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On the (in)compatibility of rationality, monotonicity and
consistency for cooperative games

Pedro Calleja and Francesc Llerena ∗

Abstract
On the domain of cooperative transferable utility games, we investigate if there

are single valued solutions that reconcile rationality, consistency and monotonicity
(with respect to the worth of the grand coalition) properties. This paper collects
some impossibility results on the combination of core selection with either comple-
ment or projected consistency, and core selection, max consistency and monotonicity.
By contrast, possibility results show up when combining individual rationality, pro-
jected consistency and monotonicity.

1 Introduction
A transferable utility coalitional game is specified by a finite set of players and a real-
valued function defined on all coalition of players. A (single-valued) solution is a function
which assigns for each game an efficient payoff vector. The question is whether efficiency
(or Pareto-optimality) can be combined with suitable properties. This is one of the
objectives of the axiomatic approach: to identify desirable properties of solutions and
explore the compatibility among them.

The core (Gillies, 1953) of a game is the set of feasible outcomes that can not be
improved upon by any coalition of players. A solution satisfies core selection if it selects
a core element for any game with a non-empty core. Individual rationality imposes
that every player gets at least his individual worth whenever it is possible. These two
properties are requirements of rationality for solutions and particularly attractive for
cooperation.

Another important property frequently used to characterize solutions is consistency.
A solution satisfies consistency if it makes coherent choices in both the original game
and the reduced game. Depending on how reduced games are defined, several notions of
consistency are obtained. Here we consider max consistency (Davis and Maschler, 1965),
complement consistency (Moulin, 1985) and projected consistency (Funaki, 1998).1

In combining properties of rationality with properties of consistency we find some
drawbacks. Hwang (2013) shows that individual rationality is incompatible with either
∗Dep. de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona

Dep. de Gestió d’Empreses, Universitat Rovira i Virgili-CREIP,
e-mail: calleja@ub.edu (Pedro Calleja), francesc.llerena@urv.cat (Francesc Llerena).

1For comprehensive surveys on the consistency principles, the reader is referred to Driessen (1991)
and Thomson (2003) .



complement or max consistency. On the other hand, although the core itself obeys the
above three consistency properties, it turns out that core selection is neither compatible
with complement consistency nor with projected consistency. Remarkably, individual
rationality and core selection together are incompatible with any of these consistency
properties. By constrast, the prenucleolus (Schmeidler, 1969) satisfies core selection and
max consistency, and the center of imputations (Driessen and Funaki, 1991) individual
rationality and projected consistency.

Aggregate monotonicity (Megiddo, 1974) says that if the worth of the grand coali-
tion increases, whereas the worth of other coalitions remain unchanged, then everyone’s
payoff should weakly increase. Most of solutions that are aggregate monotonic, like the
Shapley value (Shapley, 1953), the per-capita prenucleolus (Grotte, 1970) or the center of
imputations, satisfy equal surplus division, which implies that any variation of the worth
of the grand coalition is distributed equally among all players. Capturing the idea that
players may commit in distributing monotonically, but not equally, variations in their
wealth, we introduce regular aggregate monotonicity. The center of imputations, which
has been recently axiomatized in Béal et al. (2014), Casajus and Huettner (2014), Chun
and Park (2012) and van den Brink (2007) without making use of monotonicity proper-
ties, comes out to be the unique single-valued solution satisfying individual rationality
and equal surplus division (or, alternatively, individual rationality, regular aggregatte
monotonicity and symmetry).

Finally, we explore the possibility to reconcile rationality, consistency and monotonic-
ity with respect to the worth of the grand coalition. We provide a characterization of
the family of single-valued solutions satisfying individual rationality and projected con-
sistency together with regular or aggregate monotonicity. Despite these positive results,
accommodate core selection and max consistency with monotonicity properties present
some difficulties. It turns out that core selection, regular aggregate monotonicity and
max consistency are incompatible on the domain of all games and also in the domain of
balanced games. Moreover, if we restrict to convex games, although these three proper-
ties can be combined, core selection, equal surplus division and max consistency cannot.

The remainder of the paper is organized as follows. In Section 2, we introduce some
solutions and review which of the aforementioned properties they satisfy. In Section 3,
we analyze the (in)compatibility between rationality and consistency or monotonicity.
In Section 4, we discuss how well combine rationality, consistency and monotonicity
together. Some remarks and open questions conclude the paper.

2 Solutions and properties
The set of natural numbers N denotes the universe of potential players. A coalition is a
non-empty finite subset of N and let N := {N | ∅ 6= N ⊆ N, |N | <∞} denote the set of
all coalitions of N. A transferable utility coalitional game (a game) is a pair (N, v)
where N ∈ N is the set of players and v : 2N −→ R is the characteristic function that
assigns to each coalition S ⊆ N a real number v(S), with the convention that v(∅) = 0.
For simplicity of notation, and if no confusion arises, we write v(i), v(ij), . . . instead of
v({i}), v({i, j}), . . .. Given N ∈ N and ∅ 6= S ⊆ N , the unanimity game (N, uS)
associated to S is defined as uS(R) = 1 if S ⊆ R and uS(R) = 0 otherwise. Given a

2



game (N, v) and N ′ ⊂ N , the subgame (N ′, v|N ′) is defined as v|N ′(S) = v(S) for all
S ⊆ N ′. Given S, T ∈ N , we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T but
S 6= T . By |S| we denote the cardinality of the coalition S ∈ N . For all t ∈ R, |t| = t if
t ≥ 0 and |t| = −t otherwise. By Γ we denote the class of all games.

Given N ∈ N , let RN stands for the space of real-valued vectors indexed by N ,
x = (xi)i∈N , and for all S ⊆ N , x(S) =

∑
i∈S xi, with the convention x(∅) = 0. Given

∅ 6= S ⊆ N , eS ∈ RN is defined as eS,i = 1 if i ∈ S and eS,i = 0 otherwise. For each
x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT . Given
two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all i ∈ N .

The preimputation set of (N, v) is defined by X(N, v) := {x ∈ RN |x(N) = v(N)}.
A solution on a class of games Γ′ ⊆ Γ is a correspondence σ which associates with each
game (N, v) ∈ Γ′ a subset σ(N, v) of X(N, v). A solution σ on Γ′ ⊆ Γ is said to be
single-valued if |σ(N, v)| = 1 for all (N, v) ∈ Γ′. The set of imputations is defined
by I(N, v) := {x ∈ X(N, v) |xi ≥ v({i}), for all i ∈ N}. A game with a non-empty
imputation set is called essential. We denote by ΓE the class of essential games. The
core (Gillies, 1953) of (N, v) is the set of those imputations where each coalition gets at
least its worth, that is C(N, v) := {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game
(N, v) is balanced if it has a non-empty core. By ΓB we denote the class of balanced
games. A game (N, v) is convex if v(S ∪T ) + v(S ∩T ) ≥ v(S) + v(T ), for all S, T ⊆ N .
We denote by ΓC the class of convex games.

We introduce some well-known single-valued solutions defined on Γ. Let N ∈ N and
(N, v) ∈ Γ. The Shapley value (Shapley, 1953), Sh, is defined by

Shi(N, v) :=
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i})− v(S)) for all i ∈ N.

