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Estimating individual effects and their spatial spillovers in

linear panel data models:

Public capital spillovers after all?∗
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QURE-CREIP Department of Economics, Rovira i Virgili University

Abstract

Individual-specific effects and their spatial spillovers are not generally identified in linear

panel data models. In this paper we present identification conditions under the assumption

that covariates are correlated with the individual-specific effects and derive appropriate

GLS and IV estimators for the resulting correlated random effects spatial panel data model.

We also illustrate the proposed estimators using a Cobb-Douglas production function

specification and US state-level data from Munnell (1990). As in previous studies, we

find no evidence of public capital spillovers. However, public capital does play a role in

the positive “outwards” spatial contagion of the individual effects.
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1 Introduction

Does public capital have an effect on private output? And if it does, does this effect spill over

nearby geographical areas? Using US state (and/or county) panel data, production function

estimates have consistently concluded that public capital and its spatially weighted counterpart

are not statistically significant.1 In contrast, studies using alternative methodologies (e.g.,

VAR models), seem to suggest otherwise (Pereira and Andraz, 2013). In this paper we provide

production function estimates supporting the existence of public capital spillovers. To be

precise, we find no evidence of a direct positive effect of public capital on private output.

However, we find evidence of a relation between public capital and the unobserved productivity

of the states (i.e., the individual specific effect of the production function) and its spatial

spillover.2

To obtain these results, this paper introduces a correlated-random effects model (Mundlak,

1978; Chamberlain, 1982) that presents spatial correlation in the individual effects. To our

knowledge, only the random effects model of Kapoor et al. (2007) accounts for this spatial

correlation. In the fixed effects case, Beer and Riedl (2012) advocate using an extension of

the Spatial Durbin Model for panel data that includes the spatially weighted individual effects.

Ultimately, however, they argue that “it is (...) advisable to remove the spatial lag of the fixed

effects from the equation as the inclusion of both, [the individual effects] and [their spatial

lags], leads to perfect multicollinearity” (p. 302). Removing the spatial lag of the fixed effects

does not generally preclude the consistent estimation of the parameters of the model (see e.g.

Halleck Vega and Elhorst, 2015). However, this practice rules out obtaining an estimate of the

individual-specific effects (net of the spatially weighted effects).3

1See e.g. Munnell (1990); Baltagi and Pinnoi (1995); Holtz-Eakin and Schwartz (1995); Garcia-Mila et al.
(1996); and Kelejian and Robinson (1997).

2As Boarnet (1998, p. 381-382) points out, “[p]ublic capital is provided at a particular place, and if such
capital is productive, it enhances the comparative advantage of that location relative to other places”. Also,
“productive public capital might shift economic activity from one location to another”.

3This is a critical issue, for example, in two-step models that use this estimate as the dependent variable
(Combes and Gobillon, 2015). Similarly, obtaining an estimate of the spatial spillovers of the individual-specific
effects may be of great interest (e.g., for assessing their geographical distribution, which is what we do in our
empirical application).
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This raises the question of whether both individual effects and their spatial spillovers can

indeed be identified in linear panel data models. In this paper we provide identifying conditions

in a model specification that spatially weights both the independent variables and the individual

effects. In particular, we show that there is no identification problem if the covariates are

correlated with the individual-specific effects and the individual effects correspond to deviations

from the constant term.

Having proved that the model is identified, we then consider the estimation of its parameters

under alternative exogeneity assumptions on the explanatory variables. Under the assumption

that all the explanatory variables are strictly exogenous (with respect to the idiosyncratic

term), we derive a Feasible Generalised Least Squares (FGLS) estimator. We also prove that,

regardless of the structure of the variance-covariance matrix of the correlation functions shocks,

this estimator coincides with the within (fixed effects) estimator when all the explanatory

variables are used to construct the correlation functions. Under the assumption that the

explanatory variables are predetermined, we propose an Instrumental Variables (IV) estimator

to address the endogeneity of the means of the predetermined explanatory variables used

to approximate the correlation functions. We also advocate using the backward means of

these variables (i.e., the means taken, for each period, over only current and past values) as

instruments.

