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Abstract

In the present paper we characterize the optimal use of Poisson signals to establish

incentives in the “bad” and “good”news models of Abreu et al. [1]. In the former,

for small time intervals the signals’quality is high and we observe a "selective" use of

information; otherwise there is a “mass”use. In the latter, for small time intervals the

signals’quality is low and we observe a "fine" use of information; otherwise there is a

“non-selective”use.

JEL: C73, D82, D86.

KEYWORDS: Repeated Games, Frequent Monitoring, Public Monitoring, Infor-

mation Characteristics.

1 Introduction

Most economic situations of interest differ in the frequency of interaction between the in-

volved parties. It tends to be the rule rather than the exception. This fact affects the

provision of incentives and the value of these relations.

In the present paper we study the Abreu et al. [1] repeated game information structure

for varying frequencies of play other than the zero-limit case. It is not our goal to present a

general theory, but rather we illuminate some conceptual points through a simple game. A

small time interval favors coordination through discounting. However, the effect of time on

the [Poisson] distribution of public signals is crucial and depends on how actions feedback

∗Department of Economics; Reus (Barcelona); Spain; E-mail: superacosta@hotmail.com.
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into signals (Faingold and Sannikov [2], Fudenberg and Levine [4], [5], Osório [9], [10], and

Sannikov and Skrzypacz [12], [13], study the limit case with Brownian signals).

The limit case often allows for a tractable analysis and provides meaningful insights.

Yet, its limits have long been recognized. There is a clear need for a better understanding of

what happens outside the limit. However, closed form payoff characterizations are diffi cult

and conclusions must be based in numerical observations. This issue would not be relevant

if we would not have found interesting and completely new trade-offs between information

quantity and quality. Actually, this might be the most relevant issue in this literature.

Our findings can be summarized as follows. We start characterizing the best symmetric

equilibrium payoff in terms of the optimal use of Poisson signals.

In the "bad" news model extreme realizations are more likely to be interpreted as
suggesting defection. Signals are more informative for small ∆. In small but increasing ∆,

incentives are based on a large but decreasing set of signals chosen from the ones with higher

quality. There is a "selective" use of information. The process continues until the signals’
quality deteriorates and the deviation incentives through discounting become strong enough.

The punishment decision becomes based on an increasing set of signals. There is a "mass"
use of information.

In the "good" news model extreme realizations are more likely to be interpreted as
suggesting cooperation. The signals quality improves with ∆. Away from the limit case,

for suffi ciently small but increasing ∆ (in a small region), incentives are based on a small

and decreasing set of signals of improved quality. In this scenario there is a "fine" use of
information. For relatively larger time intervals, decisions are based on an increasing number
of signals. In this region occurs a "non-selective" use of information.
A consequence of these trade-offs between discounting, information quality and quantity

is that the payoffs are neither monotonic nor smooth in ∆.

Related literature - In the "bad" news model, Abreu et al. [1] show that equilibrium

payoffs above the static Nash can be sustained in the limit. Fudenberg and Levine [4]

present a Brownian "equivalent" model by assuming that a deviation increases the volatility

of the process. They show that full effi ciency is possible in the limit. The way Poisson and

Brownian signals provide incentives is different (Fundenberg and Levine [4], [5]; Fudenberg

and Olszewski [6]; Osório [10]). The Brownian "equivalent" full effi cient result is possible

because the diffusion is a frequent events process and reliable inference about extreme events

is possible in very small time intervals.

In the "good" news model, Abreu et al. [1] found that the equilibrium degenerates in

the limit. Fudenberg and Levine [4] suggest a Brownian "equivalent" formulation in which
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C D
C π, π − (π′ − π) , π′

D π′,− (π′ − π) 0, 0

Table 1: The Prisoners’Dilemma Stage Game Payoffs.

a deviation decreases the volatility. They show the existence of a non-trivial but not full

effi cient limit payoff.

The present paper also relates with the literature on information precision in repeated

games, see Kandori [8]. Using a time varying information structure Kamada and Kominers

[7] show an informational paradox. Our argument is different but we also found that more

information does not necessarily leads to better incentives and might be substituted by

information quality, and vice versa.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

characterizes the best symmetric payoff. Section 4 study the effect of varying ∆. Section 5

discusses non-limit incentives and payoffs. All of the proofs are relegated to an appendix.