Let N ∈ N and (N, v) ∈ Γ. With any preimputation x ∈ X(N, v) we associate the
vector of excesses e(S, x) = v(S) − x(S), ∅ 6= S ⊂ N , whose components are non-
increasingly ordered. The prenucleolus (Schmeidler, 1969), ν∗, is the preimputation
that lexicographically minimizes the vector of excesses over the set of preimputations.
With any preimputation x ∈ X(N, v) we associate the vector of per-capita excesses
ē(S, x) = v(S)−x(S)

|S| , ∅ 6= S ⊂ N , whose components are non-increasingly ordered. The
per-capita prenucleolus (Grotte, 1970), ν̄∗, is the preimputation that lexicographically
minimizes the vector of per-capita excesses over the set of preimputations. The equal
division solution, ED, is defined by EDi(N, v) = v(N)

|N | for all i ∈ N . The center of
imputations solution2 (Driessen and Funaki, 1991), CI, is defined by

CIi(N, v) := v(i) + 1
|N |

(
v(N)−

∑
i∈N

v(i)
)

for all i ∈ N.

The weighted center of imputations solution, CIw, relative to a list of positive
2This solution is also known as the equal surplus division rule (see, for instance, van den Brink, 2007,

Béal et al., 2014 and Casajus and Huettner, 2014), or as the egalitarian value (see, for instance, Chun
and Park, 2012).

3



weights w = (wi)i∈N ∈ RN
++ is defined by

CIwi (N, v) := v(i) + wi∑
j∈N wj

(
v(N)−

∑
i∈N

v(i)
)

for all i ∈ N.

Note that when wi = 1 for all i ∈ N, then CIw(N, v) = CI(N, v).
For our purposes, we introduce a single-valued solutions similar to the one provided

by Calleja et al. (2012). Let N ∈ N and (N, v) ∈ Γ. The single-valued solution ϕ is
defined by

ϕ(N, v) :=


xvI + v(N)−

∑
i∈N v(i)

vr(N)−
∑

i∈N v(i)(ν∗(N, vr)− xvI) if vr(N) 6=
∑
i∈N v(i),

CI(N, v) otherwise,

where xvI = (v(1), v(2), . . . , v(n)), N = {1, 2, . . . , n} and (N, vr) is the balanced game
with smallest efficiency such that vr(S) = v(S) for all S ⊂ N .

Next, we introduce properties of solutions that apply to the games for a fixed popu-
lation.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Core selection (CS): if for all N ∈ N and all (N, v) ∈ Γ′ with C(N, v) 6= ∅, it
holds σ(N, v) ∈ C(N, v).

• Individual rationality (IR): if for all N ∈ N and all (N, v) ∈ Γ′ with I(N, v) 6=
∅, it holds σ(N, v) ∈ I(N, v).

Clearly, individual rationality does not imply core selection. Moreover, core selec-
tion does not imply individual rationality since a single-valued solution may select a
non-individually rational allocation in a game with an empty core. Core selection and
individual rationality are properties that concerns the rationality of a solution.

• Equal surplus division3(ESD): if for all N ∈ N and all (N, v), (N, v′) ∈ Γ′ with
v(S) = v′(S) for all S ⊂ N , it holds σ(N, v′)−σ(N, v) =

(
v′(N)−v(N)

|N | , . . . , v
′(N)−v(N)
|N |

)
.

• Aggregate monotonicity (AM): if for allN ∈ N and all (N, v), (N, v′) ∈ Γ′ with
v(S) = v′(S) for all S ⊂ N and v(N) < v′(N), it holds that σ(N, v) ≤ σ(N, v′).

Aggregate monotonicity (Megiddo, 1974) and equal surplus division are monotonic-
ity properties with respect to the worth of the grand coalition. Aggregate monotonicity
states that nobody’s payoff strictly decrease when only the worth of the grand coalition
grows, while equal surplus division imposes that agents share equally the raise of the
worth of the grand coalition. Note that equal surplus division implies aggregate mono-
tonicity. Most of single-valued solutions satisfying aggregate monotonicity, like Sh, ν̄∗,
ED and CI, satisfy equal surplus division too (see Table 1).

3van den brink et al. (2012) call this property weak fairness. Recently, Arin and Katsev (2014) refer
to it as strong aggregate monotonicity.

4



Equal surplus division incorporates an idea of regularity. Whenever a set of players
N ∈ N agree on how to distribute monotonically an amount t ∈ R, representing the
difference of efficiency between two games, they will respect this agreement independently
of the games they finally face. According to equal surplus division this agreement consists
of sharing t equally among any set of players N ∈ N . However, there are many other
monotonic ways of distributing t.

Definition 1. A monotone path is the image of a function f : N × R →
⋃
N∈N RN

satisfying the following conditions: for all N ∈ N and all t ∈ R,

(i) f(N, 0) = (0, . . . , 0) ∈ RN ,

(ii) f(N, t) ∈ RN and
∑
i∈N fi(N, t) = t,

(iii) if t′ ∈ R is such that t′ > t, then fi(N, t′) ≥ fi(N, t) for all i ∈ N .

Note that a monotone path assigns non-negative (non-positive) vectors to positive
(negative) real numbers.

Let Fmon denote the class of functions satisfying the above conditions. Examples of
functions in Fmon widely used along the paper are:

1. For all N ∈ N , all t ∈ R and all i ∈ N , define f̄i(N, t) = t
|N | .

f̄ distributes t equally among N .

2. Let w ∈ RN
++ be a list of positive weights. For all N ∈ N , all t ∈ R and all i ∈ N ,

define fwi (N, t) = wi·t∑
j∈N

wj
.

fw distributes t among N proportionally according to their weights w.

3. Let π be a permutation on N. For all N ∈ N and all t ∈ R, define fπ(N, t) = t·e{j},
being j ∈ N such that π(j) ≥ π(i) for all i ∈ N .
fπ assigns all the amount t to the last player in N according to π.

4. Let π be a permutation on N. For all N ∈ N and all t ∈ R, define

f̂π(N, t) =


⌊
t
|N |

⌋
· eN +

∑
i∈S∗ e{i} + (tmod |N | − btmod |N |c) · e{k} if t ≥ 0,

−f̂π(N,−t) if t < 0,

where S∗ ⊂ N is formed by the first btmod |N |c players according to π (if there
are) and k ∈ N \ S∗ with π(k) ≤ π(j), for all j ∈ N \ S∗.4

The interpretation of f̂π when t ≥ 0 is as follows: if 0 ≤ t ≤ 1, then f̂π assigns
the amount t to the first player in N according to π. If 1 < t ≤ 2, the first
player receives a unit of t and the second player t − 1, etc. If t > |N |, then after
distributing one unit of t to every player, it stars again given one additional unit
to the first player, and so on until the amount t is exhausted.

4For all x, y ∈ R, bxc := max{k ∈ Z | k ≤ x}, and xmod y := x− y ·
⌊
x
y

⌋
.

5



By using the notion of a monotone path, we introduce a new monotonicity property
with respect to the worth of the grand coalition.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Regular aggregate monotonicity (RAM): if there exists a monotone path
f ∈ Fmon such that, for all N ∈ N and all (N, v), (N, v′) ∈ Γ′ with v(S) = v′(S)
for all S ⊂ N , it holds σ(N, v′)− σ(N, v) = f(N, v′(N)− v(N)).

