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Abstract

A minimum cost spanning tree (mcst) problem analyzes the way to efficiently
connect individuals to a source when they are located at different places.
Once the efficient tree is obtained, the question on how allocating the total
cost among the involved agents defines, in a natural way, a conflicting claims
situation. For instance, we may consider the endowment as the total cost of
the network, whereas for each individual her claim is the maximum amount
she will be allocated, that is, her connection cost to the source. Obviously,
we have a conflicting claims problem, so we can apply claims rules in order to
obtain an allocation of the total cost. Nevertheless, the allocation obtained by
using claims rules might not satisfy some appealing properties (in particular,
it does not belong to the core of the associated cooperative game). We will
define other natural claims problems that appear if we analyze the maximum
and minimum amount that an individual should pay in order to support the
minimum cost tree.

Keywords: Minimum cost spanning tree problem, Claims problem, Core
JEL classification: C71, D63, D71.

1. Introduction

We consider a situation in which some individuals located at different
places want to be connected to a source in order to obtain a good or service.
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There are some fixed costs of linking any two individuals, and of linking each
individual to the source. Moreover, individuals do not mind being connected
directly to the source, or indirectly through other individuals. There are
several methods in order to obtain a way of connecting agents to the source
so that the total cost of the selected network is minimum (we can use, for
instance, Prim’s algorithm). This situation is known as the minimum cost
spanning tree problem and it is used to analyze different real-life issues, from
telephone and cable TV to water supply networks.

The remaining important question is how this minimum cost should be
allocated among the involved individuals. There is an extensive literature
on this issue and several solutions have been proposed: Bird (Bird, 1976),
Kar (Kar, 2002), Folk (Bergantiños and Vidal-Puga, 2007), Cycle-complete
(Trudeau, 2012), . . .

Our starting point to analyze the network cost sharing problem is by
considering a claims problem associated to it:

The total minimal cost of the network, Cm, has to be distributed
among the n individuals involved in this network. The cost of no
cooperation entails that each individual must pay the cost ri of
her connection to the source, so that the total amount to be paid
in this case, R =

∑
ri, is greater or equal than Cm. Then, the

pair (E, r):
E = Cm, r = (r1, r2, . . . , rn),

clearly defines a conflicting claims problem.1 The total amount
to be distributed, Cm, is the endowment, whereas the individual
cost ri is the claim.

By applying any of the well known claims rules2 (Proportional, (constrained)
Egalitarian, Talmudian, Random Arrival, . . . ) we obtain an allocation that
efficiently allocates the cost Cm. Moreover, one of the conditions a claims
rule must fulfill is claim boundedness: no individual receives more than her
claim. This condition has an immediate and natural interpretation in our

1 There is a difference with respect to the classical conflicting claims problem: in the
usual setting agents receive a non-negative amount that does not exceed their claims,
whereas in our approach agents are charged a non-negative amount lower than their indi-
vidual cost. The formal problem has no difference.

2 See, for instance, Thomson (2003).
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minimal cost spanning tree context: no individual should be allocated an
amount greater that her individual cost to the source.

Nevertheless, it is easy to obtain examples in which other natural con-
dition in the network context fails: the amount each individual is allocated
should be greater than her minimum connection cost.3 To solve this draw-
back, we propose two different approaches:

1. Each individual pays initially the cost of no cooperation, that is her
direct cost to the source. As cooperation entails a common profit, this
profit is shared accordingly to a claims rule.

2. Each individual is allocated her minimum cost (the cost of her cheapest
connection). The sum of these costs is lower than Cm and we propose
the difference to be distributed accordingly to a claims rule.

In both cases, we need to define the appropriate conflicting claims problem.
We will argue that these approaches are dual each other (in claims’ litera-
ture terms) in the sense that the solution provided in one model by using
a particular claims rule ϕ coincides with the solution provided in the other
model by using the dual rule ϕd.

In this paper we set a bridge between the literature on conflicting claims
problems and that of sharing the cost in network problems. Apart from
providing new solutions to minimum cost spanning tree problems by using
claims rules, we analyze the cooperative games associated to each problem.

2. Preliminaries

2.1. Minimum cost spanning tree problem

A minimum cost spanning tree (hereafter mcst) problem involves a finite
set of agents, N = {1, 2, . . . , n}, who need to be connected to a source ω.
We denote by Nω = N ∪ {ω}. The agents are connected by edges and for
i 6= j, cij ∈ R+ represents the cost of the edge eij connecting agents i, j ∈ N.
Following the notation in Kar (2002), cii represents the cost of connecting
directly agent i to the source, for all i ∈ N. We denote by C = [cij]n×n the

3 This condition is meaningful whenever the non-property rights approach is considered.
In such a case, the proposed allocation does not belong to the core of the monotone
irreducible cooperative game associated to the minimum cost spanning tree problem.
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n × n symmetric cost matrix. The mcst problem is represented by the pair
(Nω,C). We denote by N the set of all mcst problems.

