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Generalized three-sided assignment markets:
consistency and the core∗

Ata Atay† Francesc Llerena‡ Marina Núñez§

December 12, 2014

Abstract

A class of three-sided markets (and games) is considered, where value is gen-
erated by pairs or triplets of agents belonging to different sectors, as well as by
individuals. For these markets we analyze the situation that arises when some
agents leave the market with some payoff. To this end, we introduce the derived
market (and game) and relate it to the Davis and Maschler (1965) reduced game.
Consistency with respect to the derived market, together with singleness best and
individual anti-monotonicity axiomatically characterize the core for these gener-
alized three-sided assignment markets. These markets may have an empty core,
but we define a balanced subclass, where the worth of each triplet is defined as
the addition of the worths of the pairs it contains.

Keywords Multi-sided assignment market · Consistency · Core · Nucleolus

JEL Classification C71 · C78

1 Introduction

We consider a market with three-sectors where value is obtained by means of coalitions
formed by agents of different sectors, that is, either triplets, pairs or individuals. Once
the valuations of all these essential coalitions are known, a coalitional game is defined,
the worth of an arbitrary coalition being the maximum worth that can be obtained by
a partition of this coalition into essential ones.

∗The authors acknowledge the support from research grant ECO2011-22765 (Ministerio de Ciencia
e Innovación and FEDER), 2014SGR40 and 2014SGR631 (Generalitat de Catalunya).
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Think, for instance, of one sector formed by firms providing landline telephone and
internet service, on the second sector firms providing cable TV and on the third sector
firms providing mobile telephone service. A triplet formed by one firm of each sector can
achieve a profit by pooling their costumers and offering them more services, but also a
firm alone or a pair of firms of different sectors can attain some value. Another example,
somehow inspired by Billera (1981), would consist of firms manufacturing coffee on one
sector, and others producing milk and sugar, respectively, on the two other sectors.

These markets have already been considered in Tejada (2013) to see that agents of
different sectors do not need to be complements and agents of the same sector do not
need to be substitutes. Clearly, this class of coalitional games includes the classical
three-sided assignment games of Quint (1991) where value is only generated by triplets
of agents belonging to different sectors. Another possible generalization of three-sided
assignment games would be just assigning a reservation value to each individual and
assuming that whenever an agent does not form part of any triplet then this agent
can attain his/her reservation value, in the way Owen (1992) generalizes the classical
two-sided assignment game of Shapley and Shubik (1972).

The difference between the generalized three-sided markets that we consider and
the three-sided assignment markets with individual reservation values is that when an
agent does not form part of a triplet in the optimal partition (that we will name optimal
matching), apart from being alone in an individual coalition, he/she may form part of
a two-player coalition with some agent belonging to a different sector and, in that case,
the value of this two-player coalition may be larger than the addition of the individual
reservation value of the two agents. As a consequence, ours is a wider class since
it includes games that are not strategically equivalent to a Quint (1991) three-sided
assignment game. Nevertheless, as in the classical three-sided assignment games, these
games may not be balanced (the core may be empty).

We restrict to the three-sided case to keep notation simpler, but all the arguments
and results on the present paper can be straightforwardly extended to the multi-sided
case.

In this generalized class of three-sided assignment markets, we introduce a reduced
market, the derived market at a given coalition and payoff vector, which represents the
situation in which members outside the coalition leave the game with a predetermined
payoff and the agents that remain in the market reevaluate their coalitional worth taking
into account the possibility of cooperating with the agents outside. In the case of only
two sectors, this reduced market coincides with the derived market defined by Owen
(1992) for two-sided assignment markets with agents’ reservation values.

Our first result is that if we take a core allocation, the derived assignment game
at any coalition is the superadditive cover of the Davis and Maschler (1965) reduced
game at this payoff vector and coalition. This result extends the result of Owen for the
two-sided case and allows us to prove that, in the class of balanced generalized three-
sided assignment markets, both the core and the nucleolus are consistent with respect
to the derived assignment game. Moreover, making use of derived consistency and two
additional axioms, singleness best and individual anti-monotonicity, we provide an ax-
iomatic characterization of the core on the domain of generalized three-sided assignment
markets and show the independence of the three axioms. Axiomatic characterizations
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of the core on the domain of two-sided assignment markets are given in Sasaki (1995)
and Toda (2003, 2005). Most of them make use of some monotonicity property that
is not satisfied by the core in the three-sided case. The reason is that when we raise
the value of a triplet, a pair or an individual in a three-sided market, the new market
may fail to have core elements. This is why the previous characterizations cannot be
straightforwardly extended to the three-sided case.

The last part of the paper is devoted to the study of a subclass of balanced generalized
three-sided assignment markets. Besides non-negativeness, two additional properties
define this subclass: a) the worth of a triplet is the addition of the worths of the three
pairs that can be formed with its members and b) there is an optimal partition such
that, when restricted to each pair of sectors, is also optimal for the related two-sided
market. Given any market in this subclass, we construct a core element from any three
selected core elements, one from each of the three associated two-sided markets.

This subclass of generalized three-sided assignment markets is inspired by the bal-
anced subclass introduced by Quint (1991) and the supplier-firm-buyer market of Stuart
(1997), where also the value of a triplet is obtained by the addition of the value of some
of the pairs that can be formed with its elements. However, in their classes, such a pair
cannot attain its value if not matched with an agent of the remaining sector.