Equal surplus division implies regular aggregate monotonicity with f = f̄ . Certainly,
regular aggregate monotonicity implies aggregate monotonicity. Note that CIw satisfies
regular aggregate monotonicity with f = fw, but not equal surplus division. Moreover,
ϕ satisfies aggregate monotonicity but not regular aggregate monotonicity (see Table 1).5

Next, we introduce consistency properties, that is, properties that relate the payoff
vectors chosen for the games with variable population. Before doing this, we need to
define the concept of a reduced game. We focus on three types of reduced games widely
used to axiomatize solutions. The terminology is taken from Thomson (2003).

Let N ∈ N , (N, v) ∈ Γ, x ∈ RN and ∅ 6= N ′ ⊂ N .

1. The max reduced game (Davis and Maschler, 1965) relative to N ′ at x is the
game

(
N ′, rN

′
DM,x(v)

)
defined by

rN
′

DM,x(v)(S) :=


0 if S = ∅,

max
Q⊆N\N ′

{v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ N ′,

v(N)− x(N \N ′) if S = N ′.

2. The complement reduced game (Moulin, 1985) relative to N ′ at x is the game(
N ′, rN

′
M,x(v)

)
defined by

rN
′

M,x(v)(S) :=
{

0 if S = ∅,
v(S ∪N \N ′)− x(N \N ′) if ∅ 6= S ⊆ N ′.

3. The projected reduced game (Funaki, 1998) relative to N ′ at x is the game(
N ′, rN

′
F,x(v)

)
defined by

rN
′

F,x(v)(S) :=
{
v(S) if S ⊂ N ′,
v(N)− x(N \N ′) if S = N ′.

In the max-reduced game (relative to N ′ at x), the worth of a coalition S ⊂ N ′

is determined under the assumption that S can choose the best partners in N \ N ′,
provided that it pays them their components of x. The complement and the projected
reduced games represent the two extreme cases. In the complement reduced game each
coalition S ⊂ N ′ is required to join all the members of N \ N ′ while, by contrast, in
the projected reduced game when players in N \N ′ leave the game, no cooperation with
them is possible anymore.

A single-valued solution σ on Γ′ ⊆ Γ satisfies
5This is because ϕ satisfies individual rationality and core selection and these two properties are

incompatible with regular aggregate monotonicity (see Theorem 3).
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• Max consistency (M-CON): if for all N ∈ N , all (N, v) ∈ Γ′, all ∅ 6= N ′ ⊂ N,

and x = σ(N, v), then
(
N ′, rN

′
DM,x(v)

)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′
DM,x(v)

)
.

• Complement consistency (C-CON): if for all N ∈ N , all (N, v) ∈ Γ′, all
∅ 6= N ′ ⊂ N, and x = σ(N, v), then

(
N ′, rN

′
M,x(v)

)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′
M,x(v)

)
.

• Projected consistency (P-CON): if for all N ∈ N , all (N, v) ∈ Γ′, all ∅ 6= N ′ ⊂
N, and x = σ(N, v), then

(
N ′, rN

′
F,x(v)

)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′
F,x(v)

)
.

Table 1 below summarizes whether or not the single-valued solutions already intro-
duced satisfy the properties mentioned so far. Some cells of the table are fulfilled by
means of results provided in the next sections of this work.

Table 1. Properties of solutions defined on Γ

Sh ν∗ ν̄∗ ED CI CIw ϕ
CS × X X × × × X
IR × × × × X X X
ESD X × X X X × × (Th. 3)
RAM X × X X X X × (Th. 3)
AM X × X X X X X
M-CON × X × (Th. 8) X × × × (Cor. 1)
C-CON × × (Th. 4) × (Th. 4) X × × × (Cor. 1)
P-CON × × (Th. 5) × (Th. 5) X X (Th. 6) X (Th. 6) × (Cor. 1)

3 Rationality and monotonicity or consistency
From the observation of Table 1, it turns out that combining monotonicity with con-
sistency properties is always possible since ED satisfies equal surplus division (and,
therefore, regular aggregate monotonicity and aggregate monotonicity), max consistency,
complement consistency and projected consistency.

If we focus on how well properties of rationality combine with properties of mono-
tonicity, note that core selection and equal surplus division are compatible by means
of ν̄∗, and individual rationality and equal surplus division by means of CI. In fact,
individual rationality and equal surplus division characterize CI.

Theorem 1. The center of imputations solution is the unique single-valued solution on
Γ that satisfies individual rationality and equal surplus division.

Proof. It is easy to check that CI satisfies individual rationality and equal surplus di-
vision. Let σ be a single-valued solution on Γ satisfying these two properties, N ∈ N
and (N, v) be a game. If v(N) =

∑
i∈N v(i) then, by individual rationality, σi(N, v) =

v(i) = CIi(N, v) for all i ∈ N . On the other hand, if v(N) 6=
∑
i∈N v(i), define the game

(N, v′) as v′(S) = v(S) for all S 6= N , and v′(N) =
∑
i∈N v(i). For all i ∈ N , applying
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individual rationality we have σi(N, v′) = v(i) and, by equal surplus division, we obtain

σi (N, v) = σi
(
N, v′

)
+ 1
|N |

(
v(N)− v′(N)

)
= v(i) + 1

|N |

(
v(N)−

∑
i∈N

v(i)
)

= CIi(N, v).

Clearly, individual rationality and equal surplus division are independent on Γ (see
Table 1). CI can also be characterized by using regular aggregate monotonicity together
with individual rationality and symmetry.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Symmetry (SYM) if for all N ∈ N , all (N, v) ∈ Γ′ and all i, j ∈ N , if v(S ∪ i) =
v(S ∪ j) for all S ⊆ N \ {i, j}, then σi(N, v) = σj(N, v).

Next we show that regular aggregate monotonicity and symmetry imply equal surplus
division.

Proposition 1. On the domain of all games Γ, regular aggregate monotonicity together
with symmetry imply equal surplus division.

Proof. Let σ be a single-valued solution on Γ satisfying regular aggregate monotonicity
and symmetry. Let N ∈ N , t ∈ R and (N, v) be a game such that v(S) = |S| for all
S ⊆ N . By symmetry, σ(N, v) =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
. Now, consider the game (N, v′)

defined by v′ = v + t · uN . Since all players are also symmetric in (N, v′), by symmetry
it holds

σ(N, v′) =
(
v(N) + t

|N |
, . . . ,

v(N) + t

|N |

)
= σ(N, v) +

(
t

|N |
, . . . ,

t

|N |

)
. (1)

By regular aggregate monotonicity, there exists f ∈ Fmon such that

σ(N, v′) = σ(N, v) + f(N, t). (2)

From (1) and (2) it follows that f(N, t) =
(

t
|N | , . . . ,

t
|N |

)
, which means that σ satisfies

equal surplus division.

Theorem 1 and Proposition 1, together with the fact that CI satisfies symmetry, lead
to the next characterization.6

Theorem 2. The center of imputations solution is the unique single-valued solution on
Γ that satisfies individual rationality, regular aggregate monotonicity and symmetry.