A spanning tree over Nω is a non-oriented graph p with no cycles that
connects all elements of Nω. We can identify a spanning tree with a function
p : N → Nω so that p(i) is the agent (or the source) whom i connects, and
defines the edges epij = (i, p(i)). In a spanning tree each agent is (directly or
indirectly) connected to the source ω; that is, for all i ∈ N there is some
t ∈ N such that (p ◦ ..(t. ◦ p)(i) = pt(i) = ω. Moreover, given the spanning
tree p, there is a unique path from any i to the source for all i ∈ N, given by
the edges (i, p(i)), (p(i), p2(i)), . . . , (pt−1(i), pt(i) = ω). The cost of building
the spanning tree p is the total cost of the edges in this tree; that is,

Cp =
n∑

i=1

cip(i)

Prim (1957) provides an algorithm which solves the problem of connecting
all agents to the source such that the total cost of the network is minimum.4

The achieved solution, the minimum cost spanning tree, may not be unique.
Denote by m a tree with minimum cost and by Cm its cost. That is,

Cm =
n∑

i=1

cim(i) ≤ Cp =
n∑

i=1

cip(i) for all spanning tree p

Once the minimum cost spanning tree is constructed, the important issue is
how to allocate the associated cost Cm among the agents.5

A sharing rule is a function that proposes for any mcst problem (Nω,C)

4 This algorithm has n steps. First, we select the agent with smallest cost to the source,
i such that cii ≤ cjj , for all j ∈ N. In the second step, we select an agent in N \ {i} with
the smallest cost either directly to the source or to agent i, who is already connected. We
continue until all agents are connected, at each step connecting an agent still not connected
to a connected agent or to the source.

5 Real word situations reveal that agents don’t necessarily agree on how to distribute
this cost and then the social optimum is not implemented, so a more expensive than
necessary tree connects the agents to the source (see Bergantiños and Lorenzo (2004) for
an example; see also Hernández et al. (2012) for a discussion about individual and social
optimality).
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an allocation6 (α1, α2, . . . , αn) ∈ Rn
+, such that

n∑
i=1

αi = Cm.

Some sharing rules that can be applied in mcst problems are just adap-
tations of well known rules in general cost sharing problems. For instance
the proportional solution, with respect to the stand alone cost cii (see, for
instance, Kar (2002)) proposes the cost allocation

αi =
cii∑n

k=1 ckk
Cm.

Remark 1. It is important to note that this proportional solution is obtained
with respect to the agents’ costs of direct connection to the source, and the
cost of the other edges are not taken into account.

A different example of solution is the egalitarian one, in which the total
cost Cm is equally divided among the agents,

αi =
Cm

n
.

This proposal may imply that some of the agents can be charged a cost
greater than her direct cost to the source, cii, so this solution may fail to
fulfill individual rationality (then, we should use a constrained egalitarian
solution).

Many solutions have been defined in the mcst literature: for instance
Bird (1976), Kar (2002), Folk (Bergantiños and Vidal-Puga, 2007), or Cycle-
complete (Trudeau, 2012) solutions could be mentioned. Some of these solu-
tions are defined as the Shapley value of a cooperative game obtained from
the cost matrix in a mcst problem.7

In order to introduce a cooperative game associated to a mcst problem,
we may find two different approaches, the dividing point being the existence
or not of agents’ property rights on their locations. The important question
is:

6 In some contexts the non-negativity condition is not required. We do not follow this
approach. See the comments later about property and non-property rights.

7 In order to facilitate the reading of the paper, definitions of some of these solutions
are included in Appendix 1.
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Given a coalition S ⊆ N, in order to obtain the minimal tree
connecting the agents in S to the source ω, the agents outside S,
can be used or not?

If the answer is not, then we are dealing with the property rights approach
and, in the final cost sharing problem some allocations may be negative. This
is the case of Kar solution (Kar, 2002).

We consider the second case, the non-property rights approach, so we allow
agents to use other agent’s locations. Then, the corresponding associated
cooperative game is monotonic (it cannot be less expensive to add agents to
a coalition) and therefore, cost shares should be non-negative. In this non-
property rights approach the cooperative game is defined in the following
way:

Given a coalition S ⊆ N,

v(S) = min {Cm(T ) : S ⊆ T ⊆ N}

where Cm(T ) is the minimal cost in the problem (Tω,C|T ).

The core associated to a mcst problem is then defined by:

co(Nω,C) =

{
α ∈ Rn :

∑
i∈S

αi ≤ v(S), ∀S ⊆ N,
∑
i∈N

αi = v(N) = Cm

}
.

It is clear that any allocation in the core satisfies individual rationality, a
minimal requirement that any solution concept must fulfill:

Axiom 1. Individual Rationality (IR): Given a mcst (Nω,C), an allocation
α = (α1, α2, . . . , αn) is said to be individually rational if, for all i ∈ N,

αi ≤ cii.

Associated to a mcst problem (Nω,C), the irreducible cost matrix 8 C∗ is
constructed as:

c∗ij = max
{
ci′j′ : (i′, j′) ∈ τmij

}
8 This matrix is used in order to define the Folk solution (Bergantiños and Vidal-Puga,

2007), and as an intermediate step to obtain the Cycle-complete solution (Trudeau, 2012).
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where τmij is the network formed by the nodes in the unique path between
i and j in the minimum cost spanning tree m. Now, by using matrix C∗

instead of C, a new cooperative game is defined in an analogous way, that
we denote by v∗. It is immediate to note that

∅ 6= co(Nω,C
∗) ⊆ co(Nω,C).

