, see P2, the more upstream individuals concessions
to the more downstream ones decreases in relative terms.

Herings and Predtetchinski (2012) allocation rule does not satisfy prop-
erties P3, P4 and P5. The relative bargaining power is constant for varying
i and n. An implication is that on the contrary to our allocation proposal
their rule satisfies consistency, see Thomson (2011) or Moulin (2000) among
others. In sequential allocation problems of the kind presented in this paper,
consistency imposes that pairwise allocations must be linked in a predeter-
mined (linear) order, which is mathematically convenient in some class of
allocation problems, see for example Thomson (2003). In our perspective,
whether a rule is consistent or not cannot be regarded as a good or bad prop-
erty. For instance, in our setting if we add an individual to a n = 3 problem
the relative relation position between the allocation of individuals 1 and 2
varies. Clearly, in both cases individual 1 maintains the largest allocation
and bargaining power. However, when we pass from the case n = 3 to n = 4
the relative allocation of individual 1 with respect to individual 2 decreases.
Both individuals lose bargaining power, but individual 2 has loses less than
individual 1. This effect slows down the Lorenz inequality effect for increasing
n.

8. Extensions

Our approach is particularly flexible in the sense that the reader is more
or less free to define the admissible set. However, these choices may have
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implications on the final solution. On the other hand, we are less flexible
with axioms 3 and 4, or Definition 1, as they characterize our approach.
Therefore, we consider possible extensions associated with relaxations of the
axioms 1 and 2 of Section 4 that were used to define the admissible set.
These will necessarily result in allocations that are less equitable in terms of
the Lorenz curve. Other extensions associated with variations of the original
sequential allocation problem (non-constant endowments, unequal weights,
asymmetric individuals, satiation levels, etc.) are also possible.

One possibility is to keep axiom 2 but replace axiom 1 by the following
strict version. In other words, an upstream individual does not have an
allocation with a strict advantage over a downstream individual.

Axiom 5 (Strict Strategic Advantage). If i < j then ci > cj for all
i, j ∈ N.

The reverse possibility is to maintain axiom 1 but replace axiom 2 by the
following relaxed version. In this case, we do not exclude from consideration
allocation profiles in which one or more individuals obtains a zero payoff.

Axiom 6 (No Non-zero Rights). ci ≥ 0 for all i ∈ N.

We can also consider the strict version of axiom 1 and the relaxed version
of axiom 2 simultaneously, i.e., replace these by axioms 5 and 6, respectively.

In the three cases considered the distribution tends to favor the upstream
with respect to the downstream individuals. In other words, they lead to
distributions of the total endowment that are less equitable in Lorenz sense
for n ≥ 3. In the case n = 2 the asymptotic distribution remains the same
as in Proposition 1. It happens because if axiom 1 is replaced by axiom 5
we simply remove the payoff profile (m,m) from the admissible set, which
appears only once for all m. If axiom 2 is replaced by Axiom 6 we add
the payoff profile (2m, 0) . Asymptotically single terms become irrelevant.
However, for n ≥ 3 we must expect different asymptotic distributions, since
the removed and/or added allocation profiles increase with m. To see it,
consider the following example.

Example 1. Let n = 3 and m = 2. If axioms 1 and 2 hold we have the
above defined admissible set, i.e., (4, 1, 1) , (3, 2, 1) and (2, 2, 2) , with the re-
spective vector of individual shares r3 (2) = 1

18
(9, 5, 4) . If we replace axiom
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1 by axiom 5, the admissible set is composed of a single payoff profile, i.e.,
(3, 2, 1) , with the respective vector of individual shares r3 (2) = 1

18
(9, 6, 3) .

If instead we relax axiom 2 by axiom 6, we have a larger admissible set, i.e.,
(6, 0, 0) , (5, 1, 0) , (4, 2, 0) , (4, 1, 1) , (3, 3, 0) , (3, 2, 1) and (2, 2, 2) , with the
respective vector of individual shares r3 (2) = 1

18
(11.6, 4.7, 1.7) . If we simulta-

neously strict axiom 1 and relax axiom 2 the admissible set of payoff profiles is
(5, 1, 0) , (4, 2, 0) and (3, 2, 1) , with the respective vector of individual shares
r3 (2) = 1

18
(12, 5, 1) .

From the example, it is clear that the share of the total endowment to
individual 3 is always smaller with respect to the admissible set defined by
us in Section 4. The opposite conclusion holds for individual 1, which never
gets into a worst situation. Mixed results are observed for individual 2. These
conclusions remain valid for larger values of m and in particular for m ↑ ∞.