2 The Model

We consider the prisoners’dilemma stage game payoffs in Table 1, with π′ > π > 0. The

profile (C,C) returns the best symmetric payoff.

At moments in time 0,∆, 2∆, ..., players simultaneously take their actions. In the subse-

quent period, an imperfect signal about these actions is commonly observed.

The common discount factor is δ ≡ e−r∆, where r ∈ (0,∞) denotes the discount rate.

The results generalize straightforwardly for more general discount factors, payoffs and games.

The public signals follow an homogeneous Poisson process with rate parameter β in case

of mutual cooperation (C,C) , and µ in case of defection (C,D) or (D,C) . The probability

of occurrence of a particular number of news or events k = 0, 1, ..., are, respectively,

pk ≡ (β∆)ke−β∆/k! and qk ≡ (µ∆)k e−µ∆/k!. (1)

Let Π denotes the set of events that suggest cooperation, see the example 2. The probability

of observing any number k ∈ Π is given by
∑

k∈Π pk in case of cooperation, and by
∑

k∈Π qk

in case of defection.

As in Abreu et al. [1], we consider the "bad" news model (µ > β) : large values of

k (many bad news) are more likely to be interpreted as signaling defection. The "good"
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news model (β > µ) : low values of k (little good news) are more likely to be interpreted

as signaling defection. Cooperation has the opposite interpretation.

We look at profiles of strategies that form a perfect public equilibrium (PPE). A strategy

is public if it depends only on the public history [of signals] and not on the private history [of

signals and individual actions]. A profile of public strategies that induces Nash equilibrium

on the continuation game from that time on is called a PPE.

3 The Best Symmetric Equilibrium

In the prisoner’s dilemma grim trigger strategies are optimal. Initially, player cooperate, but

as soon as a signal suggesting defection is observed, both will defect for the remainder of the

game. However, since the Poisson is a discrete probability distribution; α− grim strategies

are required to make the enforceability constraint (3) to bind. After the occurrence of a

given event k = 0, 1, ..., players coordinate the punishment decision on a public randomiza-

tion device, which effectively punishes with probability αk ∈ [0, 1] , and forgives otherwise.

Therefore, the set of effective punishment probabilities is defined as α ≡ {α0, α1, ..., α∞} .
The normalized value of the infinitely repeated game is given by

v = (1− δ) π + δv
∑

k∈Π pk (1− αk) . (2)

It is a convex combination between the instantaneous cooperative payoffand the continuation

value. This structure is enforceable if

v ≥ (1− δ) π′ + δv
∑

k∈Π qk (1− αk) . (3)

To study the non-limit case we need to complete Propositions 1 and 2 in Abreu et al. [1]

by specifying the optimal choice of the signals in Π and effective punishment probabilities α

for any frequency of play.

Proposition 1 Given the optimal pair of sets, Π = {0, 1, ..., K − 1} and α = {0, ..., 0, αK , 1, ..., 1}
for the "bad" news model, and Π = {K + 1, ...,∞} and α = {1, ..., 1, αK , 0, ..., 0} for the
"good" news model, the best symmetric payoff is given by

v = π − (π′ − π)/(lK − 1), (4)

where

lK =
1−

(∑
k∈Π qk + (1− αK)qK

)
1−

(∑
k∈Π pk + (1− αK)pK

) , (5)
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and

αK = 1−
π
(
1− δ

∑
k∈Π qk

)
− π′

(
1− δ

∑
k∈Π pk

)
δ (πqK − π′pK)

∈ (0, 1] . (6)

For instance, in the "bad" news model incentives use the higher magnitude events because

qk+1/pk+1 > qk/pk for all k. Therefore, if the observation k = K + 1 suggests defection, so

does all the other numbers of higher magnitude (i.e., αk = 1 for all k = K + 1, K + 2, ...).

On the other hand, if the observation k = K− 1 is considered as signaling cooperation, then

all the other numbers of smaller magnitude must signal cooperation as well (i.e., αk = 0 for

all k = 0, 1, ..., K − 1). Finally, the observation k = K implies that punishment occurs with

probability αK . A similar reasoning applies to the "good" news model.