The paper is organized as follows. The model is described in Section 2. The defi-
nition of the derived market and game and their main properties are given in Section
3. The derived consistency of the core and the nucleolus is proved in Section 4, and an
axiomatic characterization of the core is presented in Section 5. Section 6 introduces
the aforementioned subclass of balanced generalized three-sided assignment markets.

2 The model

In this section, we introduce a generalized three-sided assignment market and its corre-
sponding assignment game.

Let U1, U2 and U3 be three countable disjoint sets. A generalized three-sided assign-
ment market γ = (M1,M2,M3; v) consists of three different sectors, M1 ⊆ U1, M2 ⊆ U2,
and M3 ⊆ U3 with a finite number of agents each, such that N = M1 ∪M2 ∪M3 6= ∅,
and a valuation fuction v. The essential coalitions in this market are the ones formed
by exactly one agent of each sector and all their possible subcoalitions. Let us denote
by B this set of essential coalitions,

B = {{i, j, k} | i ∈M1, j ∈M2, k ∈M3} ∪ {{i, j} | i ∈Mr, j ∈Ms, r, s ∈ {1, 2, 3}, r 6= s}
∪ {{i} | i ∈M1 ∪M2 ∪M3}.

The valuation function v, from the set B to the real numbers, R, associates to each
essential coalition a real number v(S). The corresponding value v(S) for each subset
S ∈ B is called the worth of the essential coalition.

Given a generalized three-sided assignment market γ = (M1,M2,M3; v), for each
non-empty coalition S ⊆ N = M1 ∪M2 ∪M3 we can define a submarket γ|S = (M1 ∩
S,M2∩S,M3∩S; v|S) where (v|S)(T ) = v(T ) for all T ∈ BS = {R ∈ B | R ⊆ S}. Notice
that if one of the sectors is empty, then this generalized three-sided assignment market
is a two-sided assignment market with reservation values as introduced in Owen (1992).
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Given ∅ 6= S ⊆ N , a matching µ on S = S1 ∪ S2 ∪ S3, where S1 ⊆ M1, S2 ⊆ M2,
and S3 ⊆M3, is a partition of S in coalitions of BS. Let M(S1, S2, S3) be the set of all
possible matchings for coalition S. We define the value of coalition S at this matching as
w(S1, S2, S3;µ) =

∑
T∈µ

v(T ). A matching µ ∈M(S1, S2, S3) is optimal for the submarket

γ|S if w(S1, S2, S3;µ) = max
µ′∈M(S1,S2,S3)

{w(S1, S2, S3;µ
′)}. We denote by Mγ(S1, S2, S3)

the set of optimal matchings for the market γ|S.
Given a generalized three-sided assignment market γ = (M1,M2,M3; v), its cor-

responding generalized three-sided assignment game1 is a pair (N,wγ) where N =
M1 ∪M2 ∪M3 is the player set and the characteristic function wγ satisfies wγ(∅) = 0
and for all S ⊆ N ,

wγ(S) = max
µ∈M(S1,S2,S3)

{w(S1, S2, S3;µ)} = max
µ∈M(S1,S2,S3)

{∑
T∈µ

v(T )

}
,

where S1 = S ∩M1, S2 = S ∩M2 and S3 = S ∩M3.
Notice that the valuation function v of a generalized three-sided assignment market

can be represented by a 3-dimensional matrix A collecting the value of coalitions {i, j, k}
with i ∈ M1, j ∈ M2 and k ∈ M3, a vector Q = (q1, q2, q3) ∈ RN , qi ∈ RMi for all
i ∈ {1, 2, 3}, representing the reservation value of each agent when being alone, and one
2-dimensional matrix for each two different sectors, that represents the join reservation
value of each mixed-pair of agents in these two sectors (when not matched with another
agent of the third sector).

Example 1. Consider a generalized three-sided assignment market γ = (M1,M2,M3; v)
where M1 = {1, 2, 3}, M2 = {1′, 2′, 3′}, M3 = {1′′, 2′′, 3′′}, and v is defined by one three-
dimensional matrix A for the valuation of triplets,

A =




1′ 2′ 3′

1 3 3 3
2 3 3 3
3 3 3 3

,


1′ 2′ 3′

1 3 3 3
2 3 3 3
3 3 3 3

,


1′ 2′ 3′

1 3 3 3
2 3 3 3
3 3 3 3




1′′ 2′′ 3′′

one valuation matrix for each pair of sectors

B12 =


1′ 2′ 3′

1 1 0 1
2 1 0 0
3 0 0 0

, B13 =


1′′ 2′′ 3′′

1 0 0 1
2 1 0 0
3 0 1 0

, B23 =


1′′ 2′′ 3′′

1′ 1 0 0
2′ 0 1 0
3′ 1 0 1


and a vector of individual valuations Q = (q1, q2, q3) = (1, 0, 0; 1, 1, 0; 0, 1, 1). For in-
stance, v({1, 2′, 1′′}) = a121 = 3 while v({2, 1′′}) = b1321 = 1 and v({2′}) = q22 = 1.

1A game is a pair formed by a finite set of players N and a characteristic function r that assigns
a real number r(S) to each coalition S ⊆ N , with r(∅) = 0. The core of a coalitional game (N, r) is
C(r) = {x ∈ RN |

∑
i∈N xi = r(N),

∑
i∈S xi ≥ r(S) for all S ⊆ N}.
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Let us remark at this point that this class of generalized assignment games is “larger”
than the classical three-sided assignment games as considered for instance in Quint
(1991). We mean that, different from the case of the generalized two-sided assignment
games of Owen (1992), which are always strategically equivalent to a classical Shapley
and Shubik (1972) assignment game, a generalized three-sided assignment game is in
general not strategically equivalent to any three-sided assignment game as defined in
Quint (1991), unless v({i, j}) = v({i}) + v({j}) for all {i, j} ∈ B. From now on, we
denote by Γ3−SAG indistinctly the set of generalized three-sided assignment markets or
games.