8.1. A Note for Practitioners
Some situations justify that prior to the distribution of the total en-

dowment among the involved parties every individual receives a minimum
amount. This amount can be used for consumption or not. For example
in a river sharing problem, observations of this kind make sense when a
minimum flow is required to keep the habitat of certain species protected.
Therefore, from the total river flow only a part of it can be used for consump-
tion. Other situations require, for instance, that every individual receives an
equal amount, Ea/n, and only the remaining endowment, Eb, can be allo-
cated according to the methods suggested in the present paper. In this case,
individual i ∈ N obtains Ea/n + rni Eb. When justified, this kind of proce-
dure allows for distributions that are less asymmetric and more equitable in
Lorenz sense.
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Appendix

Proof of Proposition 1. Let the endowment be E = 2m for each
m = 1, 2, ..., and i = 1, 2, we sum all admissible payoffs until a pattern
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emerges. The general expression for the sequence 2, 8, 18, 32, 50, 72, ...,
that represents the aggregate sum of payoffs over all agents and profiles is
2m2. The expression for the sequence 1, 5, 12, 22, 35..., that represents the
individual 1 sum of payoffs over all profiles is sum2

1 (m) = m (3m− 1) /2.
Therefore, by (2) the asymptotic fraction of the total endowment is,

r21 (m) =
m (3m− 1) /2

2m2
→ 3

4
.

The expression for the sequence 1, 3, 6, 10, 15, ..., that represents the individ-
ual 2 sum of payoffs over all profiles is sum2

2 (m) = m (m+ 1) /2. Similarly,
the asymptotic fraction of the total endowment is,

r22 (m) =
m (m+ 1) /2

2m2
→ 1

4
.

Proof of Proposition 2. Similarly, let the endowment be E = 3m, we
proceed for m = 1, 2, ..., until a pattern emerges. The general expression for
the sequence 3, 18, 63, 144, 285, ...,13 that represents the aggregate sum of
payoffs over all agents and profiles is

sum3 (m) = 3m
(
m2 −

⌊
m2/4

⌋)
=
(
18m3 + 3m (1− (−1)m)

)
/8,

where b.c denotes the floor function. The expression for the sequence 1, 9,
24, 81, 163, 282, ..., that represents the individual 1 sum of payoffs over all
profiles is

sum3
1 (3,m) = 3m

(
m2 −

⌊
m2/4

⌋)
−
∑m

k=1

(
2k2 −

⌊
k2/4

⌋)
−
∑b(m−1)/2c

k=1
(m+ k) (m− 2k)

=
(
22m3 − 6m2 − (m+ 1)− (3m− 1) (−1)m

)
/16.

Therefore, by (2) the asymptotic fraction of the total endowment is

r31 (m) =
(22m3 − 6m2 − (m+ 1)− (3m− 1) (−1)m) /16

(18m3 + 3m (1− (−1)m)) /8 → 11

18
.

13The sequences in this paper have been found by the authors and are registered in
the "OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences,
http://oeis.org."
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The expression for the sequence 1, 5, 18, 40, 80, 135, ..., that represents the
individual 2 sum of payoffs over all profiles is

sum3
2 (m) =

∑m

k=1
k2 +

∑b(m−1)/2c

k=1
(m+ k) (m− 2k)

=
(
10m3 + 3m (1− (−1)m)

)
/16,

and the asymptotic fraction of the total endowment is

r32 (m) =
(10m3 + 3m (1− (−1)m)) /16
(18m3 + 3m (1− (−1)m)) /8 →

5

18
.

Similarly, the expression for the individual 3 sum sequence 1, 4, 11, 23, 42,
69, ..., is given by,

sum3
3 (m) =

∑m

k=1

(
k2 −

⌊
k2/4

⌋)
=
(
4m3 + 6n2 + 4m+ (1− (−1)m)

)
/16,

and the asymptotic fraction of the total endowment is

r33 (m) =
(4m3 + 6n2 + 4m+ (1− (−1)m)) /16

(18m3 + 3m (1− (−1)m)) /8 → 2

18
.

Proof of Proposition 3. Similarly, let the endowment be E = 4m,
we proceed for m = 1, 2, ..., until a pattern emerges. The general expression
for the sequence 4, 40, 180, 544, 1280, 2592, ..., that represents the aggregate
sum of payoffs over all agents and profiles is given by the recursion,

sum4 [m] =
m

m− 1sum
4 [m− 1] (4)

+4m
2m∑
k=0

(⌊
4m− 2− k

2

⌋
− k
)⌊

sgn
(⌊

4m−2−k
2

⌋
− k
)
+ 2

2

⌋
,

where sum4 [m] =
∑4

i=1 sum
4
i [m] , sum

4 [1] = 4 and sgn denotes the sign
function. The total number of admissible profiles is sum4 [m] /nm. The ex-
pression sum4

1 (m) for the individual 1 sum sequence 1, 17, 84, 262, 629,
1289, ..., is given by the recursion,

sum4
1 [m] = sum4

1 [m− 1] +
sum4 [m− 1]
4m− 4

+

2m∑
k=0

b 4m−2−k2 c∑
l=k+1

(4m− 2− l − k)
⌊
sgn

(⌊
4m−2−k

2

⌋
− k
)
+ 2

2

⌋
,
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where sum4
1 [1] = 1 and sum

4 [m− 1] is given by (4). The asymptotic fraction
of the total endowment is obtained numerically and is given by,

r41 (m) =
sum4

1 (m)

sum4 (m)
→ 25

48
.