In order to get a better intuition consider the following example.

Example 2 Let π = 2, π′ = 3, r = 0.1 and ∆ = 5.

"Bad" news model with µ = 1.7 > β = 1 : in equilibrium we have K = 9, Π =

{0, 1, ..., 8} and α = {0, ..., 0, 0.33, 1, ..., 1} (for completeness v = 1.87). In other words, the

events k = 10, 11, ..., suggest defection and are punished with probability one, while the events

k = 0, 1, ..., 8, suggest cooperation and are punished with zero probability. The event k = 9 is

punished with probability α9 = 0.33.

"Good" news model with β = 3 > µ = 1 : in equilibrium we have K = 4, Π =

{5, 6, ...,∞} and α = {1, 1, 1, 1, 0.34, 0, ..., 0} (for completeness v = 1.99). In other words,

the events k = 0, 1, 2, 3, suggest defection and are punished with probability one, while the

events k = 5, 6, ..., suggest cooperation and are punished with zero probability. The event

k = 4 is punished with probability α4 = 0.34.

Following the discussion, the cutoff event k = K draws the frontier between signals

suggesting cooperation and punishment.

Definition 3 We say that a non-trivial equilibrium exists if αK ∈ (0, 1] enforces cooperation.

Note that for a given K, as we vary r or ∆, so thus the punishment probability αK in

the interval [0, 1] . We have the following continuity property.

Corollary 4 In the "bad" news model, αK = 0⇔ αK+1 = 1 and αK = 1⇔ αK−1 = 0.

In the "good" news model, αK = 1⇔ αK+1 = 0 and αK = 0⇔ αK−1 = 1.

In other words, for instance in the "bad" news model, monitoring with the set Π =

{0, 1, ..., K − 1} and punish the event k = K with probability zero, is the same as monitoring

with the set Π = {0, 1, ..., K} and punish the event k = K + 1 with probability one.
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4 Varying the Time Interval ∆

In order to understand how information is used to provide incentives we study the behavior

of the function αK for varying ∆.

Note that we say that information quantity increases if the punishment probability
increases or the number of events in the set Π decreases.

Proposition 5 Suppose that π (µ+ r) > π′ (β + r) . In the non-trivial "bad" news equilib-

rium, ∂αK/∂∆ < 0 for small ∆, and ∂αK/∂∆ > 0 for large ∆, with K > 0.

In the non-trivial "good" news equilibrium, ∂α0/∂∆ < 0 for small ∆ > 0, and ∂αK/∂∆ >

0 for large ∆, with K <∞.

Corollary 6 In a non-trivial equilibrium, while ∂αK/∂∆ < 0 the cardinality of the set Π

weakly increases, while if ∂αK/∂∆ > 0 the cardinality of the set Π weakly decreases when ∆

increases.

These results show the effect of time on the use of information quantity for the provision

of incentives. The full picture requires the consideration of information quality effects.

5 Non-limit Incentives and Payoffs

When r decreases players become more patient, we can add more events to the set Π, and

payoffs improve monotonically, Proposition 4 in Abreu et al. [1]. For varying ∆ the result

is less clear cut because of the mixture of trade-offs between discounting and information

[quality and quantity]. These aspects are tractable in the limit case in Abreu et al. [1] but

not for other values of ∆.

"Bad" news model - Signals are more informative for small ∆. When ∆ is small the

deviation incentives are low and the most likely signals are the low magnitude ones, for that

reason K can be small (e.g., for ∆ = 0.05 we have K = 1 and Π = {0}). The punishment
decision uses a large number of events, i.e., the most unlikely but more informative [high

magnitude] events.

As ∆ increases, incentives are based on a decreasing set of signals chosen among the most

informative ones. Information quantity (number of signals) is exchanged for information

precision. We observe a "selective" use of information. In this region the less informative
but more likely signals (the lower magnitude ones) are used to create value (e.g., for ∆ = 2

we have K = 5 and Π = {0, ..., 4}). For that reason the payoffs tend to increase.
The process continues until the signals’quality deteriorates and the deviation incentives

through discounting become strong enough. In this case, incentives require an increasing use
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of information quantity (i.e., the punishment decision is based on a large set of signals). We

observe a "mass" use of information. The set Π decreases and payoffs fall.