Lastly, we use these estimators and a (correlated random effects) production function

specification to address the existence of capital spillovers. Using the data and (a spatially

weighted variant of) the specification used by Munnell (1990), we find that, under strict

exogeneity, our FGLS estimates of a Cobb-Douglas production function for the US states over

the period 1970 to 1986 are largely consistent with those reported in related studies (using this

data set, as e.g. Baltagi and Pinnoi 1995; Kelejian and Robinson 1997; and using analogous

data sets, as e.g. Holtz-Eakin and Schwartz 1995; Garcia-Mila et al. 1996).4 However, when

we explore the possibility that (some of) the explanatory variables are not exogenous, we find

evidence of predeterminedness in the public capital. We then estimate the model by IV to

4The data set we employ is publicly available and can be downloaded, for example, from the Ecdat package
in R (a standardised binary contiguity spatial weights matrix of the US states is also included in the package).
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find that, under a sequential exogeneity assumption, states with a larger/smaller estimated

individual effect tend to have larger/smaller negative spatial spillovers. In particular, we

consider both “spill-in” and “spill-out” effects (LeSage and Chih, 2016), although only the spill-

out effects turn out to be statistically significant. Also, while the part of the individual effects

associated with the private capital produces negative spatial contagion, the part associated

with the public capital produces positive spatial contagion. Consistent with previous literature,

however, we find no significant spatial spillovers in the public capital.

The rest of the paper is organised as follows. In Section 2 we discuss the identification

problem and show that, under mild rank conditions, the correlated random effects model

considered is identified. In Section 3 we present appropriate (FGLS and IV) estimators. In

Section 4 we present empirical evidence based on the work of Munnell (1990). Section 5

concludes.

2 Specification and identification of the model

2.1 Spatial spillovers and the identification problem

Let us consider the spatial−(X,Ψ) panel data model, that is, the spatial (lag of) X model for

panel data with spatially weighted fixed effects:

y = Xβ +WXγ + Ψµ+WΨα+ ε, (2.1)

where y = (y11 , . . . , y1T
, . . . , y

N1
, . . . , y

NT
)′ is the dependent variable (as usual, i = 1, . . . , N

denotes cross-sectional, geographical units and t = 1, . . . , T denotes the time dimension),

X = (x11, . . . ,x1T ,x21, . . . ,x2T , . . . ,xN1, . . . ,xNT )′ is the NT × K matrix of explanatory

variables (i.e., xit is a row vector of order K) is the NT ×K matrix of explanatory variables,

and ε is a zero-mean idiosyncratic error term with assumed variance-covariance matrix σ2
εINT ,
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with INT being the NT ×NT identity matrix.5

We assume that neighbourhood relations do not change over time, so the spatial matrix is

W = w ⊗ IT , with IT denoting the T × T identity matrix and w = [wij] being the N × N

spatial weight matrix that describes the spatial arrangement of the units in the sample. Also,

unobservable individual-specific effects are collected in Ψµ, with Ψ = IN ⊗ ιT , IN being the

N × N identity matrix and ιT a vector of ones of order T . Notice that, in contrast to the

so-called SLX model (Halleck Vega and Elhorst, 2015), this model specification accounts for

the spatial weights of the individual effects through the term WΨα. Thus, the parameters

of the model are β, γ, µ, α and σ2
ε . This means that 2(K + N) + 1 parameters need to be

estimated.

The main motivation behind the use of this model specification is the estimation of the

individual effects and their spatial spillovers, since these often have a meaningful interpretation

(Combes and Gobillon, 2015). In particular, following LeSage and Pace (2009), we define

the spatial spillovers of the individual-specific effects in terms of the partial derivative of the

(conditional expectation of the) dependent variable,

∂E [y |X,Ψ]

∂Ψj

= (INµj + wαj)⊗ IT (2.2)

where Ψj is the j-th column of Ψ and j = 1, . . . , N .

The off-diagonal elements of this matrix of partial derivatives represent the spillovers or

indirect effects of unit j, whereas the diagonal elements of the matrix represent the direct

effects of unit j. Notice, however, that since these effects are time-invariant, we can, without

loss of generality, concentrate on the term in brackets, INµj+wαj. Thus, a generic off-diagonal

element of this matrix, wilαj with i 6= l, measures the effect of unit l having the unobservable

characteristics of unit j on the dependent variable of unit i. Similarly, a generic element of

the diagonal of this matrix, µj + wiiαj, measures the effect of unit i having the unobservable

characteristics of unit j on the dependent variable of unit i. This direct effect reduces to µj for

5Throughout the paper, we assume that a balanced (complete) panel data is available. However, results can
easily be extended to incomplete panels.
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all i when wii = 0, the standard case.6

The vector of parameters µ has thus a neat interpretation. However, the role the spatial

weight matrix w and the vector of parameters α play in the spill-over effects deserves some

further attention. On the one hand, the structure of w provides the definition of neighbourhood.

That is, which units are affected (the “spill-out” effects) and which are affecting (the “spill-in”

effects) by the spillover and, in distance-based matrices, how much will be affected/affecting

each unit. Thus, different spatial weight matrices yield different spatial spillovers. On the other

hand, the parameter αj provides a measure of the spatial contagion of the individual effect of

unit j irrespective of the number of neighbours it has and how close/distant they are. That

is, αj provides a measure of the “potentiality of the spatial contagion” associated with the

individual effect of unit j. We thus refer to α as the “potential” of the spatial spillovers of the

individual effects.