Some important properties related to the irreducible cost matrix are listed
below.

Properties of the irreducible cost matrix (Bergantiños and Vidal-Puga, 2007).

• v∗(N) = v(N)

• c∗ij ≤ cij, for all i, j ∈ N.

• v∗ is concave, that is, for all S, T ⊂ N and i ∈ N such that S ⊂ T and
i /∈ T,

v∗(S ∪ {i})− v∗(S) ≥ v∗(T ∪ {i})− v∗(T ).

• v∗(S ∪ {i})− v∗(S) = minj∈S∪{i}{c∗ij}, for all S ⊂ N and i ∈ N, i /∈ S.

From these properties we obtain the following result that establishes a
lower bound in what each individual should be charged if the proposed solu-
tion is in the irreducible core.

Proposition 1. Given a mcst problem (Nω,C)

α ∈ co(Nω,C
∗) ⇒ αi ≥ min{cik, k ∈ N}

Proof. Let us consider α ∈ co(Nω,C
∗). Then,

v(N) =
∑
k∈N

αk = v∗(N) = v∗(N \ {i}) + min
k∈N
{c∗ik}

and core conditions imply∑
k∈N, k 6=i

αk ≤ v∗(N \ {i}) =
∑
k∈N

αk −min
k∈N
{c∗ik},
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so mink∈N{c∗ik} ≤ αi. Now, it is immediate to observe that the minimum
cost of each individual coincides in the original and in the irreducible cost
matrices. This fact completes the proof.

In what follows we will denote by ci∗ the minimum connection cost of
individual i,

ci∗ = min
k∈N
{cik}

In order to illustrate our previous concepts, we will conclude this section
with an example.

Example 1. Let us consider the mcst problem defined by N = {1, 2, 3} and
the cost matrix

C =
1 4 2
4 10 5
2 5 20

where the main diagonal refers to the connection cost to the source for each
agent. The minimum cost spanning tree is given by function m defined as:

m(1) = ω m(2) = 1 m(3) = 1; Cm = c11 + c12 + c13 = 7,

2

↘

1 −→ ω

↗

3

The irreducible cost matrix is

C∗ =
1 4 2
4 4 4
2 4 2

The monotone cooperative game associated to the mcst problem is defined by
the following characteristic function:

v({1}) = 1, v({2}) = 5, v({3}) = 3, v({1, 2}) = 5,
v({1, 3}) = 3, v({2, 3}) = 7, v({1, 2, 3}) = 7.
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The cooperative game associated to the irreducible matrix in the mcst problem
is defined by the following characteristic function:

v∗({1}) = 1, v∗({2}) = 4, v∗({3}) = 2, v∗({1, 2}) = 5,
v∗({1, 3}) = 3, v∗({2, 3}) = 6, v∗({1, 2, 3}) = 7.

Table 1 presents the result of applying some usual sharing rules in this mcst
problem.9

α1 α2 α3

Proportional 7/31 70/31 140/31
Egalitarian 7/3 7/3 7/3
Constrained Egalitarian 1 3 3
Bird 1 4 2
Folk 1 4 2

Table 1: Proposals given by rules with data in Example 1.

Remark 2. Note that under the Proportional proposal, the first individual is
allocated an amount below her minimum cost, α1 < minj∈N c1j. As we have
seen, this minimum cost should be a lower bound on what every individual
must pay, and it will play an important role in our discussion.

Also note that the Egalitarian, the Constrained Egalitarian and the Pro-
portional proposals don’t belong to the core co(Nω,C).

2.2. Claims problems

Given a finite set of agents N = {1, 2, . . . , n} , a conflicting claims problem
appears when some amount (a surplus, or a cost) should be distributed among
a the agents, who claim more than the available endowment. Formally, a
conflicting claims problem is defined as a vector (E, r) ∈ R+ × Rn

+, where

9 Note that the Egalitarian rule allocates a payment to the first agent, α1, greater than
the cost of her direct connection to the source. This allocation is not individually rational.
To avoid this problem, in some related situations, the notion of Constrained Egalitarian
solution has been defined. The idea is to make the cost sharing as egalitarian as possible,
restricted to no one pays more than what is “admissible” for her: the cost to be directly
connected to the source.
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E denotes the endowment and r is the vector of agents’ claims, ri, for each
i ∈ N, such that the agents’ aggregate demand is higher than the endowment,∑
i∈N

ri ≥ E. It is important to note that the claim ri is the maximum amount

individual i can be allocated.

A claims rule ϕ is a function that associates to each claims problem a
distribution of the total endowment among the agents (efficiency), such that
no-agent is allocated neither a negative amount (non-negativity) nor more
than her claim (claim-boundedness):

0 ≤ ϕi(E, r) ≤ ri ,

n∑
i=1

ϕi(E, r) = E.