For suffi ciently large ∆ the incentives collapse and the equilibrium degenerates. Figure

3 shows the punishment probability and number of signals used to create value for varying

∆. Figure 1 shows the payoffs for varying ∆. They increase for K = 1. They have a u-shape

for K = 2, ..., 9. They are concave decreasing for K = 10. The largest payoff is achieved with

α7 = 0 or α8 = 1, i.e., at the coordinate (∆, v) = (4.35, 1.88) .

"Good" news model - The low magnitude events are the most informative and signals
quality improves with ∆. In spite of the low deviation incentives, for small time intervals

information quality is so bad that the equilibrium degenerates. The diffi culty is the lack of

observed signals. Moreover, the most likely event is k = 0 and defection makes it even more

likely to occur, for that reason monitoring collapses.

For suffi ciently small ∆ but away from the limit, it might be possible to sustain non-

trivial equilibria. The punishment probability decreases together with an improvement in

quality. This scenario occurs in a small region, e.g., the point∆ = 0.25 in Figure 4 belongs to

this region. The low and very specific number of employed signals used to provide incentives
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corresponds to a situation of "fine" [very specialized] information usage.
For relatively larger time intervals, the punishment decision is based on an increasing

number of low magnitude signals. For instance, from ∆ = 4 to ∆ = 5, we move from

K = 3 to K = 4. Note that in spite of Π decreases from {4, ...,∞} to {5, ...,∞} , payoffs
may increase because of the signals improved quality. In this region we observe a "non-
selective" information usage.
For suffi ciently high ∆ the equilibrium degenerates. The informational gains do not

compensate the fall in discounting. Figure 4 shows the punishment probability and the

signals used to provide incentives for varying ∆. Figure 2 shows the payoffs for varying ∆.

The payoffs increase for K = 0, They present a u-shape for K = 1, ..., 13, and are convex

decreasing for K = 14, ..., 19. The largest payoff is achieved at α9 = 1 or α10 = 0, i.e., the

coordinate (∆, v) = (8.43, 1.99) . This observation is consistent with Abreu et al. [1], i.e.,

time lags favor the provision of incentives and payoffs. Fudenberg et al. [3] exploit this

argument to show a non-limit folk theorem.

Final comments
1) In both models, for small (respectively, large) ∆ the punishment probability is neg-

atively (respectively, positively) sloped. Therefore, a shift in the slope must occur at some

point as stated in Proposition 5.

2) In a given time interval, an event k may be unlikely for one of two reasons. Either,

time has passed and other larger magnitude events have become more likely, or the other

way around, i.e., it has not passed enough time to make that signal likely. Therefore, each

event has an interval where it is more likely to occur. This aspect is specific to the Poisson

process.

3) Surprisingly, payoffs are neither monotonic nor smooth in ∆.We may observe an early

decrease and a later increase in payoffs, creating a u-shape, see Figure 1. It is a consequence

of the fact that K is discrete, and the trade-offs between discounting, information quality

and quantity, and the associated effects on the punishment probability. Nonetheless, overall

there is a trend for the fine (mass) use of information to improve (decrease) payoffs, while

the selective and non-selective uses may reproduce both trends.
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Appendix: Proofs of Propositions

Proof of Propositions 1. Replace the LHS of (3) by (2) to obtain,

v ≥ (1− δ) (π′ − π) /δ
∑

k∈Π (pk − qk) (1− αk) . (7)

Our objective is to maxα={α0,α1,...} (2) subject to (7) binding and αk ∈ (0, 1] . In the "bad"

news model we have pk > qk for small k and pk < qk for large k. In the former (latter,

respectively), the observation of a small (big, respectively) event k is more likely if there

is cooperation (defection, respectively). We want the largest no punishment probability

without breaking incentives. Therefore, starting with k = 0 and while pk > qk, we add

numbers to Π. Consequently, the denominator on the RHS of (7) increases and the associated

ratio decreases. When pk < qk, the addition of every new signal decreases the denominator

on the RHS and increases the ratio in (7). At a certain point, inequality (7) fails for Π =

{0, 1, ..., K} , but it is satisfied for Π = {0, 1, ..., K − 1} . Therefore, we must find some
αK ∈ (0, 1] such that (7) binds. Moreover, αk = 1 for k > K and αk = 0 for k < K. In the

"good" news model the argument is similar. In this case, pk < qk for small k and pk > qk for

large k. Start from the largest magnitude k (infinite) adding events to Π. At a certain point,

the inequality (7) holds for Π = {K + 1, ...,∞} , but fails for Π = {K, ...,∞} with 0 ≤ K.