We illustrate the calculation and interpretation of these direct and spillover effects in the

empirical application of section 4. In any case, what is clear is that the estimation of these

effects requires that of the parameter vectors µ and α (since w is assumed to be a fixed and/or

known matrix). It is therefore critical to determine whether these (and the rest of) parameters

of the model are identified. Proposition 1 shows that, in general, this is not the case.

Proposition 1. The Spatial (Lag of) −(X,Ψ) model for panel data with spatially weighted

fixed effects is not identified for any spatial weight matrix w.

Proof. See appendix.

Notice that, as Beer and Riedl (2012) argue, the omission of WΨα does not preclude the

consistent estimation of the parameters of the model. Thus, if the spatial spillovers of the

individual-specific effects are of no interest for the application in hand, their suggestion to

6However, LeSage and Pace (2009) do not recommend reporting unit-level effects but scalar summary
measures. Namely, the average of the main diagonal elements (direct effects) and the cumulative sum of
the off-diagonal elements from each row, averaged over all rows (indirect effects). In particular, if the spatial
weight matrix w is row-standarised and has zeros in the diagonal, these scalar summary measures correspond
to µ and α, respectively. We discuss the use of alternative unit-level indirect effects (analogous to the ones
proposed by LeSage and Chih 2016) in section 4.
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remove one of the components – i.e., either Ψ or WΨ – is perfectly sensible. This is because

the model

y = Xβ +WXγ + Ψµ∗ + ε, (2.3)

with Ψµ∗ = Ψµ+WΨα, is observationally equivalent to (2.1).

On the other hand, if the individual-specific effects and/or their spatial spillovers are of

some interest, then the identification and estimation of the model need to be discussed. To this

end, we go on to propose using a spatial−(X,Ψ) panel data model with correlated random

effects. In particular, we show that, under mild assumptions, the model is identified. Later we

present appropriate estimators under alternative exogeneity assumptions

2.2 The Correlated Random Effects Spatial−(XXX,ΨΨΨ) Panel Data

Model

Fixed effects models implicitly assume that the individual effects are correlated with the

covariates. But they somehow ignore this correlation in the estimation procedure. In fact,

what the within and analogous transformations do (see e.g. Beer and Riedl, 2012) is to wipe

out the individual effects so that this correlation is no longer a concern for the consistent

estimation of the model. An alternative procedure for obtaining consistent estimates, however,

is to incorporate this correlation into the model (Mundlak, 1978; Chamberlain, 1982). This is

the approach followed here. In particular, we make use of the correlation between covariates

and the (spatially weighted) individual effects to identify the spatial contagion in the individual

effects.

Our modelling approach is related to that of Debarsy (2012), who uses a correlated random

effects specification to construct an LR test on “the relevance of the random effects approach”

(p. 112).7 Notice, however, that although we both deal with the correlation between individual

effects and covariates, our purposes differ markedly: while he seeks to correctly specify this

correlation, we use it as a means to identify the spatial contagion in the individual effects. We

7Although this is not the aim of this paper, an analogous Wald test could be developed using our model
specification and estimation procedures.
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also differ in the model specification which, although similar, treats the spatial contagion of

the individual effects differently. Debarsy (2012) assumes that the individual effects depend

on both the explanatory variables and the explanatory variables in their neighbourhood, but

there is no spatial contagion in the individual effects. In contrast, we account for the spatial

contagion in the individual effects (i.e., both the individual effects and their spatial spillovers

are included in the specification) and assume that the individual effects and the “potential” of

their spatial spillovers depend on the (mean of the) explanatory variables, which allows us to

identify both the individual effects and their spatial spillovers. These alternative assumptions

yield different error component structures: a one-way error in his case, a two-way error in ours

(the additional component being a spatially weighted element).8

Thus, we assume the following relation between µ, α and the explanatory variables:

µ =
1

T
Ψ′X∗Πµ + υµ

α =
1

T
Ψ′XΠα + υα,

(2.4)

where Πµ and Πα are (K+1)×1 and K×1 parameter vectors to be estimated, respectively, and

X∗ =
(
ιNT X

)
contains the covariates and a vector of ones. Notice that a constant term

needs to be included in one of the equations in (2.4) to guarantee identification, since the spatial

contagion of any common factor in the individual effects µ (in particular, a constant term) is

not identified. Ultimately, this means that we are implicitly assuming that the individual effects

correspond to deviations from the constant term. Also, the error terms υµ and υα are assumed

to be random vectors of dimension N with υµ ∼ (0, σ2
µIN) and υα ∼ (0, σ2

αIN). However, υµ

and υα are not assumed to be independent, the covariance parameter, σµα, being such that

E(υµυ
′
α) = σµαIN with E denoting the mathematical expectation.