Many solution concepts have been proposed in the literature on claims
problems. Apart from the Proportional rule (P ), we must mention the Con-
strained Equal Awards (CEA), the Constrained Equal Losses (CEL), the
Talmudian (T ), or the Random Arrival (RA), rules.10

Given a claims problem (E, r), we can define its dual problem by consid-
ering the losses the agents have with respect to their claims. Let R denote the
sum of the agents’ claims, R =

∑
i∈N

ri, and L the total loss to be distributed

among the agents with respect to the aggregate claims, L = R−E. Given a
claims rule ϕ, its dual rule ϕd (Aumann and Maschler, 1985) shares losses in
the same way that ϕ shares gains:

ϕd
i (E, r) = ri − ϕi(L, r) i = 1, 2, . . . , n.

The CEA and CEL rules are dual of each other, whereas the Proportional
and Talmudian rules are self-dual, ϕd = ϕ.

3. A claims problem associated to a mcst problem.

To each mcst problem (Nω,C), Nω = {1, 2, . . . , n}, C = (cij) symmetric
matrix, a claims problem may be associated in a natural way by considering

10 For formal definitions, properties and references see, for instance, Moulin (2002) and
Thomson (2003). In order to facilitate the reading of the paper, definitions of these
solutions are included in Appendix 1.
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the pair (E, r) defined by:

r ≡ (c11, c22, . . . , cnn), E ≡ Cm

Under this construction, claims are the individuals’ costs to get the source
directly, that is the maximum amount they can be allocated in the sharing
of the common cost, and E reflects the total cost of the mcst. Note that by
construction of m, it is satisfied that

∑n
i=1 ri ≥ E, and the claims problem

is well defined.

Remark 3. In this context, the claim-boundedness property coincides with
individual rationality (Axiom 1) of the provided allocation, so claims rules
always define an individually rational cost sharing of Cm.

Furthermore, it must be noticed that in this model, as with the Propor-
tional solution for mcst problems, we only take into account the individuals’
costs of connecting directly to the source ω, and other cost connections are
not considered. The same thing happens when the proportional solution for
mcst problems is defined.

We can now apply claims rules to the induced conflicting claims problem
(E, r) and obtain allocations of the minimum cost Cm. To illustrate this fact,
in Example 1 we obtain (E, r) = (7, (1, 10, 20)). Table 2 summarizes the
results of applying the main claims rules.

α1 α2 α3

P 7/31 70/31 140/31
CEA 1 3 3
CEL 0 0 7
T 2/4 13/4 13/4
RA 1/3 10/3 10/3

Table 2: Proposals given by claims rules with data in Example 1.

It must be noticed that none of these solutions belongs to the core of the
cooperative game associated to the mcst problem. This drawback leads us
to define a new claims problem associated to a mcst.

A question arises at this point: is the above mentioned drawback caused
by the choice of the claims vector, ri = cii? It could be checked that other
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natural reference points neither provide allocations in the core. For instance,
if we choose ri = v(i), or ri = v∗(i), the obtained allocations do not belong
to the core. In view of this fact, we consider two alternative approaches to
distribute the total minimum cost Cm :

• First we consider that each agent is initially allocated her maximum
possible cost cii. That’s why we call this model the pessimistic ap-
proach. Then, the savings obtained throughout cooperation are dis-
tributed.

• The second model proposes that each agent pays initially her minimum
cost (we call this situation the optimistic approach). The remaining
cost is then distributed among the agents.

Next subsections develop these approaches.

3.1. The pessimistic claims problem: sharing the benefits of co-
operation.

We consider that, as in the previous section, each individual takes into
account her direct cost to the source, cii. Then, under no cooperation, the
total cost of connecting individuals to the source is Cω =

∑
i∈N cii. If indi-

viduals cooperate, they can connect at the minimal cost Cm. Then, the mcst
problem can be seen as the way of sharing the benefits from cooperation
Ep ≡ Cω − Cm.

Definition 1. Given a claims vector r, ri ≥ 0,
∑

i∈N ri ≥ Ep, and a claims
rule ϕ(·, ·), we associate the following allocation to the mcst problem:

(αϕ
p )i = cii − ϕi(Ep, r) i = 1, 2, . . . , n.

We denote by αϕ
p the sharing rule so defined.

Now we need to choose each individual claim ri in order to apply a claims
rule. Note that the proposal given by such a claims rule is the benefit from
the status quo point, and the maximum benefit of an individual is just her
claim, that is, for all i the maximum value for αi is cii − ri. So, if we want
the provided allocation to be in the irreducible core then, after Proposition
1, we know that

αi = cii − ϕi(Ep, r) ≥ ci∗ ⇒ ri ≤ cii − ci∗ for all i ∈ N.

12



Moreover, as (Ep, r) must be a claims problem,
∑

i∈N ri ≥ Ep = Cω −Cm. A
sufficient condition to obtain this inequality is by considering cii− cim(i) ≤ ri
and then

cii − cim(i) ≤ ri ≤ cii − ci∗ for all i ∈ N.