The expression sum4
2 (m) for the individual 2 sequence 1, 10, 46, 141, 334,

680, ..., is given by the recursion,

sum4
2 [m] = sum4

2 [m− 1] +
sum4 [m− 1]
4m− 4

+
2m∑
k=0

b 4m−2−k2 c∑
l=k+1

l

⌊
sgn

(⌊
4m−2−k

2

⌋
− k
)
+ 2

2

⌋
,

where sum4
2 [1] = 1 and sum

4 [m− 1] is given by (4). The asymptotic fraction
of the total endowment is obtained numerically and is

r42 (m) =
sum4

2 (m)

sum4 (m)
→ 13

48
.

For simplicity, we consider the individual 4 expression sum4
4 (m) for the sum

sequence 1, 6, 21, 55, 119, 227, ..., which is given by the following recursion,

sum4
4 [m] = sum4

4 [m− 1] + sum4 [m] / (4m)

where sum4
4 [1] = 1 and sum

4 [m− 1] is given by (4). Note that sum4
4 (m) =∑m

k=1 sum
4 [k] /k. The asymptotic fraction of the total endowment is ob-

tained numerically and is

r44 (m) =
sum4

4 (m)

sum4 (m)
→ 3

48
.

Finally, the expression sum4
2 (m) for the individual 3 sum sequence 1, 7,

29, 86, 198, 396, ..., and the asymptotic fraction of the total endowment are
obtained as the residual difference.
Proof of Conjecture 1. From the cases n = 2, 3, 4, we claim that

rnn = 1/n2. The following method is found to hold for n = 2, 3, 4. It is
obtained with a method similar to one used to construct the Lorenz curve.
In the proof we also show how to obtain general expressions for rni . Let
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(n+ 1− i) /n be the cumulative share of the individuals i, i + 1, ..., n, and
let yni be the cumulative share of the allocation shares, r

n
n + rnn−1 + ... + rni .

Start from the individual n, which represents a share of the total individuals
and endowment equal to 1/n and 1/n2, respectively. The expression for the
line that passes through the points (0, 0) and (1/n, ynn) is the solution of the
system, {

ynn = a0 + b0
1
n

0 = a0 + b00
,

where a0 is the intercept and b0 is the slope. We have a system of two
equations and three unknowns, but since we claim that ynn = rnn, we can
solve the system. Similarly, the line that passes through the points (1/n, ynn)
and

(
2/n, ynn−1

)
is the solution of the system,{

ynn−1 = a1 + b1
2
n

ynn = a1 + b1
1
n

,

where ynn−1 = rnn + rnn−1. Since y
n
n = rnn, we have a system of two equations

and three unknowns. Now, we have a new equation that is obtained from ob-
serving that the line equation passes tangent to the point

(
1/ (n− 1) , yn−1n−1

)
,

where yn−1n−1 = rn−1n−1 = 1/ (n− 1)
2 . Figure 1 provides an illustration. There-

fore, in addition we have the equation yn−1n−1 = a1+b1
1
n−1 . The relevant solution

is

ynn−1 =
(n− 1) yn−1n−1 − (n− 2) ynn

1
=

3n− 2
(n− 1)n2 , (5)

which implies

rnn−1 = ynn−1 − ynn = (n− 1)
yn−1n−1 − ynn

1
=

2n− 1
(n− 1)n2 .

Similarly, the line that passes through the point
(
2/n, ynn−1

)
and

(
3/n, ynn−2

)
is the solution of the system,{

ynn−2 = a2 + b2
3
n

ynn−1 = a2 + b2
2
n

,

where ynn−2 = rnn+ r
n
n−1+ r

n
n−2. We have a system of two equations and three

unknowns. Again, we have an equation that is obtained from observing that
the line equation passes tangent to the point

(
2/ (n− 1) , yn−1n−2

)
, where from

(5) we know that yn−1n−2 = rn−1n−1 + rn−1n−2 =
3(n−1)−2
(n−2)(n−1)2 . Figure 1 provides an

25



illustration. Therefore, in addition we have the equation yn−1n−2 = a2 + b2
2
n−1 .

The relevant solution is

ynn−2 =
(n− 1) yn−1n−2 − (n− 3) ynn−1

2
=
2 (3n2 − 7n+ 3)
(n− 2) (n− 1)n2 ,

which implies

rnn−2 = ynn−2 − ynn−1 = (n− 1)
yn−1n−2 − ynn−1

2
=

3n (n− 2) + 2
(n− 2) (n− 1)n2 .

We continue until we reach i = 1, i.e., when we have obtained the n elements
in the vector rn.
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