8Another important difference with the work of Debarsy (2012) is that whereas he analyses the Spatial
Durbin Model (as Beer and Riedl 2012 do), our results are derived for the spatial −(X,Ψ) model. This allows
us to address the identification and estimation of the model in a linear setting, whereas considering correlated
random effects in a Spatial Durbin specification would result in a non-linear model in which identification
and estimation are more involved. (Debarsy (2012, p. 115), for example, “assume(s) that all parameters are
identified”; see, however, Lee and Yu 2016).
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Plugging equations in (2.4) into the model (2.1) we obtain

y = Xβ +WXγ +
1

T
ΨΨ′X∗ Πµ +

1

T
WΨΨ′XΠα + η, (2.5)

where η = Ψυµ + WΨυα + ε. Notice that the resulting error component is similar to

the one proposed by Kapoor et al. (2007) in that both error components allow for spatial

contagion in the individual (random) effects. It is different in that while we assume that the

idiosyncratic term is not spatially correlated (and propose an identification strategy that takes

into consideration that the individual effects may have spatial effects), Kapoor et al. (2007)

assume that the idiosyncratic term is spatially autocorrelated.

It is also interesting to note that our model specification does not impose the existence

of spatial contagion in the individual effects. In fact, there is no contagion at all if both Πα

and σα are zero (while there would still be some “random contagion” if Πα is zero but σα is

not). Similarly, the model does not impose correlation between the individual effects and the

covariates. In fact, the specification becomes that of a pure random effects model if both Πµ and

Πα are zero (still with spatial contagion if σα is not zero). Thus, it is the statistical significance

of these (sets of) parameters what ultimately determines the existence of spatial contagion in

the individual effects and correlation between the individual effects and the covariates.

Finally, in contrast to the spatial−(X,Ψ) model for panel data in (2.1), Proposition 2 shows

that the correlated random effects spatial panel data model in (2.5) is generally identified.

Proposition 2. The correlated random effects spatial panel data model in (2.5) is identified if

the matrix X̃ =
(
X WX 1

T
ΨΨ′X∗ 1

T
WΨΨ′X

)
has full column rank.

Proof. See appendix.

Notice that since the number of parameters in the model is 4K + 1 (excluding the σ′s),

NT ≥ 4K + 1 is a necessary identification condition. Notice also that since ΨΨ′X∗ is a

NT × K + 1 matrix and WΨΨ′X is an NT × K matrix, both with row rank equal to N ,

N ≥ 2K + 1 is an additional necessary identification condition. Further, X, WX, Ψ′X∗

and WΨ′X must have full rank. Lastly, time-invariant regressors must be included in either
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the vector of explanatory variables (X and/or WX) or in the vector of determinants of the

individual effects and their spatial spillovers (ΨΨ′X∗ and/or WΨΨ′X). Otherwise, there is

exact multicollinearity between the explanatory variables.

3 Estimation

We start by noticing that consistent estimation of the parameters of the model does not depend

on what the structure of the error term η is. In particular, assuming that the covariates are

strictly exogenous (meaning here that E(εit|xj1,xj2, . . . ,xjT ) = 0 for all i, j), Ordinary Least

Squares (OLS) estimates of (2.5) are consistent.9 Yet a more efficient Generalized Least Squares

(GLS) estimator can be derived by accounting for the error components structure of the model.

To be precise, the GLS estimator does not provide efficiency gains in the β and γ parameters

of the correlated random effects model in (2.5). In fact, as shown below (see also Mundlak 1978),

the GLS estimator of these parameters coincides with the OLS estimator in (2.5) and the within

or fixed-effects estimator of the (observationally equivalent) model in (2.3). This means that,

if these parameters are the only ones of interest, efficiency considerations do not justify the

use of the GLS estimator. In contrast, the GLS estimator of (2.5) may provide efficiency gains

(with respect to OLS) in the Πµ and Πα parameters of the correlation functions. This is why,

under the above strict exogeneity assumption, we propose using a FGLS estimator based on

the estimates of the parameters of the variance-covariance matrix of η.

On the other hand, none of these estimators are consistent if the strict exogeneity assumption

does not hold. In particular, the presence of predetermined variables among the regressors (X

and WX) makes such variables endogenous when they are included among the variables that

compose the correlation functions in (2.4). To obtain consistent estimates, we propose an IV

estimator and the means of the endogenous variables taken, for each period, over only current

and past values (backward means) as instruments.

9Notice that the spatial structure of our model requires an orthogonality condition involving not only all
the time periods (a standard assumption in applied work; see e.g. Wooldridge 2002) but also all the units.
Otherwise, we cannot guarantee the exogeneity of WX and 1

TWΨΨ′X.
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Next we discuss the derivation of the proposed estimators in detail.