6As we have commented in the introduction, recent axiomatic characterizations of CI can be found
in Béal et al. (2014), Casajus and Huettner (2014), Chun and Park (2012), and van den Brink (2007).
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The properties in Theorem 2 are independent.7
Theorem 1, together with the fact that CI does not satisfy core selection, imply

that core selection, individual rationality and equal surplus division are incompatible.
However, core selection, individual rationality and aggregate monotonicity are compatible
by means of ϕ. The next result shows that core selection and individual rationality are
incompatible with regular aggregate monotonicity.

Theorem 3. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection, individual rationality and regular aggregate monotonicity.

Proof. Suppose, on the contrary, that there exists a single-valued solution σ satisfying
core selection, individual rationality and regular aggregate monotonicity on Γ.

Let (N, v1) be a game with set of players N = {1, 2, 3} and characteristic func-
tion: v1(12) = v1(13) = v1(123) = 1 and v1(S) = 0 otherwise. Clearly, C(N, v1) =
{(1, 0, 0)} and, by core selection, σ(N, v1) = (1, 0, 0). Now, define the game

(
N, (v1)I

)
as (v1)I = v1 + (−1) · uN . Since I

(
N, (v1)I

)
= {(0, 0, 0)} , by individual rationality,

σ
(
N, (v1)I

)
= (0, 0, 0). By regular aggregate monotonicity, there exists f ∈ Fmon such

that σ
(
N, (v1)I

)
− σ(N, v1) = f(N,−1), from which it follows f(N,−1) = (−1, 0, 0).

Let us now consider the game (N, v2) with set of players N = {1, 2, 3} and charac-
teristic function v2(12) = v2(23) = v2(123) = 1 and v2(S) = 0 otherwise. Let

(
N, (v2)I

)
be defined as (v2)I = v2 + (−1) · uN . Following similar arguments than before we have,
by core selection, σ(N, v2) = (0, 1, 0), by individual rationality, σ

(
N, (v2)I

)
= (0, 0, 0)

and by regular aggregate monotonicity, f(N,−1) = (0,−1, 0), in contradiction with
f(N,−1) = (−1, 0, 0).

Table 2 summarizes the (in)compatibilities of properties of rationality combined with
properties of monotonicity for single-valued solutions on Γ.

Table 2. (In)compatibilities of rationality and monotonicity on Γ

CS IR CS + IR
ESD ν̄∗ CI × (Th. 1)
RAM ν̄∗ CI × (Th. 3)
AM ν̄∗ CI ϕ

Finally, we study the compatibility for single-valued solutions of properties of ra-
tionality together with one of the three versions of consistency we have introduced.
Although formally it would be admissible to consider two consistency properties simul-
taneously, from a behavioral point of view it has no sense that players agree in two
different ways of reducing the game.

7ED satisfies regular aggregate monotonicity and symmetry but not individual rationality, ϕ satis-
fies individual rationality and symmetry but not regular aggregate monotonicity and, for a suitable list
of positive weights w, CIw satisfies individual rationality and regular aggregate monotonicity but not
symmetry.
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On the domain of all games, ν∗ satisfies core selection and max consistency (Potters,
1991). Moreover, the core has been characterized using max consistency (Peleg, 1986),
complement consistency (Tadenuma, 1992) and projected consistency (Llerena and Rafels,
2007). But, surprisingly, for single-valued solutions core selection together with either
complement consistency or projected consistency are incompatible.

Theorem 4. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection and complement consistency.

Proof. Suppose, on the contraty, that there exists a single-valued solution σ satisfying
core selection and complement consistency on Γ. Let (N, v1) and (N, v2) be two balanced
games with set of players N = {1, 2, 3} and characteristic functions as follows: v1(1) =
v2(2) = 0, v1(2) = v2(1) = 1 and v1(S) = v2(S) for any other S ⊆ N , being v1(3) =
1, v1(12) = 0, v1(13) = v1(23) = 1 and v1(N) = 2. Notice that C(N, v1) = {(0, 1, 1)} and
C(N, v2) = {(1, 0, 1)}. By core selection, σ(N, v1) = (0, 1, 1) and σ(N, v2) = (1, 0, 1).
Let N ′ = {1, 2}. By complement consistency,

σ
(
N ′, rN

′

M,(0,1,1)(v
1)
)

= (0, 1) ∈ C
(
N ′, rN

′

M,(0,1,1)(v
1)
)

and
σ
(
N ′, rN

′

M,(1,0,1)(v
2)
)

= (1, 0) ∈ C
(
N ′, rN

′

M,(1,0,1)(v
2)
)
.

But
(
N ′, rN

′

M,(0,1,1)(v
1)
)

=
(
N ′, rN

′

M,(1,0,1)(v
2)
)
, which leads a contradiction.

Theorem 5. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection and projected consistency.

Proof. Suppose, on the contrary, that there exits a single-valued solutions σ satisfying
core selection and projected consistency on Γ. Let (N, v1) and (N, v2) be two balanced
games with set of players N = {1, 2, 3} and characteristic functions as follows: v1(i) = 0
for all i ∈ N , v1(12) = v1(13) = v1(123) = 1 and v1(23) = 0, and v2(S) = v1(S), for
S 6= {13} and S 6= {23}, v2(13) = 0 and v2(23) = 1. Notice that C(N, v1) = {(1, 0, 0)}
and C(N, v2) = {(0, 1, 0)}. By core selection, σ(N, v1) = (1, 0, 0) and σ(N, v2) = (0, 1, 0).
Let N ′ = {1, 2}. By projected consistency,

σ
(
N ′, rN

′

F,(1,0,0)(v
1)
)

= (1, 0) ∈ C
(
N ′, rN

′

F,(1,0,0)(v
1)
)

and
σ
(
N ′, rN

′

F,(0,1,0)(v
2)
)

= (0, 1) ∈ C
(
N ′, rN

′

F,(0,1,0)(v
2)
)
.

But
(
N ′, rN

′

F,(1,0,0)(v
1)
)

=
(
N ′, rN

′

F,(0,1,0)(v
2)
)
, which leads a contradiction.

If we replace core selection by individual rationality, Hwang (2013) shows that there
is no single-valued solution satisfying simultaneously individual rationality and max con-
sistency, or individual rationality and complement consistency on Γ. However, individual
rationality and projected consistency are compatible by means of CI (see Theorem 6).
Thus, combining Theorem 5 and Hwang’s results we obtain the following corollary.
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Corollary 1. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection, individual rationality and either max consistency or complement consistency
or projected consistency.

Table 3 summarizes the (in)compatibilities of properties of rationality combined with
properties of consistency for single-valued solutions on Γ.

Table 3. (In)compatibilities of rationality and consistency on Γ

CS IR CS + IR
M-CON ν∗ × × (Cor. 1)
C-CON × (Th. 4) × × (Cor. 1)
P-CON × (Th. 5) CI (Th. 6) × (Cor. 1)

4 Rationality, monotonicity and consistency
The main issue of this section is to study if it is possible to combine for a single-valued
solution a property of rationality with a property of monotonicity and a property of
consistency.