If the lower bound is taken as the claims vector, ri = cii − cim(i), then
the claims problem (Ep, r) is degenerate, Ep =

∑
i∈N ri, and any claims rule

proposes the solution ϕi(Ep, r) = ri, that is αi = cim(i) which coincides with
the Bird solution11 of the mcst problem.

In the remaining of the section we will use the upper bound as the claims
vector. We will name the residual claim of individual i to the maximum
amount si she can gain from cooperation,

si ≡ cii − ci∗ for all i ∈ N.

and we call (Ep, s) the pessimistic claims problem associated to the mcst
problem. In order to observe the allocations provided by different claims
rules, let us observe the following example.

Example 2. Let us consider the mcst problem defined by N = {1, 2, 3} and
the cost matrix

C =
4 1 2
1 10 3
2 3 20

The minimum cost spanning tree is given by function m defined as:

m(1) = ω m(2) = 1 m(3) = 1; Cm = c11 + c12 + c13 = 7,

2

↘

1 −→ ω

↗

3

11 It is possible that there exist several minimum cost trees. In this case, we consider
the Bird solution associated to one of them, say m. Formally, the Bird solution is defined
as an average of the trees associated with Prim’s algorithm.
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The monotone cooperative game associated to the mcst problem is defined by
the following characteristic function:

v({1}) = 4, v({2}) = 5, v({3}) = 6, v({1, 2}) = 5,
v({1, 3}) = 6, v({2, 3}) = 7, v({1, 2, 3}) = 7.

And, finally, the cooperative game associated to the irreducible matrix in the
mcst problem is defined by the following characteristic function:

v∗({1}) = 4, v∗({2}) = 4, v∗({3}) = 4, v∗({1, 2}) = 5,
v∗({1, 3}) = 6, v∗({2, 3}) = 6, v∗({1, 2, 3}) = 7.

Table 3 presents the result of applying some sharing rules in mcst problems.

α1 α2 α3

Proportional 28/34 70/34 140/34
Egalitarian 7/3 7/3 7/3
Bird 4 1 2
Folk 13/6 13/6 16/6

Table 3: Proposals given by rules with data in Example 2.

In order to apply our pessimistic model, we first compute the benefits
of cooperation Ep = Cω − Cm = 27. On the other hand, c∗ = (1, 1, 2), so
s = (3, 9, 18). Table 4 shows the results obtained by applying different claims
rules, (αϕ

p )i = cii − ϕi(27, (3, 9, 18)).

α1 α2 α3

P 13/10 19/10 38/10
CEA 1 1 5
CEL 2 2 3
T 2 2 3
RA 2 2 3

Table 4: Proposals given by claims rules with data in Example 2.

Remark 4. Note that, in this example, the proposals given by CEA, CEL,
Talmudian, or Random Arrival rules agree with the Folk solution in that
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individuals 1 and 2 should pay the same sharing of the total cost. However,
in these cases, the agents with lower si take more advantage from cooperation,
especially in the CEA proposal.

3.2. The optimistic claims problem: distributing the remaining
cost.

Now, instead of initially considering the cost cii of connecting each agent
directly to the source, we use ci∗ , the minimal connection cost; that is, the
agent would choose her cheapest link. Then we assume that each individual
pays her corresponding minimum amount ci∗ , so the total amount paid is
Cmin =

∑
i∈N ci∗ . Then, the remaining cost, Eo = Cm − Cmin is distributed

accordingly to some claims rule.

Definition 2. Given a claims vector r, ri ≥ 0,
∑

i∈N ri ≥ Eo, and a claims
rule ϕ(·, ·), we associate the following allocation to the mcst problem:

(αϕ
o )i = ci∗ + ϕi(Eo, r) i = 1, 2, . . . , n.

We denote by αϕ
o the sharing rule so defined.

We can argue as in the pessimistic model in order to choose the particular
conflicting claims problem (Eo, s) defined by:

si ≡ cii − ci∗ , s ≡ (s1, s2, . . . , sn), Eo ≡ Cm − Cmin.

Obviously, this conflicting claims problem is well defined, since
∑n

i=1 si ≥ Eo.
That is, we associate to the mcst problem (Nω,C), the allocation:

(αϕ
o )i = ci∗ + ϕi(Eo, s) i = 1, 2, . . . , n.

Example 3. With the data in Example 2, c∗ = (1, 1, 2), so Eo = 3, and
s = (3, 9, 18). Table 5 shows the results obtained by applying this model to
the problem in Example 2.

3.3. Duality

If we observe the solutions in Tables 4 and 5, for the mcst problem in
Example 2, and denote by αϕ

p and αϕ
o the allocations provided, respectively,

by the pessimistic and optimistic models (both with claims si = cii−ci∗), then
the pessimistic allocation associated to ϕ coincides with the optimistic one
associated to the dual claims rule ϕd. So, with both proposals we obtain the
same family of allocations. Next Proposition proves this fact in the general
case.
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α1 α2 α3

P 13/10 19/10 38/10
CEA 2 2 3
CEL 1 1 5
T 2 2 3
RA 2 2 3

Table 5: Proposals given by claims rules with data in Example 2.