3.1 GLS estimation under strict exogeneity

Given our initial assumption of spherical disturbances and the stochastic assumptions about

the behaviour of υµ and υα, the error-component η = Ψυµ +WΨυα + ε has zero mean and

variance-covariance matrix given by

Ω = σ2
µΨΨ′ + σ2

αWΨΨ′W ′ + σµαΨΨ′W ′ + σµαWΨΨ′ + σ2
εINT

= Ψ
(
σ2
µIN + σ2

αww′ + σµαw + σµαw
′)Ψ′ + σ2

εINT (3.1)

Knowledge of this matrix suffices to derive the GLS estimator (see e.g. Wooldridge 2002) of

the parameters of the correlated random effects model in (2.5). In particular, Mundlak (1978)

proves that, when all the explanatory variables are used to construct the correlation functions

and η = Ψυµ + ε, this coincides with the within (fixed effects) estimator of β and γ in (2.3).

Next we generalise this result to any (non-spherical) variance-covariance matrix of υµ.

Proposition 3. Consider the following correlated random effects model:

y = Xλ+
1

T
ΨΨ′X∗Π + η

with X∗ being the matrix X plus a column of ones, λ and Π vectors of parameters with the

appropriate dimension, and E (ηη′) = Ω = ΨΣυΨ
′ + σ2

εINT , where Συ is any variance-

covariance matrix. The GLS, OLS and within (fixed effects) estimators of λ are the same.

Proof. See appendix.

Notice that our model corresponds to X =
(
X WX

)
, 1
T
ΨΨ′X =

(
1
T
ΨΨ′X 1

T
WΨΨ′X

)
,

λ = (β,γ) and Συ = σ2
µIN + σ2

αww′+ σµαw + σµαw
′. Thus, Proposition 3 fully applies. More

generally, the previous proof shows that, regardless of the structure of the variance-covariance
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matrix of υµ and υα, the GLS (and OLS) estimator of β and γ coincides with the within (fixed

effects) estimator.

Next we consider the derivation of the feasible version of this GLS estimator. This basically

requires a consistent estimate of the vector of parameters σ = (σ2
µ, σ

2
α, σµα, σ

2
ε). To this end,

we notice that each component of Ω can be written as a linear function of σ:

E [ηitηls] = σM ilts, (3.2)

where i, l = 1, . . . , N and t, s = 1, . . . , T . Also, E [ηitηls] denotes the mathematical expectation

of ηitηls and M is a 4× 1 vector whose rows are functions of w. More specifically,

E
[
η2it
]

= σ2
µ + σ2

α

N∑
j=1

w2
ij + 2σµαwii + σ2

ε (3.3)

E [ηitηis] = σ2
µ + σ2

α

N∑
j=1

w2
ij + 2σµαwii for t 6= s (3.4)

E [ηitηls] = σ2
α

N∑
j=1

wijwlj + σµα(wil + wli) for i 6= l (3.5)

This allows us to consider the following linear regression to estimate σ:

η̂itη̂ls = σM ilts + uilts (3.6)

where η̂ is obtained as the residual term of a consistent estimation of the model in (2.5). Given

the assumption of strict exogeneity of the covariates, OLS may be used for this purpose.

Under mild conditions, OLS estimation of (3.6) provides consistent estimates of σ (denoted

by σ̂) and, with these in hand, we can obtain the FGLS estimates of the model.10 In

particular, σ̂ allows us to obtain Ω̂GLS using (3.1) and, by Cholesky Decomposition of its

10Alternatively, one may impose the positiveness of the variances (σ2
µ, σ2

α and that σ2
ε) and that the correlation

between µ and α lies in the [−1, 1] interval (−1 ≤ σµα × (σ2
µ × σ2

α)−1/2 ≤ 1), and use e.g a Non-Linear Least
Squares estimator of σ. Notice that this differs from the approach followed by e.g. Kapoor et al. (2007) in that
their estimating equations are non-linear in the parameters of interest and they therefore have to resort to a
Generalized Moment estimator (which can also be used here).
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inverse, Ω̂
−1
GLS = DGLSD

′
GLS, the transformation matrix D′GLS. Finally, OLS estimation of the

transformed model

D′GLSy = D′GLSXβ+D′GLSWXγ+
1

T
D′GLSΨΨ′X∗Πµ +

1

T
D′GLSWΨΨ′XΠα +D′GLSη,

(3.7)

provides the FGLS estimates of β̂, γ̂, Π̂µ and Π̂α.

Interestingly, we can proceed in an analogous way to deal with error structures with

idiosyncratic shocks following autoregressive and moving-average processes. In particular, the

main difference with respect to the procedure proposed to deal with spherical disturbances is

that the presence of a serial correlation matrix Kronecker (post-) multiplying the last term of

equation (3.1) results in additional (autoregressive and moving-average) parameters in (3.2).