Table 3 above shows that core selection can only be combined with max consistency,
and individual rationality with projected consistency. First, we focus on the compatibility
of individual rationality, projected consistency and monotonicity properties with respect
to the worth of the grand coalition.

4.1 Possibility results

We begin characterizing the family of single-valued solutions satisfying individual ratio-
nality, regular aggregate monotonicity and projected consistency introducing a general-
ization of CI.

Definition 2. Let f ∈ Fmon. The f − center of imputations, CIf , is defined as
follows: for all N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

CIfi (N, v) := v(i) + fi

(
N, v(N)−

∑
i∈N

v(i)
)
.

CIf can be interpreted as a two stage rule: after assigning to every player what
they can achieve for themselves alone, it distributes monotonically (but not necessarily
equally) what is left of the gains of cooperation. Note that if f = f̄ or f = fw we recover
CI or CIw, respectively.

In order to select the subset of CIf solutions that are projected consistent we intro-
duce the notion of consistent monotone path.8

8Not all CIf solutions are projected consistent. Let us show an example. Take a permutation π on
N. For all N ∈ N and all t ∈ R, define f ](N, t) = t · e{j}, being j ∈ N such that π(j) ≤ π(i) for all i ∈ N
if |N | is even, and π(j) ≥ π(i) for all i ∈ N if |N | is odd.
If the cardinality of N is even, f ] assigns all the amount t to the first player in N according to π;
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Definition 3. A monotone path f ∈ Fmon is said to be consistent if for all N ∈ N ,
all N ′ ⊂ N and all t ∈ R, it holds

fj

N ′, ∑
i∈N ′

fi(N, t)

 = fj(N, t) for all j ∈ N ′. (3)

Condition (3) has been used by Hokari (2002) to provide non-symmetric and non-
homogeneous generalizations of the egalitarian solution of Dutta and Ray (1989) on the
domain of convex games. It is not difficult to check that f̄ , fw and f̂π are consistent
monotone paths, while f ] is not (see footnote 8).

For our characterization result we need introduce the notion of additive path.
Definition 4. A monotone path f ∈ Fmon is said to be additive if for all N ∈ N and
all t, t′ ∈ R, it holds f(N, t+ t′) = f(N, t) + f(N, t′).

Examples of additive monotone paths are f̄ , fw, and f ], while f̂π is not.9

Theorem 6. A single-valued solution σ satisfies individual rationality, regular aggregate
monotonicity and projected consistency on Γ if and only if there exists an additive and
consistent monotone path f ∈ Fmon such that σ = CIf .
Proof. Let σ be a single-valued solution satisfying individual rationality, regular aggregate
monotonicity and projected consistent on Γ .

Let N ∈ N and (N, v) ∈ Γ. Define (N, v′) as v′(S) = v(S) for all S ⊂ N , and
v′(N) =

∑
i∈N v(i). By individual rationality, σi(N, v′) = v(i) for all i ∈ N . By regular

aggregate monotonicity, there exists a monotone path f ∈ Fmon such that, for all i ∈ N ,

σi(N, v) = σi(N, v′) + fi
(
N, v(N)− v′(N)

)
= v(i) + fi

(
N, v(N)−

∑
i∈N

v(i)
)
.

(4)
Let us see that f is additive. Let N ∈ N and t, t′ ∈ R. Consider three games

(N, v), (N, v′) and (N, v′′) defined as follows: for all S ⊂ N , v(S) = v′(S) = v′′(S),
v(N)− v′(N) = t and v′(N)− v′′(N) = t′. Then,

f(N, t+ t′) = f(N, (v′(N) + t)− (v′(N)− t′))
= f(N, v(N)− v′′(N))
= σ(N, v)− σ(N, v′′)
= σ(N, v)− σ(N, v′) + σ(N, v′)− σ(N, v′′)
= f(N, v(N)− v′(N)) + f(N, v′(N)− v′′(N))
= f(N, t) + f(N, t′),

otherwise, f ] assigns t to the last player in N according to π. Then, f ] ∈ Fmon.
Consider the single-valued solution CIf

]

and the game (N, v), with N = {1, 2, 3}, v(i) = 0 for all
i ∈ N , v(12) = v(13) = v(123) = 1 and v(23) = 0. Since |N | is odd, CIf

]

(N, v) = (0, 0, 1). Now,
take the projected reduced game

(
N ′, rN

′
F,x(v)

)
, being N ′ = {2, 3} and x = (0, 0, 1). Since |N ′| is even,

σ
(
N ′, rN

′
F,x(v)

)
= (1, 0) 6= (0, 1), contradicting projected consistency.

9Note that f̂π is consistent but not additive, and f ] is additive but not consistent.
Let us introduced a monotone path that is neither additive nor consistent. For all N ∈ N and all t ∈ R,

define f∗(N, t) := f̂π(N, t) if |N | ≤ 3, and f∗(N, t) := f̄(N, t) otherwise. According to f∗, different sets
of players reach different agreements on how to distribute t ∈ R.
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where third and fifth equalities follow from σ satisfying regular aggregate monotonicity.
To check that f is consistent, let N ∈ N , N ′ ⊂ N and t ∈ R. Consider a game (N, v)

such that v(N)−
∑
i∈N v(i) = t. Let us denote x = σ(N, v). For all j ∈ N ′, from (4) we

have
σj(N, v) = v(j) + fj

(
N, v(N)−

∑
i∈N

v(i)
)

= v(j) + fj (N, t) (5)

and

σj
(
N ′, rN

′
F,x(v)

)
= rN

′
F,x(v)(j) + fj

N ′, rN ′F,x(v)(N ′)−
∑
i∈N ′

rN
′

F,x(v)(i)

 . (6)

From the definition of the projected reduced game, the efficiency of σ and (4), we have

rN
′

F,x(v)(N ′)−
∑
i∈N ′

rN
′

F,x(v)(i) =
∑
i∈N ′

σi(N, v)−
∑
i∈N ′

v(i)

=
∑
i∈N ′

[
v(i) + fi

(
N, v(N)−

∑
i∈N

v(i)
)]
−
∑
i∈N ′

v(i)

=
∑
i∈N ′

fi

(
N, v(N)−

∑
i∈N

v(i)
)
,

(7)
and expression (6) becomes

σj
(
N ′, rN

′
F,x(v)

)
= v(j) + fj

N ′, ∑
i∈N ′

fi (N, t)

 . (8)

By projected consistency, expressions (5) and (8) must coincide and thus

fj(N, t) = fj

N ′, ∑
i∈N ′

fi(N, t)

 ,
which proves that f is consistent.

Hence, σ = CIf being f ∈ Fmon an additive and consistent monotone path.
To show the reverse implication, let σ be a single-valued solution on Γ such that

σ = CIf , for some additive and consistent monotone path f ∈ Fmon.
Let (N, v) be an essential game. Then, v(N) −

∑
i∈N v(i) ≥ 0 and thus, from the

monotonicity of f , fi (N, v(N)−
∑
i∈N v(i)) ≥ 0, for all i ∈ N . Hence, σi(N, v) =

v(i) + fi (N, v(N)−
∑
i∈N v(i)) ≥ v(i) for all i ∈ N , which proves individual rationality.