An outcome for a generalized three-sided assignment market will be a matching and
a distribution of the profits of this matching among the agents that take part.

Given γ = (M1,M2,M3; v), a payoff vector is x ∈ RN , where xi stands for the payoff
of player i ∈ N . We write x|S to denote the projection of a payoff vector x to agents in
coalition S ⊆ N . Moreover, x(S) =

∑
i∈S xi with x(∅) = 0. A payoff vector x ∈ RN is

individually rational for γ if xi ≥ wγ({i}) for all i ∈ N , and efficient if x(N) = wγ(N).
The core of a generalized three-sided assignment market γ = (M1,M2,M3; v) is the

core of the asssociated assignment game (N,wγ), being N = M1 ∪ M2 ∪ M3. It is
straightforward to see that this core is formed by those efficient payoff vectors that
satisfy coalitional rationality for all coalitions in B,2

C(γ) = {x ∈ RM1 × RM2 × RM3 | x(N) = wγ(N), x(S) ≥ wγ(S) for all S ∈ B}.

As a consequence, given any optimal matching µ, if x ∈ C(γ), then x(S) = wγ(S) for
all S ∈ µ. Since this class is a generalization of the well-known three-sided assignment
games, the core may be empty. However, the reader may check that the core of the
game in Example 1 above is non-empty since it contains, for instance, the allocation
(1, 1, 1; 1, 1, 1; 1, 1, 1).

3 The derived market

In this section, we introduce the corresponding derived market (and game) for the
generalized three-sided assignment market.

Given any coalitional game, and given a particular distribution of the worth of the
grand coalition, we may ask what happens when some agents leave the market after being
paid according to that given distribution. The agents that remain must reevaluate the
worth of all the coalitions they can form. The different ways in which this reevaluation
is done correspond to the different notions of reduced game that exist in the literature.

Maybe the best known notion of reduced game is that of Davis and Maschler (1965),
where the remaining coalitions take into account what they could obtain by joining some
agents that have left with the condition of preserving for them the amount they have
already been paid.

2Notice that our essential coalitions are precisely the “essential” coalitions of the game (N,wγ) in
the sense of Huberman (1980).
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Definition 2 (Davis and Maschler, 1965). Given a generalized three-sided assignment
game (N,wγ), a non-empty coalition S and a payoff vector x ∈ RN\S, the Davis and
Maschler reduced game for the coalition S at x is the game (S,wS,xγ ) that is defined by

wS,xγ (T ) =


0 if T = ∅,
wγ(N)− x(N \ S) if T = S,

max
Q⊆N\S

{wγ(T ∪Q)− x(Q)} otherwise.

In general, the reduced game of a generalized three-sided assignment game is not
superadditive as the following example illustrates.

Example 3. Take again the assignment market of Example 1 and consider the coalition
S = {2, 3, 1′, 2′, 2′′, 3′′} and the core allocation x = (1, 1, 1; 1, 1, 1; 1, 1, 1). Consider also
subcoalitions T1 = {2}, T2 = {3} and T3 = {2, 3}. When computing the worth of these
subcoalitions in the reduced game for the coalition S at x, we find

wS,xγ ({2, 3}) = 1 < 2 = wS,xγ ({2}) + wS,xγ ({3}).

Thus, this game is not superadditive. This implies that the Davis and Maschler reduced
game of a generalized three-sided assignment game is in general not a generalized three-
sided assignment game.

To solve this, we introduce a new reduced generalized three-sided assignment market
(and game) that extends the derived game introduced by Owen (1992) for the two-sided
case. We will see that this notion of reduced game is closely related to the Davis and
Machler reduced game.

Definition 4. Given a generalized three-sided assignment market γ = (M1,M2,M3; v),
∅ 6= S = S1 ∪ S2 ∪ S3, S 6= N , where S1 ⊆ M1, S2 ⊆ M2, S3 ⊆ M3 and x ∈ RN\S, the
derived market at S and x is γ̂S,x = (S1, S2, S3; v̂

S,x) where

v̂S,x(T ) = max
Q⊆N\S
T∪Q∈B

{v(T ∪Q)− x(Q)} for all T ∈ BS. (1)

Then, the corresponding derived game at S and x is (S,wγ̂S,x) where for all R ⊆ S,

wγ̂S,x(R) = max
µ∈M(M1∩R,M2∩R,M3∩R)

{ ∑
T∈µ

v̂S,x(T )
}

.

Notice that to obtain the derived game, we first consider the valuation in the re-
duced situation of the essential coalitions of the submarket. The valuation of these
essential coalitions of the submarket is obtained by allowing them to cooperate only
with agents that have left but with whom they can form an essential coalition of the
initial market. In particular, when T = {i, j, k} with i ∈ S1, j ∈ S2 and k ∈ S3,
then v̂S,x({i, j, k}) = v({i, j, k}). Thus, the worth wγ̂S,x(R) in the derived game for any
coalition R ⊆ S is obtained from the valuations v̂S,x of the essential coalitions in BS by
imposing superadditivity. Hence, the derived assignment game is always a superadditive
game.
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Notice that if one of the sectors is empty, then the market is a two-sided market
(with individual reservation values) and the definition of derived game coincides with
the one given by Owen (1992) for these markets.