Proposition 2. Given a mcst problem (Nω,C), for any claims rule ϕ, if we
consider the claims vector s, si = cii − ci∗ , for all i ∈ N, then

αϕ
p (Nω,C) = αϕd

o (Nω,C).

Proof. We know that

(αϕ
p )i = cii − ϕi(Ep, s), Ep =

∑
i∈N

cii − Cm, si = cii − ci∗ .

On the other hand,

ϕi(Ep, s) = si − ϕd
i

(∑
i∈N

si − Ep, s

)
= si − ϕd

i (Eo, s).

Then,
(αϕ

p )i = cii − ϕi(Ep, s) = cii −
(
si − ϕd

i (Eo, s)
)

=

= ci∗ + ϕd
i (Eo, s) = (αϕd

o )i.

4. Core selection

Although in Examples 1 and 2 the obtained allocations using claims rules
belong to the core of the monotone cooperative game (N, v) associated to
the mcst problem, this fact is not always true.12

12 An example with n = 7 individuals is provided in Appendix 2.
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As shown in the next result (the obvious proof is omitted) these solutions
satisfy the stand alone condition (Axiom 1 ) and the lower bound that de-
termines the minimum each individual must pay in order to ensure that the
cost allocation belongs to the irreducible core.

Proposition 3. For any mcst problem (Nω,C), any claims rule ϕ, and any
claims vector r,

ci∗ ≤ (αϕ
p (Nω,C))i ≤ cii,

ci∗ ≤ (αϕ
o (Nω,C))i ≤ cii.

A way to obtain allocations in the core of the monotone cooperative game
(N, v) associated to the mcst problem consists of analyzing the relationship
between this cooperative game and the one defined by O’Neill in claims
problems.

4.1. Relationship between the cooperative games

Associated to a conflicting claims problem (E, r) the O’Neill ’s cooperative
game is defined by:

u(S) = max

{
E −

∑
i/∈S

ri, 0

}

Is it possible to find a claims vector r such that the monotone cooperative
game associated to the network (Nω,C) coincides with the O’Neill ’s cooper-
ative game of the claims problem (Cm, r)? The next example shows that in
general the answer is negative.

Example 4. Let us consider the mcst problem defined by N = {1, 2, 3} and
the cost matrix

C =
1 0 2
0 1 2
2 2 2

There exist several possibilities for choosing the mcst, all of them with the
cost Cm = 3. We may choose, for instance, m(1) = ω, m(2) = 1, m(3) = 1.
The minimal cost connection for each agent is c1∗ = 0, c2∗ = 0, c3∗ = 2. The
monotone cooperative game is given by the following characteristic function:

v({1}) = 1, v({2}) = 1, v({3}) = 2, v({1, 2}) = 1,

17



v({1, 3}) = 3, v({2, 3}) = 3, v({1, 2, 3}) = 3.

It is easy to observe that there is not r = (r1, r2, r3) such that u(S) = v(S) for
all S ⊆ N, where u(S) is the characteristic function associated to the claims
problem (Ep, r). On the one hand, the following relation must be fulfilled:
r1 + r2 = 1. But we also obtain r1 = 0 and r2 = 0, which is not possible.

In this mcst problem, Bird’s and Folk solutions coincide, B(Nω,C) =
F (Nω,C) = (0.5, 0.5, 2). It must be noticed that Ep = Eo = 1 and s =
(1, 1, 0), so for any claims rule ϕ both the pessimistic and optimistic alloca-
tions also coincide with this solution, αϕ

p (Nω,C) = αϕ
o (Nω,C) = (0.5, 0.5, 2),

that belongs to the core of the monotone cooperative game.

Then, instead of looking for a claims vector such that both cooperative
games coincide, we explore conditions that relate their characteristic func-
tions with the costs of directly connecting each individual to the source. In
so doing, the following result provides a sufficient condition for the allocation
defined by the pessimistic model to be in the core.

Proposition 4. If there is a claims vector r, with
∑

i∈N ri ≥ Ep, such
that for all S ⊆ N,

∑
i∈S cii ≤ u(S) + v(S), then for any claims rule ϕ,

αϕ
p (Nω,C) = cω−ϕ(Ep, r) belongs to co(Nω,C), where cω = (c11, c22, . . . , cnn) .

Proof. For any claims rule ϕ the next condition is satisfied∑
i∈S

ϕi(Ep, r) ≥ u(S) for all S ⊆ N.

Then, if we consider αi = cii − ϕi(Ep, r) for all i ∈ N,∑
i∈S

αi =
∑
i∈S

cii −
∑
i∈S

ϕi(Ep, r) ≤
∑
i∈S

cii − u(S) ≤ v(S)

and αϕ
p (Nω,C) ∈ co(Nω,C).

Next result shows that a claims vector r fulfilling the conditions in Propo-
sition 4 always exist.

Proposition 5. Given a mcst problem (Nω,C) there exists a claims vector
r, with

∑
i∈N ri ≥ Ep, such that

∑
i∈S cii ≤ u(S) + v(S), where u(S) is the

characteristic function associated to the claims problem (Ep, r).
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Proof. For each i ∈ N, consider ri = cii − cim(i). Then,
∑

i∈N ri = Ep, and
for all S ⊆ N,

u(S) =
∑
i∈S

ri =
∑
i∈S

cii −
∑
i∈S

cim(i).