To see regular aggregate monotonicity consider two games (N, v), (N, v′) such that
v(S) = v′(S), for all S ⊂ N . Taking into account the additivity of f we have, for all
i ∈ N ,

σi(N, v)− σi(N, v′) = fi

(
N, v(N)−

∑
i∈N

v(i)
)
− fi

(
N, v′(N)−

∑
i∈N

v(i)
)

= fi

(
N, v(N)−

∑
i∈N

v(i)
)

+ fi

(
N,−v′(N) +

∑
i∈N

v(i)
)

= fi
(
N, v(N)− v′(N)

)
.
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This, together with f ∈ Fmon, proves regular aggregate monotonicity.
To check projected consistency, let (N, v) be a game and ∅ 6= N ′ ⊂ N . Let us denote

x = σ(N, v). For all j ∈ N ′ we have

σj
(
N ′, rN

′
F,x(v)

)
= rN

′
F,x(v)(j) + fj

N ′, rN ′F,x(v)(N ′)−
∑
i∈N ′

rN
′

F,x(v)(i)


= v(j) + fj

N ′, ∑
i∈N ′

fi

(
N, v(N)−

∑
i∈N

v(i)
)

= v(j) + fj

(
N, v(N)−

∑
i∈N

v(i)
)

= σj(N, v),

where the second equality comes from (7) and the last before from the consistency of f .
This proves projected consistency.

The properties in Theorem 6 are independent.10

Instances of single-valued solutions satisfying individual rationality, regular aggregate
monotonicity and projected consistency are CI and CIw. Hence, since CI is the unique
single-valued solution that obeys individual rationality and equal surplus division (The-
orem 1), individual rationality and equal surplus division imply projected consistency.

The next corollary, which comes straightforwardly from the proof of Theorem 6,
extends the characterization in Theorem 1 when we replace equal surplus division by
regular aggregate monotonicity.

Corollary 2. A single-valued solution σ satisfies individual rationality and regular ag-
gregate monotonicity on Γ if and only if there exists an additive monotone path f ∈ Fmon
such that σ = CIf .

It is worth to mention that CI f̂π satisfies individual rationality, aggregate monotonic-
ity and projected consistency but not regular aggregate monotonicity. Indeed, there are
other single-valued solutions which do not belong to the family of f − center of im-
putations solutions that also satisfy individual rationality, aggregate monotonicity and
projected consistency.11 Thus, there is a room to look for a characterization of the

10CIf
]

satisfies individual rationality and regular aggregate monotonicity but not projected consistency,
CI f̂

π satisfies individual rationality and projected consistency but not regular aggregate monotonicity
(since f̂π is not additive), and ED satisfies regular aggregate monotonicity and projected consistency but
not individual rationality.

11Define the single-valued solution ρ as follows. For all N ∈ N , all (N, v) ∈ Γ and all i ∈ N

ρi(N, v) :=
{

v(i) +
(
v(N)−

∑
i∈N v(i)

)
if i = i∗,

v(i) otherwise,

where i∗ ∈ N is such that v(i∗) ≥ v(i), for all i ∈ N, and i∗ ≤ j, for all j ∈ N with v(i∗) = v(j).
It is easy to verify that ρ satisfies individual rationality, aggregate monotonicity and projected

consistency. However, there is no f ∈ Fmon such that ρ = CIf . To check this, consider the
games (N, v1), (N, v2) with player set N = {1, 2} and characteristic functions: v1(1) = v2(2) = 1,
v1(2) = v2(1) = 0 and v1(N) = v2(N) = 2. Clearly, (a) ρ1(N, v1) = v1(1) + 1 and (b) ρ1(N, v2) = v2(1).
Suppose, on the contrary, that there exists f ∈ Fmon such that ρ = CIf . Then, from (a), f1(N, 1) = 1
and, from (b), f1(N, 1) = 0, getting a contradiction.
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class of single-valued solutions satisfying these three properties. To this aim, let us first
introduce some definitions.

Given (N, v) ∈ Γ, we define the associated game (N, vI) as follows: vI(S) = v(S)
for all S ⊂ N , and vI(N) =

∑
i∈N v(i). Notice that (N, v) can be written as v =

vI + (v(N)− vI(N)) · uN . Denote ΓI := {(N, v) ∈ Γ | v(N) =
∑
i∈N v(i)} .

Definition 5. A monotone ΓI − selection is a function F : ΓI → Fmon that associates
with each game (N, v) ∈ ΓI a monotone path F (N, v) ∈ Fmon.

By simplicity, and if there is no confusion, we denote F (N, v) by fv. Notice that
different games in the set ΓI may have associated different monotone paths.

Making use of the notion of a monotone ΓI − selection, we introduce the F − center
of imputations solution.

Definition 6. Let F be a monotone ΓI − selection. The F − center of imputations,
CIF , is defined as follows: for all N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

CIFi (N, v) := v(i) + fv
I

i

(
N, v(N)−

∑
i∈N

v(i)
)
.

The difference between CIF and CIf is that, for a given game (N, v), the former
distributes the amount v(N)−

∑
i∈N v(i) according to a monotone path fvI that depends

on (N, vI), while in CIf this amount is shared by means of a monotone path f , that
does not depends on the associated game (N, vI).

Next, we generalize the notion of consistent monotone paths.

Definition 7. A monotone ΓI − selection F is said to be consistent if for all N ∈ N ,
all (N, v) ∈ ΓI , all N ′ ⊂ N and all t ∈ R, it holds

f
(v|N′ )I
j

N ′, ∑
i∈N ′

fvi (N, t)

 = fvj (N, t) for all j ∈ N ′,

being
(
N ′, v|N ′

)
the subgame of (N, v) associated to N ′.

Now, we have all the tools to characterize the class of single-valued solutions satisfying
individual rationality, aggregate monotonicity and projected consistency.

Theorem 7. A single-valued solution σ satisfies individual rationality, aggregate mono-
tonicity and projected consistency on Γ if and only if there exists a consistent monotone
ΓI − selection F such that σ = CIF .

Proof. Let σ be a single-valued solution satisfying individual rationality, aggregate mono-
tonicity and projected consistency on Γ.

Define a monotone ΓI − selection F as follows. Take f ∈ Fmon. For all N ′ ∈ N and
all (N ′, v) ∈ ΓI , define

fv(N, t) :=
{
σ(N, v + t · uN )− σ(N, v) if N = N ′,
f(N, t) if N 6= N ′,

(9)
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for all N ∈ N and all t ∈ R.
Let us show that fv ∈ Fmon. Clearly, fv(N, t) ∈ RN ,

∑
i∈N f

v
i (N, t) = t and

fv(N, 0) = (0, . . . , 0) ∈ RN , for all N ∈ N and t ∈ R. Moreover, if t′ ∈ R is such
that t′ > t and N = N ′, then

fv(N, t′) = σ(N, v + t′ · uN )− σ(N, v)
≥ σ(N, v + t · uN )− σ(N, v)
= fv(N, t)

where the inequality follows from the aggregate monotonicity of σ. If N 6= N ′, we have
f(N, t′) ≥ f(N, t) since f ∈ Fmon. Consequently, fv ∈ Fmon for all (N ′, v) ∈ ΓI , and
thus F is a monotone ΓI − selection.