Given a game (N,w), its superadditive cover is the minimal superadditive game
(N, w̃) such that w̃ ≥ w. Next theorem shows that for any generalized three-sided
assignment game (N,wγ), its derived game (S,wγ̂S,x) at any coalition S and core alloca-
tion x is the superadditive cover of the corresponding Davis and Maschler reduced game
(S,wS,xγ ).

Theorem 5. Let γ = (M1,M2,M3; v) be a generalized three-sided assignment market,
N = M1 ∪M2 ∪M3, (N,wγ) the associated generalized three-sided game and x ∈ C(γ).
Then for any ∅ 6= S ( N , the derived game (S,wγ̂S,x), where γ̂S,x = (M1∩S,M2∩S,M3∩
S; v̂S,x), is the superadditive cover of the Davis and Maschler reduced game (S,wS,xγ ).

Proof. Let us write ŵ = wγ̂S,x . We have to show that ŵ is superadditive, ŵ ≥ wS,xγ and
ŵ is minimal with these two properties.

By definition, ŵ is superadditive. Now, we show that ŵ(T ) ≥ wS,xγ (T ) for all T ⊆ S.
Notice that, for all T ⊆ S there exists Q ⊆ N \ S such that

wS,xγ (T ) = wγ(T ∪Q)−
∑
l∈Q

xl

= w(T ∪Q;µ)−
∑
l∈Q

xl (2)

for some matching µ on T ∪Q. We introduce the following partition of the set of coali-
tions in µ:
I1 = {{i, j, k} ∈ µ | i ∈ T, j ∈ T, k ∈ T}
I2 = {{i, j, k} ∈ µ | i 6∈ T, j 6∈ T, k 6∈ T}
I3 = {{i, j, k} ∈ µ | i ∈ T, j ∈ T, k /∈ T}
I4 = {{i, j, k} ∈ µ | i ∈ T, j /∈ T, k /∈ T}
I5 = {{i, j} ∈ µ | i ∈ T, j ∈ T}
I6 = {{i, j} ∈ µ | i /∈ T, j /∈ T}
I7 = {{i, j} ∈ µ | i ∈ T, j /∈ T}
I8 = {{i} ∈ µ | i ∈ T}.
I9 = {{i} ∈ µ | i /∈ T}.

We write w(T ∪Q;µ) that appears in equation (2) in terms of the above partition.

w(T ∪Q;µ) =
∑

{i,j,k}∈I1

v({i, j, k}) +
∑

{i,j,k}∈I2

v({i, j, k}) +
∑

{i,j,k}∈I3

v({i, j, k})

+
∑

{i,j,k}∈I4

v({i, j, k}) +
∑
{i,j}∈I5

v({i, j}) +
∑
{i,j}∈I6

v({i, j}) (3)

+
∑
{i,j}∈I7

v({i, j}) +
∑
{i}∈I8

v({i}) +
∑
{i}∈I9

v({i}).
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Then, substitute (3) in equation (2) and distribute
∑
l∈Q

xl among the sets of the

partition.

wS,xγ (T ) = v(T ∪Q;µ)−
∑
i∈Q

xi

=
∑

{i,j,k}∈I1

v({i, j, k}) +
∑

{i,j,k}∈I2

v({i, j, k})− xi − xj − xk

+
∑

{i,j,k}∈I3

v({i, j, k})− xk +
∑

{i,j,k}∈I4

v({i, j, k})− xj − xk

+
∑
{i,j}∈I5

v({i, j}) +
∑
{i,j}∈I6

v({i, j})− xi − xj +
∑
{i,j}∈I7

v({i, j})− xj

+
∑
{i}∈I8

v({i}) +
∑
{i}∈I9

v({i})− xi.

Since x ∈ C(γ), the second, the sixth and the last term are non-positive.
Let it be v̂ = v̂S,x as defined in (1). For all t, r, s ∈ {1, 2, 3} such that r 6= s, r 6= t,

s 6= t and all i ∈Mr ∩ T , j ∈Ms ∩ T ,

v̂({i, j}) = max
k∈Q∩Mt

{v({i, j, k})− xk, v({i, j})}.

As a consequence, for all {i, j, k} ∈ I3, v({i, j, k}) − xk ≤ v̂({i, j}) and for all
{i, j} ∈ I5, v({i, j}) ≤ v̂({i, j}).

Also, for all t ∈ {1, 2, 3} and l ∈Mt ∩ T , if r, s are such that r 6= s, s 6= t and s 6= r,
then,

v̂({l}) = max
i∈Mr∩Q
j∈Ms∩Q

{v({i, j, l})− xi − xj, v({i, l})− xi, v({j, l})− xj, v({l})}.

As a consequence, for all {i, j, k} ∈ I4, v({i, j, k})−xj−xk ≤ v̂({i}); for all {i, j} ∈ I7,
v({i, j})− xj ≤ v̂({i}) and trivially v({i}) ≤ v̂({i}) for all {i} ∈ I8.

To sum up, taking into account that ŵ is superadditive by definition,

wS,xγ (T ) ≤
∑

{i,j,k}∈I1
v̂({i, j, k}) +

∑
{i,j,k}∈I3
{i,j}∈I5

v̂({i, j}) +
∑

{i,j,k}∈I4
{i,j}∈I7
{i}∈I8

v̂({i}) ≤ ŵ(T ).