Alternatively, we can account for the serial correlation in the model by including among the

regressors lags of the dependent variable (and possibly of the explanatory variables in X and

WX). Notice, however, that the presence of the time-invariant components υµ and υα in the

error term makes the lagged dependent variable endogenous. We thus propose instrumenting

this variable using lags of the explanatory variables X (and possibly WX) to control for the

endogeneity of the lagged dependent variable.

3.2 Instrumental Variables Estimation Under Sequential Exogene-

ity

The assumption of strict exogeneity of the covariates is critical to guarantee that the GLS

estimators presented in the previous section provide consistent estimates of the parameters of

interest. However, in applications the assumption that εit is uncorrelated with the covariates

in all the time periods may not hold. If for example the values of an explanatory variable in

period t are related to past values of the dependent variable (e.g., in t− 1), then future values

of these explanatory variables (e.g., in t + 1) may depend on the values of the idiosyncratic

term in t, thus breaking the strict exogeneity assumption (see e.g. Wooldridge 2002).

In such circumstances, a sequential exogeneity assumption, E(εit|xi1,xi2, . . . ,xit) = 0,
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seems more appropriate, since it implies that present values of yit do not affect present and

past values of xit. However, given the spatial structure of our model and following the strict

exogeneity case, we instead propose using an “extended sequential exogeneity assumption”

involving all the units in the sample. In mathematical terms, E(εit|xjs) = 0 for all ∀i, j and

s ≤ t. Notice also that if (expected) future values of xit depend on yit (i.e., present values

of yit affect the expected value of xit+1), then the explanatory variables used to construct the

correlation functions in (2.4) are endogenous by construction. In other words, the presence of

predetermined variables in X and WX means that 1
T
ΨΨ′X∗ and 1

T
WΨΨ′X are correlated

with the idiosyncratic term ε. Therefore, under sequential exogeneity, the GLS estimators

presented in the previous section no longer provide consistent estimates of the parameters of

interest. Rather, an IV estimator should be considered for this purpose.

The main challenge IV estimators face in practice is that it is often difficult to find good

instruments. In this case, however, the structure of the model provides natural candidates.

Namely, the means of the exogenous explanatory variables constructed using values up to

period t (rather than using all T values).11 Let

LT =



1 0 0 · · · 0

1
2

1
2

0 · · · 0

1
3

1
3

1
3
· · · 0

...
...

...
. . .

...

1
T

1
T

1
T
· · · 1

T


be the row-standardised lower triangular matrix of ones and Γ = IN⊗LT be the transformation

matrix that yields the backward-up-to-t mean of the variable (i.e., ΓX, for example, yields a

matrix composed by the means of the exogenous explanatory variables constructed using values

up to period t). The matrix of instruments can be thus written as Z1 =
(

ΓX ΓWX
)

Notice that these backward means are exogenous variables under the extended sequential

exogeneity assumption. But they are also relevant, since by construction they are correlated

11In fact, provided that the number of available periods is long enough, one may use up to lagged periods to
construct such means, i.e., one may use values up to period t− 1, t− 2, etc..
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with the endogenous explanatory variables 1
T
ΨΨ′X∗ and 1

T
WΨΨ′X. Notice also that if we use

the same explanatory variables to construct both the instruments and the correlation functions

(or different variables but the same number), then the model is exactly identified. However, if

all the explanatory variables are used to construct the instruments but not all the explanatory

variables are used to construct the correlation functions, then the model is overidentified.

To construct the IV estimator, we follow Hausman and Taylor (1981) and Keane and Runkle

(1992). Hausman and Taylor (1981) propose a two-step procedure to estimate linear panel data

models with endogenous explanatory variables (with respect to the idiosyncratic term, as well

as with respect to the individual effect) that boils down to an initial GLS transformation of the

model (using a consistent estimate of the variance-covariance matrix of the error term) and then

an estimation of the transformed model by IV. However, Keane and Runkle (1992) show that

this procedure may not yield consistent estimates when the instruments are predetermined.

This is because the GLS-transformation proposed by Hausman and Taylor (1981) results in

individual errors that are linear combinations of the errors of the individual in all time periods.

To obtain consistent estimates, Keane and Runkle (1992) instead propose using the upper-

triangular Cholesky decomposition of the serial correlation matrix (forward filtering) to GLS-

transform the model. In essence, this is the procedure we follow, except that the complex

structure of our error term requires a different GLS transformation and alternative orthogonality

conditions between the errors and the explanatory variables.