Let N ∈ N and (N, v) ∈ Γ. Since (N, v) can be expressed as v = vI + (v(N) −
vI(N)) · uN , it is easy to see that

σ(N, v)− σ(N, vI) = fv
I

(
N, v(N)−

∑
i∈N

v(i)
)
,

being fvI as defined in (9).
By individual rationality, σi

(
N, vI

)
= v(i) for all i ∈ N , and thus

σi (N, v) = v(i) + fv
I

i

(
N, v(N)−

∑
i∈N

v(i)
)
. (10)

Next, we show that F is consistent. Let N ∈ N , (N, v) ∈ ΓI , N ′ ⊂ N, and t ∈ R.
Define the game (N, v′) as v′ = v + t · uN . Notice that (v′)I = v. Let us denote
x = σ(N, v′). From (10), for all j ∈ N ′ we have

σj(N, v′) = v′(j) + f
(v′)I
j

(
N, v′(N)−

∑
i∈N

v′(i)
)

= v′(j) + fvj (N, t) (11)

and

σj
(
N ′, rN

′
F,x(v′)

)
= rN

′
F,x(v′)(j) + f

(
rN
′

F,x(v′)
)I

j

N ′, rN ′F,x(v′)(N ′)−
∑
i∈N ′

rN
′

F,x(v′)(i)


= v′(j) + f

(v|N′)I
j

N ′, ∑
i∈N ′

fvi

(
N, v′(N)−

∑
i∈N

v′(i)
)

= v′(j) + f
(v|N′)I
j

N ′, ∑
i∈N ′

fvi (N, t)

 ,
(12)

where the last before equality comes from (7) in the proof of Theorem 6, taking into
account (10) and the fact that

(
N ′,

(
rN
′

F,σ(v′)
)I)

=
(
N ′,

(
v|N ′

)I)
.
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By projected consistency, (11) and (12) must coincide and thus

fvj (N, t) = f
(v|N′)I
j

N ′, ∑
i∈N ′

fvi (N, t)

 ,
which proves that F is consistent.

Hence, σ = CIF being F a consistent monotone ΓI − selection.
To show the reverse implication, let σ be a single-valued solution on Γ such that

σ = CIF , for some consistent monotone ΓI − selection F . Hence, for all N ∈ N , all
(N, v) ∈ Γ and all i ∈ N it holds

σi(N, v) = v(i) + fv
I

i

(
N, v(N)−

∑
i∈N

v(i)
)
. (13)

From (13), and taking into account that F is consistent, it is not difficult to check
individual rationality and projected consistency by using symmetric arguments as in the
proof of Theorem 6. Aggregate monotonicity comes from fv

I ∈ Fmon.

The properties in Theorem 7 are independent.12

The next corollary comes straightforwardly from the proof of Theorem 7, and ex-
tends the characterizations in Theorem 1 and Corollary 2 when we consider aggregate
monotonicity instead of either equal surplus division or regular aggregate monotonicity.

Corollary 3. A single-valued solution σ satisfies individual rationality and aggregate
monotonicity on Γ if and only if there exists a monotone ΓI − selection F such that
σ = CIF .

4.2 Impossibility results

Despite these positive results, unfortunately we find some problems to combine core
selection, max consistency and monotonicity properties with respect to the worth of the
grand coalition.

12ED satisfies aggregate monotonicity and projected consistency but not individual rationality, and
ϕ satisfies individual rationality and aggregate monotonicity but not projected consistency. Next we
introduce a single-valued solution that satisfies individual rationality and projected consistency but not
aggregate monotonicity.

Let g : N × R →
⋃
N∈N RN be a function defined as follows. For all N ∈ N and all t ∈ R, let

SN (t) = {i ∈ N | i ≥ |t|}. If SN (t) 6= ∅, choose i∗ ∈ SN (t) to be such that i∗ ≤ j, for all j ∈ SN (t). If
SN (t) = ∅, choose i∗ ∈ N to be such that i∗ ≥ j, for all j ∈ N . Then, define g(N, t) = t · e{i∗}.
The function g satisfies conditions (i) and (ii) in the definition of a monotone path (Definition 1), but

not condition (iii). Moreover, g satisfies expression (3) in the definition of consistent monotone path
(Definition 3).

Let σg be the single-valued solution on Γ defined as follows: for all N ∈ N , all (N, v) ∈ Γ and all
i ∈ N ,

σgi (N, v) := v(i) + gi

(
N, v(N)−

∑
i∈N

v(i)

)
.

Then, σg satisfies individual rationality and projected consistency but not aggregate monotonicity.
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Theorem 8. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection, regular aggregate monotonicity and max consistency.

Proof. Suppose, on the contrary, that there exists a single-valued solution σ satisfying
core selection, regular aggregate monotonicity and max consistency on Γ.

Let {(N, vk)}k∈N be a family of balanced games defined as follows: for each k ∈
N = {1, 2, 3}, vk(i) = 0 for all i ∈ N , vk(ik) = 1 for all i ∈ N \ {k}, vk(ij) = 0 for all
i, j ∈ N \ {k}, and vk(N) = 3. For each k ∈ N , let (N, vk∗ ) be given by vk∗ = vk − 2 · uN .

By regular aggregate monotonicity, there exists f ∈ Fmon such that σ(N, v1) −
σ(N, v1

∗) = f(N, v1(N)−v1
∗(N)). Since C(N, v1

∗) = {(1, 0, 0)}, by core selection, σ(N, v1
∗) =

(1, 0, 0) and thus σ(N, v1) = (1, 0, 0) + f(N, 2). Following similar arguments, and taking
into account that C(N, v2

∗) = {(0, 1, 0)} and C(N, v3
∗) = {(0, 0, 1)}, we can write

σ(N, v2) = (0, 1, 0) + f(N, 2) and σ(N, v3) = (0, 0, 1) + f(N, 2). (14)

We claim that fi(N, 2) = 0 for all i ∈ N , in contradiction with
∑
i∈N fi(N, 2) = 2.

First, we see that f1(N, 2) = 0. Since f ∈ Fmon, we have f1(N, 2) ≥ 0. Let us denote
xk = σ(N, vk), k ∈ {1, 2, 3}, and take N ′ = {2, 3}. Two cases can be distinguished:

• Case 1: 1− f1(N, 2) ≤ 0
In this situation, for all S ⊆ N ′, it holds that rN ′DM,x2(v2)(S) = rN

′

DM,x3(v3)(S).
Thus,

σ
(
N ′, rN

′

DM,x2(v2)
)

= σ
(
N ′, rN

′

DM,x3(v3)
)
. (15)

By max consistency, and considering expression (14), we obtain

σ2
(
N ′, rN

′

DM,x2(v2)
)

= 1 + f2(N, 2) and σ2
(
N ′, rN

′

DM,x3(v3)
)

= f2(N, 2),

in contradiction with (15).

• Case 2: 1− f1(N, 2) > 0
In this situation, it holds that

rN
′

DM,x2(v2)(2) = rN
′

DM,x3(v3)(3) = 1− f1(N, 2),
rN
′

DM,x2(v2)(3) = rN
′

DM,x3(v3)(2) = 0 and
rN
′

DM,x2(v2)(N ′) = rN
′

DM,x3(v3)(N ′) = 3− f1(N, 2).