Now, we only need to show that ŵ is the minimal superadditive game satisfying the
above inequality. First, consider {k} ∈ BS. Then,

wS,xγ ({k}) = max
Q⊆N\S

{wγ({k} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{k}∪Q∈B

{wγ({k} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{k}∪Q∈B

{v({k} ∪Q)− x(Q)} (4)

= v̂({k}).
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Secondly, for all {i, j} ∈ BS,

wS,xγ {i, j} = max
Q⊆N\S

{wγ({i, j} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{i,j}∪Q∈B

{wγ({i, j} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{i,j}∪Q∈B

{v({i, j} ∪Q)− x(Q)} (5)

= v̂({i, j}).

Finally, for all {i, j, k} ∈ BS,

wS,xγ ({i, j, k}) = max
Q⊆N\S

{wγ({i, j, k} ∪Q)− x(Q)}

≥ max
Q⊆N\S

{i,j,k}∪Q∈B

{wγ({i, j, k} ∪Q)− x(Q)}

≥ max
Q⊆N\S

{i,j,k}∪Q∈B

{v({i, j, k} ∪Q)− x(Q)} (6)

= v̂({i, j, k}).

Assume now (N,w) is superadditive and w ≥ wS,xγ and for all T ⊆ S, let µ be an

optimal matching for γ̂S,x|T , µ ∈Mγ(M1 ∩ T,M2 ∩ T,M3 ∩ T ). Then,

w(T ) ≥
∑

{i,j,k}∈µ

w({i, j, k}) +
∑
{i,j}∈µ

w({i, j}) +
∑
{k}∈µ

w({k})

≥
∑

{i,j,k}∈µ

wS,xγ ({i, j, k}) +
∑
{i,j}∈µ

wS,xγ ({i, j}) +
∑
{k}∈µ

wS,xγ ({i, j})

≥
∑

{i,j,k}∈µ

v̂({i, j, k}) +
∑
{i,j}∈µ

v̂({i, j}) +
∑
{k}∈µ

v̂({k})

= ŵ(T ),

where the last inequality follows from (4), (5) and (6).
This shows that ŵ is the minimal superadditive game such that ŵ ≥ wS,xγ , which

implies that ŵ is the superadditive cover of wS,xγ .

4 Derived consistency of the core and the nucleolus

In this section, for the class of generalized three-sided assignment markets, we introduce
a consistency property with respect to the derived market. We name this property
derived consistency.

Before doing that, we need to introduce the notion of solution in the class Γ3−SAG
of generalized three-sided assignment markets or games. Next definition extends to our
setting the notion of feasibility that is usual in two-sided assignment markets. See, for
instance, Toda (2005).
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Definition 6. Given a generalized three-sided assignment market γ = (M1,M2,M3; v),
an allocation x ∈ RM1 × RM2 × RM3 is feasible-by-matching if there exists a matching
µ ∈M(M1,M2,M3) such that for all S ∈ µ, x(S) = v(S).

In that case, we say that x and µ are compatible. Notice that a matching µ com-
patible with x may not be optimal. Moreover, the set of feasible-by-matching allo-
cations is always non-empty since we can take the matching µ = {{i}}i∈N and then
x = (v({i}))i∈N is feasible with respect to µ.

Definition 7. A solution on a class Γ ⊆ Γ3−SAG is a correspondence σ that assigns a
subset of feasible-by-matching payoff vectors to each γ ∈ Γ.

Given γ ∈ Γ, we write σ(γ) to denote the subset of feasible-by-matching payoff
vectors assigned by solution σ to the assignment market γ. Notice that a solution σ is
allowed to be empty. The core correspondence and the mapping that gives to each agent
his/her individual value (compatible with the empty matching) are examples of solutions
on the class of generalized three-sided assignment markets. Similarly, the nucleolus,
which will be defined below, is a solution on the subclass of balanced generalized three-
sided assignment markets.

Definition 8. A solution σ on the class of generalized assignment markets satisfies
derived consistency if for all γ = (M1,M2,M3; v), all ∅ 6= S ( N and all x ∈ σ(γ), then
x|S ∈ σ(γ̂S,x).

Next theorem shows that the core satisfies derived consistency on the domain of
generalized three-sided assignment markets.

Theorem 9. On the domain of generalized three-sided assignment markets, the core
satisfies derived consistency.

Proof. Let γ = (M1,M2,M3; v) be a generalized three-sided assignment market, let x
be a core allocation and ∅ 6= S ( M1 ∪M2 ∪M3. To simplify notation, let us write
v̂ = v̂S,x and ŵ = wγ̂S,x .

Consider all possible coalitions in BS. First, for all {i, j, k} ∈M1∩S×M2∩S×M3∩S,
xi + xj + xk ≥ v({i, j, k}) = v̂({i, j, k}). Secondly, for all {i, j} ∈ (M1 ∩ S)× (M2 ∩ S),
xi + xj ≥ v({i, j}) and xi + xj ≥ v({i, j, k})− xk for all k ∈ M3 \ S. Hence, xi + xj ≥
v̂({i, j}). Finally, for all i ∈ M1 ∩ S, xi ≥ v({i}), and xi ≥ v({i, j}) − xj for all
j ∈M2 \S, and xi ≥ v({i, k})− xk for all k ∈M3 \S, and xi ≥ v({i, j, k})− xj − xk for
all j ∈ M2 \ S and for all k ∈ M3 \ S. Hence, xi ≥ v̂({i}). Proceeding similarly for the
remaining T ∈ BS, we obtain

x(T ) ≥ v̂(T ) for all T ∈ BS. (7)

Finally, it remains to show that x(S) = ŵ(S). Expression (7) implies x(R) ≥ ŵ(R)

for all R ⊆ S. Let us denote by (S, w̃S,xγ ) the superadditive cover of the Davis and
Maschler reduced game (S,wS,xγ ). Now, appyling Theorem 5 we obtain

x(S) ≥ ŵ(S) = w̃S,xγ (S) ≥ wS,xγ (S) = x(S),
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where the last equality follows from the Davis and Maschler reduced game property
of the core (see Peleg, 1986). Thus, x(S) = ŵ(S) and this completes the proof of
x|S ∈ C(γ̂S,x).