As the solution, αi = cim(i), belongs to the core,
∑

i∈S cim(i) ≤ v(S) and then

u(S) + v(S) ≥
∑
i∈S

cii,

the required inequality.

Previous propositions lead to the following conclusion.

Theorem 1. Given a mcst problem (Nω,C) there exists a claims vector r,
with

∑
i∈N ri ≥ Ep, such that the allocations provided by the pessimistic or

the optimistic model, by using the claims vector r, belong to the core of the
monotone cooperative game.

Finally, in the next result we show sufficient conditions defined in terms
of the mcst cost matrix, ensuring that the allocation provided by αϕ

p belong
to the core when the claims vector is s, with si = cii − ci∗, for all i ∈ N.

Theorem 2. Let (Nω,C) a mcst problem such that for all S ⊆ N :

v(S) ≥
∑
i∈S

cii + Cm −
∑
i∈S

ci∗ −
∑
i/∈S

cii. (1)

Then, for any claims rule ϕ, the allocations provided by the pessimistic model,
αϕ
p (Nω,C) = cω − ϕ(Ep, s), belong to the core of the monotone cooperative

game.

Proof. It is sufficient to prove that condition in equation (1) implies the
condition in Proposition 4. On the one hand, for all S ⊆ N,

u(S) = max

{
Ep −

∑
i/∈S

si, 0

}
= max

{
Cω − Cm −

∑
i/∈S

(cii − ci∗), 0

}
=

= max

{∑
i/∈S

cii +
∑
i∈S

ci∗ − Cm, 0

}
.
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Then,

u(S) + v(S) ≥
∑
i/∈S

cii +
∑
i∈S

ci∗ − Cm + v(S) ≥

and by equation (1)

≥
∑
i∈S

cii − v(S) + v(S) =
∑
i∈S

cii.

By applying duality, we obtain the corresponding result for the optimistic
model. We denote by c∗ = (c1∗, c2∗, . . . , cn∗) .

Theorem 3. Let (Nω,C) a mcst problem such that for all S ⊆ N :

v(S) ≥
∑
i∈S

cii + Cm −
∑
i∈S

ci∗ −
∑
i/∈S

cii.

Then, for any claims rule ϕ, the allocations provided by the optimistic model,
αϕ
o (Nω,C) = c∗ + ϕ(Eo, s), belong to the core of the monotone cooperative

game.

4.2. Other properties

Apart from the important property of core selection (discussed in the
previous section) other properties have been analyzed in the literature about
mcst problems.

The properties of Symmetry and Positivity are always satisfied by our
pessimistic and optimistic allocations, independently13 of the claims rule be-
ing considered.
Symmetry: A solution α for mcst problems is said to satisfy Symmetry if,
for each problem (Nω,C), if individuals i, j ∈ N are such that cik = cjk, for
all k ∈ N, then

αi(Nω,C) = αj(Nω,C).

Positivity: A solution α for mcst problems is said to satisfy Positivity if,
for each problem (Nω,C), and all i ∈ N, then

αi(Nω,C) ≥ 0.

13 In order to obtain symmetry, this condition must be required to the claims rule. Most
of claims rules satisfy symmetry.
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It is immediate to observe that the pessimistic allocation fulfills both
properties.

Proposition 6. The pessimistic cost allocation αϕ
p (Nω,C) = cω − ϕ(Ep, s),

satisfies Symmetry and Positivity for every claims rule ϕ satisfying symme-
try.

The Cost Monotonicity property (considered a compelling requirement)
is satisfied for some claims vector r, but it can not be ensured for r = s. This
property is stated as follows:

Cost Monotonicity: A solution α formcst problems is said to satisfy Cost
Monotonicity if, for any pair of problems (Nω,C), (Nω,C

′), and i, j ∈ N :

cij < c′ij and clk = c′lk ∀ (l, k) 6= (i, j)⇒ αi(Nω,C) ≤ αi(Nω,C
′).

Proposition 7. A claims vector r exists, with
∑

i∈N ri ≥ Ep, such that the
pessimistic cost allocation αϕ

p (Nω,C) = cω − ϕ(Ep, r), satisfies Cost Mono-
tonicity for every claims rule ϕ.

Proof. It is sufficient to consider the claims vector in Proposition 5. Then,
the pessimistic cost allocation always coincide with the allocation αi = cim(i),
that fulfills Cost Monotonicity.

5. Final comments

The current paper has explored a bridge between two independent prob-
lems that have been extensively analyzed in the literature: minimum cost
spanning tree and conflicting claims problems. Specifically, it presents two
new ways of distributing the cost of a network among the agents. The first
one (that we call the pessimistic model) takes the cost to the source as the de-
parture point. Then, it distributes the gains of cooperation. The second one
(named optimistic model) departs from each agent’s minimum connection
cost, and it distributes the additional cost. We prove that these approaches
are dual of each other.