For each k ∈ N ′ = {2, 3}, consider the game
(
N ′,

(
rN
′

DM,xk
(vk)

)
∗

)
with character-

istic function
(
rN
′

DM,xk
(vk)

)
∗

= rN
′

DM,xk
(vk)− 2 · uN ′ . Thus,

C
(
N ′,

(
rN
′

DM,x2(v2)
)
∗

)
= {(1− f1(N, 2), 0)} and

C
(
N ′,

(
rN
′

DM,x3(v3)
)
∗

)
= {(0, 1− f1(N, 2))}.

By core selection, we have

σ
(
N ′,

(
rN
′

DM,x2(v2)
)
∗

)
= (1− f1(N, 2), 0) and
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σ
(
N ′,

(
rN
′

DM,x3(v3)
)
∗

)
= (0, 1− f1(N, 2)).

By core selection and regular aggregate monotonicity, we can write:

σ
(
N ′, rN

′

DM,x2(v2)
)

= (1− f1(N, 2), 0) + f(N ′, 2) and

σ
(
N ′, rN

′

DM,x3(v3)
)

= (0, 1− f1(N, 2)) + f(N ′, 2).

Now, applying max consistency and taking into account expression (14), we obtain
f3(N, 2) = f3(N ′, 2) and f2(N, 2) = f2(N ′, 2). But due to f ∈ Fmon, we have
2 =

∑
i∈N ′ fi(N ′, 2) = f2(N, 2) + f3(N, 2), which implies f1(N, 2) = 0.

Following symmetric arguments for N ′ = {1, 3} and N ′ = {1, 2} we obtain f2(N, 2) = 0
and f3(N, 2) = 0, respectively, which proves the claim. But then,

∑
i∈N fi(N, 2) = 0, in

contradiction with f ∈ Fmon.

The properties in Theorem 8 are compatible two by two.13

Since equal surplus division implies regular aggregate monotonicity, a direct conse-
quence of Theorem 8 is the following.

Corollary 4. For |N | ≥ 3 there is no single-valued solution on Γ that satisfies core
selection, equal surplus division and max consistency.

It is not difficult to verify that Theorem 8 remains valid on ΓB. However, on the do-
main of convex games core selection, regular aggregate monotonicity and max consistency
are compatible.

Let π be a permutation on N. The marginal contribution solution relative to
π, denoted by mcπ, is defined as follows: for all N ∈ N , all (N, v) ∈ Γ and all i ∈ N

mcπi := v ({j ∈ N |π(j) ≤ π(i)})− v ({j ∈ N |π(j) < π(i)}) .

It is easy to check that mcπ satisfies regular aggregate monotonicity according to fπ ∈
Fmon as defined in Section 2. Moreover, it is well-known that mcπ satisfies core selection
and max consistency on ΓC (see, for instance, Hokari and van Gellekom, 2002).

By contrast, the next example shows that core selection, equal surplus division and
max consistency are incompatible on the domain of convex games for |N | ≥ 3.

Example 1. Suppose, on the contrary, that there exists a single-valued solution σ sat-
isfying core selection, equal surplus division and max consistency on ΓC .

Let (N, v) be a convex game with set of players N = {1, 2, 3} and characteristic
function as follows: v(12) = v(123) = 1 and v(S) = 0 otherwise. Note that for all
x ∈ C(N, v), x3 = 0. Let us denote x = σ(N, v). By core selection, x3 = 0. Take
N ′ = {1, 2} and consider the max reduced game

(
N ′, rN

′
DM,x(v)

)
, being rN ′DM,x(v)(1) =

rN
′

DM,x(v)(2) = 0 and rN ′DM,x(v)(N ′) = 1. Clearly,
(
N ′, rN

′
DM,x(v)

)
∈ ΓC . Now define the

convex game
(
N ′,

(
rN
′

DM,x(v)
)
∗

)
as
(
rN
′

DM,x(v)
)
∗

= rN
′

DM,x(v) − uN ′. By core selection,

13ν∗ satisfies core selection and max consistency, ν̄∗ satisfies core selection and equal surplus division
and ED satisfies equal surplus division and max consistency.
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σ
(
N ′,

(
rN
′

DM,x(v)
)
∗

)
= (0, 0). Thus, by equal surplus division σ

(
N ′, rN

′
DM,x(v)

)
=
(

1
2 ,

1
2

)
and, by max consistency, σ(N, v) =

(
1
2 ,

1
2 , 0
)
.

Now, let (N, v′) be the convex game given by v′ = v + 3 · uN . By equal surplus divi-
sion, σ(N, v′) =

(
3
2 ,

3
2 , 1
)

= y ∈ C(N, v′). Take N ′ = {1, 3}. Then,
(
N ′, rN

′
DM,y(v′)

)
∈

ΓC with rN
′

DM,y(v′)(1) = rN
′

DM,y(v′)(3) = 0 and rN
′

DM,y(v′)(N ′) = 5
2 . Define the con-

vex game
(
N ′,

(
rN
′

DM,y(v′)
)
∗

)
as
(
rN
′

DM,y(v′)
)
∗

= rN
′

DM,y(v′) − 5
2 · uN ′. By core selec-

tion, σ
(
N ′,

(
rN
′

DM,y(v′)
)
∗

)
= (0, 0) and, by equal surplus division, σ

(
N ′, rN

′
DM,y(v′)

)
=(

5
4 ,

5
4

)
6=
(

3
2 , 1
)
, which contradicts max consistency.

Table 4 summarizes the (in)compatibilities of properties of rationality combined with
properties of consistency and properties of monotonicity for single-valued solutions on
Γ.

Table 4. (In)compatibilities of rationality, consistency and monotonicity on Γ

ESD RAM AM
IR + P-CON CI CIf (Th. 6) CIF (Th. 7)
CS + M-CON × (Th. 8) × (Th. 8) Open

5 Final remarks
We have studied the compatibility between rationality properties (core selection and in-
dividual rationality), properties of monotonicity with respect to the worth of the grand
coalition (equal surplus division, regular aggregate monotonicity and aggregate mono-
tonicity) together with consistency properties (max consistency, complement consistency
and projected consistency). Although our results are stated on the domain of all games
Γ, some of them remain valid on the domain of balanced games ΓB or on the domain of
essential games ΓE . In particular, Theorems 1, 2, 3, 6 and 7, and Corollaries 1, 2 and 3
hold on ΓE . Moreover, Theorems 4 and 5, and Corollary 4 hold on ΓB. It is worth to
stress that for games with at most two players, Sh satisfies all the properties we have
worked with.

Theorem 8 states that core selection, regular aggregate monotonicity and max consis-
tency are incompatible on the domain of all games and, as we have commented before,
also in the domain of balanced games. Thus, core selection and max consistency can
only be combined with non-regular monotonicity properties. On the domain of balanced
games (and also on the domain of all games) with at most three players, core selection,
aggregate monotonicity and max consistency are compatible by means of ν∗ (Housman
and Clark, 1998). However, it is still an open question if core selection, aggregate mono-
tonicity and max consistency are compatible on the domain of balanced games with at
least four players.

Finally, Corollary 1 opens another interesting question: which kind of consistency
principles are compatibles with core selection and individual rationality together?
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