Therefore, in a binding equilibrium we must have αK ∈ (0, 1] , αk = 0 for k > K, and αk = 1

for k < K. Now, optimal behavior implies that (2) and (3) become

v = (1− δ) π + δv
(∑

k∈Π pk + pK (1− αK)
)
,

and

v ≥ (1− δ) π′ + δv
(∑

k∈Π qk + qK (1− αK)
)
,

respectively. The solution to this system of two equations (with the latter holding with

equality) and two unknowns (v and αK) returns (4) (with (5)), and (6).

Proof of Proposition 5. For suffi ciently large∆ in the infinitesimal neighborhood between

a non-trivial and a trivial equilibrium, the monitoring technology must be tightening. In

other words, what is true for large r (Corollary 4 and monotonicity of Proposition 3 in Abreu

et al. [1]) must be true for large ∆, i.e., ∂αK/∂∆ > 0.

The next step is to consider the behavior for small ∆. Start by notice that we can-

not have a K = 0 in a "bad" news equilibrium, since πq0 > π′p0 we have α0 = 1 +
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(π′ − π) /δ (πq0 − π′p0) > 1, an impossibility. In the case K = 1, we have,

α1 = 1−
(
π
(
1− δe−µ∆

)
− π′

(
1− δe−β∆

))
/δ (πq1 − π′p1) ,

which has an asymptote at ∆a = ln (πµ/π′β) / (µ− β) > 0 for πµ > π′β. Therefore, if

∆ ↑ ∆a we have α1 → ±∞, and if ∆ ↓ 0 we have α1 → r (π′ − π) / (πµ− π′β) , which is

smaller than the unit for π (µ+ r) > π′ (β + r) implying πµ > π′β. In the general case, α1

decreases monotonically in ∆ ∈ (0,∆a) and hits zero at some point in this interval, i.e.,

∂α1/∂∆ < 0. In the case any K ≥ 2, assuming monotonicity and while ∆ is suffi ciently

small, we have ∂αK/∂∆ < 0 (αK has an asymptotes, at ∆ ↓ 0 with αK ↑ ∞, and at ∆ ↑ ∆K

with αK ↓ −∞).
The last step is to connect small with large ∆. Therefore, by corollary 4, for ∆ suffi ciently

large there must be a shift from ∂αK/∂∆ < 0 to ∂αK/∂∆ > 0 (this αK has an u-shape in

∆ with αK = 1 at the extreme points). Finally, note that when π (µ+ r) < π′ (β + r) the

equilibrium degenerates for small ∆ ↓ 0, but it might exist for large ∆.

In the "good" news model, α0 is given by,

α0 =
(
1− e−r∆

)
(π′ − π) /e−r∆

(
πe−µ∆ − π′e−β∆

)
,

and has a zero root for ∆ ↓ 0, with ∂α0/∂∆ = −r at the limit. Therefore, α0 /∈ (0, 1] for

small ∆. However, for ∆ larger than the asymptote point ∆a = ln (π′/π) / (β − µ) > 0, we

have α0 > 0. Note that ∂α0/∂∆ < 0 at α0 = 1 for small ∆ > ∆a, to see it, take ∆ ↓ ∆a

to obtain α0 ↑ ∞. Note also that ∂α0/∂∆ > 0 at α0 = 1 for large ∆ > ∆a, to see it, take

∆ ↑ ∞ and observe that α0 ↑ ∞. Since α0 is continuous and differentiable in ∆ ∈ (∆a,∞) ,

then α0 must have a u-shape and a minimum in this interval. If at the minimum α0 < 1,

then we must have two values of ∆ > ∆a such that α0 = 1. Therefore, following Corollary 4

and while enforceability holds ∂αK/∂∆ > 0 for K > 0.
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