To be precise, we obtain the IV estimates of our model in the following way. First,

we transform the model using the projection matrix onto the column space of the matrix

consisting of the exogenous variables and the instruments. That is, we multiply the model by

the projection matrix PZ = Z(Z ′Z)−1Z ′, with Z =
(
X WX Z1

)
. This addresses the

endogeneity problem and makes it possible to consistently estimate the transformed model by

OLS. However, a more efficient estimation may be obtained if we transform the model to obtain

spherical disturbances. To this end, we use these OLS estimates to generate the residuals η̂

and, after estimating (3.6), obtain Ω̂IV and DIV in the same way as we did for Ω̂GLS and

DGLS.

In particular, since our instruments are predetermined, we propose using the upper-
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triangular Cholesky decomposition of the inverse of the variance-covariance matrix (rather than

that of the serial correlation matrix used by Keane and Runkle 1992) to obtain DIV . However,

given the spatial structure of our model, we need to sort the data first by time and then by

units within each time period before computing the upper-triangular Cholesky decomposition

of Ω̂IV .12 This guarantees that the transformed errors in period t contain elements of ηis for

s ≥ t and hence the exogeneity of our instruments in the transformed model.13

In the second step of the procedure, we estimate the GLS-transformed model by IV. This

means that we again transform the model using the projection matrix PZ , except that now the

sorting of the data requires using the matrix Γ = LT ⊗ IN to construct Z1. The transformed

model,

PZD
′
IV y = PZD

′
IVXβ+PZD

′
IVWXγ+

1

T
PZD

′
IV ΨΨ′X∗Πµ+

1

T
PZD

′
IVWΨΨ′XΠα+PZD

′
IV η,

(3.8)

is then estimated by OLS. The IV estimates of β̂, γ̂, Π̂µ and Π̂α we obtain are not only

consistent but also more efficient than the initial IV estimates obtained in the first step of the

procedure.

Lastly, it is interesting to note that, unlike the strict exogeneity case, the treatment of serial

correlation under sequential exogeneity does not follow immediately. In the present case, the

presence of lags of the idiosyncratic term ε makes any predetermined variable in the model

endogenous (not only those in the correlation functions). This is, however, not a major issue

if the number of lags is small (the order of the moving average is low) and the time dimension

12Notice that so far we have followed the standard practice of having the data sorted first by units
and then by time within each unit, so e.g. the dependent variable was defined in Section 2 as y =
(y

11
, . . . , y

1T
, . . . , y

N1
, . . . , y

NT
)
′
. Here we require that y = (y

11
, . . . , y

N1
, y

12
, . . . , y

N2
, . . . , y

1T
, . . . , y

NT
)
′

and
X = (x

11
, . . . ,x

N1
,x

12
, . . . ,x

N2
, . . . ,x

1T
, . . . ,x

NT
)
′
. In particular, notice that this sorting requires using

W = IT ⊗w and Ψ = ιT ⊗ IN .

13Notice that, in a model without spatial dependence, Keane and Runkle (1992) assume that E(ηit|zis) = 0
for s ≤ t. However, the presence of spatially weighted covariates in the model means that, for the
proposed instruments, this only holds if the extended sequential exogeneity assumptions holds. Notice also
that the observation (i, t) of the transformed error term, D′IV η, contains the original error terms ηj,t for
j = i, i + 1, i + 2, ..., N as well as ηj,s for all j and s > t. This is why, in the presence of spatial dependence,
the orthogonality condition proposed by Keane and Runkle (1992) does not suffice. In contrast, our extended
sequential exogeneity assumption guarantees that the proposed instruments are exogenous to the transformed
errors, since E(ηjt|zis) = 0 for all j and s ≤ t.
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of the panel is large. If the predetermined variable is among the regressors (X and WX),

we propose using lags of the variable as instruments; and if the predetermined variable is

in the correlation function, we similarly propose adjusting the periods used to compute the

backward means. Thus, we lose (at least) one period for each additional lagged term in the

idiosyncratic error. The problem, of course, is that if the order of the moving average process

driving the idiosyncratic term is not smaller than the number of time periods minus one, then

there is no room for using lags and backward means as instruments. In particular, by the Wold

representation theorem, this situation arises if the idiosyncratic term follows an AR process (of

any order).

Alternatively, in applications in which strict exogeneity does not hold and there is serial

correlation in the model, we may include among the regressors lags of the dependent variable

(and possibly of the explanatory variables in X and WX) and then apply the two-step

procedure previously described. Notice, however, that in this specification the lagged dependent

variable is endogenous (for the reasons pointed out in the GLS case). We thus proposed

extending our matrix of instruments to include lags of the explanatory variablesX (and possibly

WX) to control for the endogeneity of the lagged dependent variable.