The benefit, or the additional cost, are distributed among the individuals
by using claims rules. Hereby, once the endowment and the claims vector
are determined, a particular claims rule is applied. In this context, we have
shown that it is possible to find a claims vector such that, for any claims
rule, the provided allocation fulfills core selection, symmetry, positivity, and
claims monotonicity.
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Kar, A., 2002. Axiomatization of the shapley value on minimum cost span-
ning tree games. Games and Economic Behavior 38 (2), 265–277.

Moulin, H., 2002. Axiomatic cost and surplus sharing. In Arrow, A. K., and
Sen, K. (eds), Handbook of social choice and welfare. Vol. 1. Elsevier.
North Holland, Amsterdam. pp. 289–357.

Prim, R. C., 1957. Shortest connection network and some generalization. Bell
System Tech. J. 36, 1389–1401.

Thomson, W., 2003. Axiomatic and game-theoretic analysis of bankruptcy
and taxation problems: a survey. Mathematical Social Sciences 45 (3),
249–297.

Trudeau, C., 2012. A new stable and more responsive cost sharing solution
for minimum cost spanning tree problems. Games and Economic Behavior
75 (1), 402–412.

22



APPENDIX 1. SOLUTIONS

Networks solutions

• Bird solution (Bird, 1976) If there is only one mcst m, each agent
pays the link she uses to be connected to the source:

αi = cim(i)

It is possible the existence of several spanning trees m1,m2, . . . ,mk with
the same minimum cost Cm. In this case, the Bird solution is defined as
the average of the Bird costs associated to any minimum cost spanning
tree:

αi =

∑k
r=1 cimr(i)

k
.

• Folk solution (Bergantiños and Vidal-Puga, 2007) This solution is
defined as:

Fi = Shi(N, v
∗).

where v∗ is the cooperative game associated to the irreducible cost ma-
trix C∗.

Claims solutions

• Proportional solution, P . For each (E, r) ∈ B and each i ∈ N ,

Pi(E, r) = λri,

where λ =
E∑

i∈N
ri
.

• Constrained Equal Awards solution, CEA. For each (E, r) ∈
B and each i ∈ N ,

CEAi(E, r) ≡ min {ri, µ} ,

where µ is chosen so that
∑
i∈N

min {ri, µ} = E.

• Constrained Equal Losses solution, CEL. For each (E, r) ∈ B
and each i ∈ N,

CELi(E, r) ≡ max {0, ri − µ} ,

where µ is chosen so that
∑
i∈N

max {0, ri − µ} = E.
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• Talmudian solution, T . For each (E, r) ∈ B and each i ∈ N,

if E ≤
(∑

i∈N ri
)

2
, Ti(E, r) ≡ CEAi

(
E,

r

2

)
; otherwise,

Ti(E, r) =
ri
2

+ CEL

(
E −

(∑
i∈N ri

)
2

,
r

2

)
.

• Random arrival solution, RA. For each, (E, r) ∈ B and each
i ∈ N,

RAi(E, r) ≡ Shi(u) u(S) = max

{
E −

∑
k/∈S

rk, 0

}

APPENDIX 2. Example whit proposals not in the core

Example 5. Let us consider the mcst with n = 7 individuals defined by the
cost matrix

C =

1 0 1 2 3 3 3
0 1 1 2 3 3 3
1 1 1 2 3 3 3
2 2 2 2 3 3 3
3 3 3 3 3 2 2
3 3 3 3 2 3 1
3 3 3 3 2 1 3

There exist several trees with minimum cost Cm = 10. For instance,

m(1) = ω; m(2) = 1; m(3) = 2; m(4) = 3; m(5) = 4; m(6) = 7; m(7) = 6.

The vector of direct costs to the source is

cω = (c11, c22, . . . , c77) = (1, 1, 1, 2, 3, 3, 3).

The vector of minimum connection costs is

c∗ = (c1∗ , c2∗ , . . . , c7∗) = (0, 0, 1, 2, 2, 1, 1)
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and then
s = (1, 1, 0, 0, 1, 2, 2), where si = cii − ci∗ .

Moreover, Cω = 14 and Ep = Cω − Cm = 4. So, the claims problem to be
solved is (Ep, s) = (4, (1, 1, 0, 0, 1, 2, 2)), and the corresponding solution to the
mcst problem is

αi = cii − ϕi(Ep, s).

Then, if we consider ϕ = CEA, the proposed sharing of Cm is

αCEA = (0.2, 0.2, 1, 2, 2.2, 2.2, 2.2).

This allocation does not belong to the core of the monotone cooperative game
associated to the mcst problem since

αCEA
6 + αCEA

7 = 4.4 > v(6, 7) = 4.

A similar situation appears if we set ϕ = CEL, or ϕ = P, the proportional
claims rule, in which cases we obtain, respectively

αCEL = (0.6, 0.6, 1, 2, 2.6, 1.6, 1.6).

αP = (0.43, 0.43, 1, 2, 2.43, 1.855, 1.855).

None of them belong to the core.14

14 Although none of these solutions belong to the core, they provide reasonable sharings
of the minimum cost Cm.
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