The nucleolus is a well-known single-valued solution for coalitional games introduced
by Schmeidler (1969). When the game is balanced, the nucleolus is the unique core
allocation that lexicographically minimizes the vector of decreasingly-ordered excesses
of coalitions.3

The nucleolus of a generalized three-sided assignment market γ = (M1,M2,M3; v)
is the nucleolus of the associated assignment game (N,wγ), and it will be denoted by
η(γ). Next, we show that when a generalized three-sided assignment market is balanced
the nucleolus also satisfies derived consistency.

Theorem 10. On the class of balanced generalized three-sided assignment markets, the
nucleolus satisfies derived consistency.

Proof. Let γ = (M1,M2,M3; v) be a balanced generalized three-sided assignment mar-
ket, η(γ) = η be the nucleolus and ∅ 6= S (M1 ∪M2 ∪M3. Since the nucleolus satisfies
the Davis and Maschler reduced game property (Potters, 1991), η|S = η(wS,ηγ ) which
implies η(S) = wS,ηγ (S). On the other hand, since η ∈ C(γ), by Theorem 9 we know
that η|S ∈ C(wγ̂S,η) which implies η(S) = wγ̂S,η(S). Hence, taking into account Theorem

5, we have w̃S,ηγ (S) = wγ̂S,η(S) = η(S) = wS,ηγ (S), being (S, w̃S,ηγ ) the superadditive cover
of the Davis and Maschler reduced game (S,wS,ηγ ). Miquel and Núñez (2011) show that
when a balanced game and its superadditive cover have the same efficiency level, then
the nucleolus of both games coincide. Therefore, η|S = η(wγ̂S,η).

Next proposition shows that any solution σ on the domain Γ3−SAG that satisfies
derived consistency always selects a subset of the core, that is, σ(γ) ⊆ C(γ) for all
γ ∈ Γ3−SAG.

Proposition 11. On the domain of generalized three-sided assignment markets, derived
consistency implies core selection.

Proof. We want to show that any non-empty solution σ on the domain of Γ3−SAG, that
satisfies derived consistency, consists of core elements.

Let σ be a solution on Γ3−SAG satisfying derived consistency and take x ∈ σ(γ),
being γ = (M1,M2,M3; v). We need to show that x satisfies coalitional rationality
and efficiency. Notice that if two sides of the market are empty, then the game is
modular4 and since σ is feasible-by-matching, σ(γ) = {(v({i}))i∈N} = C(γ). When
only one side is empty, the game is a two-sided assignment market and the statement
follows from Llerena et al (2014). So, we can assume without loss of generality that
Ml 6= ∅ for all l ∈ {1, 2, 3}. Then, for all i ∈ M1 ∪ M2 ∪ M3 consider the derived
market relative to S = {i} at x. By derived consistency of σ, xi ∈ σ(γ̂{i},x). Moreover,
feasibility-by-matching of σ implies that xi = v̂{i},x({i}). Now, let E ∈ B be any

3Given a game (N, r), the excess of a coalition S ⊆ N at a payoff vector x ∈ RN is r(S)−
∑
i∈S

xi.

4A game (N, v) is modular if, for all S ⊆ N , v(S) =
∑
i∈S

v({i}).
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essential coalition such that i ∈ E. By definition of derived market at {i} and x we have
xi = v̂{i},x({i}) ≥ v(E) −

∑
k∈E\{i}

xk. Hence,
∑
k∈E

xk ≥ v(E) which states that x satisfies

coalitional rationality.
In order to prove efficiency, let µ be an optimal matching and µ′ be a matching

compatible with x. Then, wγ(N) =
∑
S∈µ

v(S) ≤
∑
S∈µ

(
∑
i∈S

xi) =
∑
S∈µ′

(
∑
i∈S

xi) =
∑
S∈µ′

v(S),

where the last equality follows from the fact that µ′ is compatible with x. Since µ is
optimal and wγ(N) ≤

∑
S∈µ′

v(S), we get that µ′ is also optimal and x is efficient, which

concludes the proof.

5 An axiomatic characterization of the core

In this section, we give an axiomatic characterization of the core on the class of general-
ized three-sided assignment markets, Γ3−SAG. As mentioned in the introduction, other
known characterizations of the core of two-sided assignment markets rely on monotonic-
ity properties that are not satisfied by the core on the domain of three-sided assignment
markets. In the present characterization we make use of derived consistency and two ad-
ditional properties, singleness best and individual anti-monotonicity, that are introduced
in the sequel.

Definition 12. A solution σ on Γ ⊆ Γ3−SAG satisfies singleness best if whenever the
partition in singletons is optimal, (v({i}))i∈N ∈ σ(γ) holds.

Given two payoff vectors x = (xi)i∈N , x′ = (x′i)i∈N in RN and µ ∈ M(M1,M2,M3),
we write x′ ≥µ x when xi = x′i for all {i} ∈ µ and x′i ≥ xi if {i} /∈ µ. That is, x′ is
greater than x with respect to µ when agents that are matched with some other partner
receive at least as much in x′ than in x, while agents that are alone receive the same
payoff in both allocations.

Definition 13. A solution σ on Γ ⊆ Γ3−SAG satisfies individual anti-monotonicity if
for all γ′ = (M1,M2,M3; v

′) ∈ Γ, all γ = (M1,M2,M3; v) ∈ Γ, all u ∈ σ(γ′) and µ
compatible with u, if v(E) = v′(E) for all E ∈ B with |E| > 1 and (v′({i}))i∈N ≥µ
(v({i}))i∈N , then it holds u ∈ σ(γ).

Singleness best simply says that if remaining unmatched is optimal for every player,
then the vector of individual values should be an outcome of the solution. This axiom
has some resemblance with the zero inessential game property of Hwang and Sudhölter
(2001) in the sense that it is a non-emptiness axiom for generalized three-sided assign-
ment games that are trivial or inessential. Individual anti-monotonicity says that if the
individual values decrease (in the sense defined above) any payoff vector in the solution
of the original market should remain in the solution of the new market. Notice that
the value of pairs and triplets coincide in both markets. Individual anti-monotinicity is
a weaker version of anti-monotonicity introduced by Keiding (1986) and also used by
Toda (2003).

Now, we characterize the core on the class of generalized three-sided assignment
games, Γ3−SAG, by means of derived consistency, singleness best and individual anti-
monotonicity.
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Theorem 14. On the domain Γ3−SAG, the core is the unique solution that satisfies
derived consistency, singleness best and individual anti-monotonicity.

Proof. It is straightforward that the core satisfies all three axioms. Assume now that σ
is a solution on Γ3−SAG also satisfying all three axioms. Take any γ = (M1,M2,M3; v) ∈
Γ3−SAG. By Proposition 11, we know that σ(γ) ⊆ C(γ). We have to show that C(γ) ⊆
σ(γ). Take u ∈ C(γ) and µ ∈ M(M1,M2,M3) compatible with u. Then, µ is optimal
for γ. Now, define a market γ′ = (M1,M2,M3; v

′) where v′(E) = v(E) for all E ∈ B
such that |E| > 1 and v′(E) = ui for all E = {i}. Notice that v′({i}) = ui = v({i}) for
all {i} ∈ µ and v′({i}) = ui ≥ v({i}) for all {i} /∈ µ. Hence, (v′({i}))i∈N ≥µ (v({i}))i∈N .
Let us see that µ′ = {{i} | i ∈ N} is optimal for γ′. To this end, take any matching
µ′′ ∈M(M1,M2,M3). Then,∑

E∈µ′
v′(E) =

∑
i∈N

v′({i}) =
∑
i∈N

ui =
∑
E∈µ′′
|E|>1

∑
i∈E

ui +
∑
E∈µ′′
|E|=1

∑
i∈E

ui

≥
∑
E∈µ′′
|E|>1

v′(E) +
∑
E∈µ′′
|E|=1

v′(E) =
∑
E∈µ′′

v′(E).

The inequality follows from the fact that u ∈ C(γ) and the relationship between v and
v′. Thus, µ′ is optimal for γ′. By singleness best, u = (ui)i∈N = (v′({i}))i∈N ∈ σ(γ′)
and then, by individual anti-monotonicity, u ∈ σ(γ). Hence, C(γ) ⊆ σ(γ). Together
with the reverse inclusion, σ(γ) ⊆ C(γ), we conclude that C(γ) = σ(γ).

We now show that no axiom in the above characterization is implied by the others.
To this end, we introduce different solutions satisfying all axioms but one.

Example 15. For all γ = (M1,M2,M3; v) ∈ Γ3−SAG, let us consider

σ1(γ) = ∅.

Clearly, σ1 satisfies derived consistency and individual anti-monotonicity but not sin-
gleness best.

Example 16. For all γ = (M1,M2,M3; v) ∈ Γ3−SAG, let us consider

σ2(γ) =

u ∈ RN

∣∣∣∣∣∣
u is feasible-by-matching for γ,
ui ≥ wγ({i}), for all i ∈ N,
u(N) = wγ(N)

 .

Notice that if u ∈ σ2(γ), every matching µ that is compatible with u is optimal. It can
be easily checked that σ2 satisfies singleness best and individual anti-monotonicity but,
as a consequence of Theorem 14, it does not satisfy derived consistency.

Example 17. For all γ = (M1,M2,M3; v) ∈ Γ3−SAG, let η(γ) be the nucleolus of γ and
consider

σ3(γ) =

{
∅ if C(γ) = ∅,
{η(γ)} if C(γ) 6= ∅.
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The solution σ3 satisfies singleness best and derived consistency (see Theorem 10), but,
as a consequence of Theorem 14, it does not satisfy individual anti-monotonicity.

These three examples prove that none of the axioms is redundant in the above
characterization of the core.

6 2-additive generalized three-sided assignment mar-

kets

In this section, we introduce a subclass of generalized three-sided assignment markets
that we will name 2-additive generalized three-sided assignment markets and denote
by Γadd3−SAG. This subclass is basically defined by three conditions. The first one re-
quires non-negativeness of the valuation function. Secondly, the valuation of each triplet
(i, j, k) ∈ M1 ×M2 ×M3 is the addition of the valuations of all pairs of agents in the
triplet. Finally, we require the existence of an optimal matching that remains optimal
for the projection to each two-sided market.

The reader will notice that the spirit of this class of 2-additive generalized three-sided
assignment markets is similar to that of the balanced classes of multi-sided assignment
games in Quint (1991) and Stuart (1997). In both cases, the authors impose that the
worth of a triplet is the addition of some numbers attached to its pairs. The difference
is that in their models a pair cannot attain its worth if not matched with a third agent
of the remaining sector, while in our case there is an underlying two-sided market for
each pair of sectors.

As in Quint (1991), we will assume from now on that the market is square, that is
|M1| = |M2| = |M3|.

Let us introduce some notation: given a generalized three-sided assignment market
γ = (M1,M2,M3; v), for all r, s ∈ {1, 2, 3}, we consider the two-sided market γrs =
(Mr,Ms; v|BMr∪Ms ). Then, we denote byMγrs(Mr,Ms) the set of optimal matchings for
the two-sided market γrs, that is, partitions of Mr ∪Ms in mixed pairs and singletons
that maximize the sum of the valuations of the coalitions in the partition. And C(γrs)
stands for the core of the underlying two-sided assignment game (Mr ∪Ms, wγrs).

Definition 18. A generalized three-sided assignment market γ = (M1,M2,M3; v), with
|M1| = |M2| = |M3|, belongs to the class Γadd3−SAG if and only if

1. v ≥ 0,

2. v({i, j, k}) = v({i, j}) + v({i, k}) + v({j, k}) for all (i, j, k) ∈M1 ×M2 ×M3, and
v({k}) = 0 for all k ∈M1 ∪M2 ∪M3,

3. there exists µ ∈Mγ(M1,M2,M3) such that µ|Mr×Ms ∈Mγrs(Mr,Ms).

Conditions (1) and (2) imply that v is superadditive and this guarantees that there
exists an optimal matching only containing triplets. It is easy to find examples that
show that conditions (1) and (2) are not sufficient to guarantee the non-emptiness of
the core. However, next proposition shows that the three conditions together guarantee
that the core of any generalized three-sided assignment market in the class Γadd3−SAG is
non-empty.
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Proposition 19. The class of 2-additive generalized three-sided assignment markets is
balanced.

Proof. Let γ = (M1,M2,M3; v) ∈ Γadd3−SAG and let µ be an optimal matching only con-
taining triplets, µ ∈Mγ(M1,M2,M3). The existence of such a matching µ follows from
conditions (1) and (2). From Shapley and Shubik (1972) it is known that each two-sided
assignment market is balanced. So, take core allocations, (u1, v1) ∈ C(γ12), (u2, w2) ∈
C(γ13) and (v3, w3) ∈ C(γ23). We will see that (u1 + u2, v1 + v3, w2 + w3) ∈ C(γ).
Indeed, take any {i, j, k} ∈ B and notice that

u1i + u2i + v1j + v3j + w2
k + w3

k = (u1i + v1j ) + (u2i + w2
k) + (v3j + w3

k)

≥ v({i, j}) + v({i, k}) + v({j, k}) = v({i, j, k})

where the inequality follows from the core constraints of (u1, v1), (u2, w2) and (v3, w3)
in each two-sided market and, because of condition (3), it becomes an equality when
{i, j, k} ∈ µ.

Similarly, if {i, j} ∈ B, we may assume without loss of generality that i ∈ M1 and
j ∈M2, and hence, taking into account u2i ≥ v({i}) = 0 and v3j ≥ v({j}) = 0, we get

u1i + u2i + v1j + v3j = (u1i + v1j ) + u2i + v3j ≥ v({i, j}).

Finally, if {i} ∈ B, let us assume without loss of generality that i ∈M1. Then u1i +u2i ≥
0 = v({i}) follows also from the individual rationality of (u1, v1) and (u2, v2).

In the above proposition we have deduced the existence of core elements for γ ∈
Γadd3−SAG by operating with three core elements of the related two-sided markets. However
not all elements of C(γ) can be obtained in this way as the next example illustrates.

Example 20. Let γ = (M1,M2,M3; v) be a 2-additive three-sided assignment market
where the values of pairs of agents in different sectors are given by the three following
matrices and the optimal matchings are in boldface:

B12 =

( 1′ 2′

1 7 6
2 0 3

)
, B13 =

( 1′′ 2′′

1 3 0
2 6 7

)
, B23 =

( 1′′ 2′′

1′ 1 0
2′ 0 1

)
.

Then, the three-dimensional matrix that gathers the values of the triplets of agents of
different sectors by imposing 2-additivity is:

A =

( 1′ 2′

1 11 9
2 7 9

) ( 1′ 2′

1 7 7
2 7 11

)
.

1′′ 2′′

Notice that this game belongs to Γadd3−SAG since also condition (3) of Definition 18 is
satisfied.
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Consider z = (3, 1; 2, 2; 6, 8) ∈ C(γ) and assume there exist (u1, v1) ∈ C(γ12),
(u2, w2) ∈ C(γ13) and (v3, w3) ∈ C(γ23) such that

z = (u11 + u21, u
1
2 + u22; v

1
1 + v31, v

1
2 + v32;w2

1 + w3
1, w

2
2 + w3

2).

Then, u11 + u21 = 3 and v12 + v32 = 2 would add up to u11 + v12 = 5− u21 − v32. But on the
other hand, (u1, v1) ∈ C(γ12) implies u11 + v12 ≥ 6. Finally, 5− u21 − v32 ≥ 6 leads to the
contradiction u21 + v32 ≤ −1.
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