4 Public capital spillovers in a production function

specification: empirical evidence

In this section we use our correlated random effects specification and the proposed FGLS and IV

estimators to empirically address the existence of public capital spillovers. To this end, we use

a Cobb-Douglas production function specification and yearly data from (Munnell, 1990, p. 77)

on 48 US contiguous states over the period 1970 to 1986. The output variable is the gross state

product and the inputs include public capital, private capital and labour. “The unemployment

rate is also included [in the regressions] to reflect the cyclical nature of productivity”. All the

variables except unemployment are in logs. This data set has the additional interest of having

been partially (e.g. Garcia-Mila et al., 1996) or totally (e.g. Baltagi and Pinnoi, 1995) used
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in a number of studies on the relation between public capital and private output —see also

Boarnet (1998) and Sloboda and Yao (2008). In particular, some of these studies have used

spatial econometrics techniques (e.g. Holtz-Eakin and Schwartz, 1995; Kelejian and Robinson,

1997).

This accumulated evidence provides an excellent benchmark for our estimates, which were

obtained for a model specification that uses all the inputs and their spatial counterparts to

construct the correlation functions (µ and α). Before proceeding with the estimation, however,

we considered the identification of the proposed model. We thus computed det(X̃′X̃) to find

that it was indeed positive, which means that our identification condition holds.

We report FGLS estimates of the model in Table 1 (coefficients and variance components).

We also report the joint significance LM-tests of each subset of coefficients (β, γ, Πµ and

Πα). The first thing to notice is that since our model specification uses all regressors (X and

WX) to construct the correlation functions (µ and α), estimates of β and γ reported in Table 1

correspond to the within estimates of the model. As for the coefficient estimates of the variables

that compose the correlation functions, Πµ and Πα, all tend to be statistically significant (both

individually and jointly). Lastly, all the variance components σ are statistically significant and

have reasonable values. This supports our correlated random effects model specification. In

particular, given that we reject that Πα is zero, there is evidence of contagion in the individual

effects and, given that we reject that Πµ is zero, there is evidence of correlation between the

individual effects and the covariates (fixed effects).

[Insert Table 1]

The FGLS estimates of the β-coefficients associated with the main regressors (X) are in

line with those reported in previous studies. More precisely, they are close to those reported

by Holtz-Eakin and Schwartz (1995) and Kelejian and Robinson (1997). While our estimate

of the elasticity of labour is 0.7, for example, they estimated it to be between 0.6 and 0.9;

similarly, our estimate of the elasticity of private capital is 0.2, while their estimates range from

0.06 to 0.2.14 We further concur with the lack of statistical significance of public capital (see

14These estimates tend to be smaller that those reported by Baltagi and Pinnoi (1995) and Garcia-Mila et al.
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also Baltagi and Pinnoi, 1995; Garcia-Mila et al., 1996) and the statistical significance of the

spatially weighted public capital (see the second column of Table 1, γ). Lastly, the statistical

significance of public capital in the correlation function of the individual effects (see the third

column of Table 1, Πµ) is consistent with evidence reported by Baltagi and Pinnoi (1995, p.

396) that rejects the orthogonality between regressors and individual effects “only when the

public capital stock (is) included in the production function”.

Next we explore the possibility that the explanatory variables are not exogenous but

predetermined. Previous related studies have analysed the endogeneity of (some of) the

explanatory variables, with mixed results on the endogeneity tests (Baltagi and Pinnoi,

1995; Holtz-Eakin and Schwartz, 1995; Garcia-Mila et al., 1996) and implausible results on

the coefficient estimates (Baltagi and Pinnoi, 1995; Holtz-Eakin and Schwartz, 1995). Here

we address the predeterminedness of the public capital variable (and its spatially weighted

counterpart). This would be the case, for example, if the amount states spend on public capital

is related to past values of private output (e.g., because more prosperous states are likely to

generate higher tax revenues). Under such circumstances, our previous discussion on the FGLS

estimates is flawed, since the variables that compose the correlation functions defining µ and

α become endogenous and the FGLS estimator is no longer consistent.

We thus report results from an IV estimation in Table 2. These were obtained using

as instruments backward-up-to-t means of all the explanatory variables and their spatially

weighted counterparts. That is, Z1 contains the Γ−transformations of public capital, private

capital, labour and unemployment as well as of their spatially weighted counterparts.15 At

first sight, the IV estimates of the β- and γ-coefficients are not substantially different from

those obtained by FGLS (perhaps with the exception of the public capital in γ). In contrast,

IV and FGLS estimates of the coefficients associated with the variables that compose the

correlation functions, Πµ and Πα, differ substantially. Indeed, a Hausman test between these

two estimators strongly rejects the null hypothesis of strict exogeneity (the statistic is 159.42).

(1996), which may suggest that ignoring spatial dependence results in overestimation of the coefficients.

15We experimented with other set of instruments (e.g., without considering unemployment and its spatial
weight) and found that coefficients estimates were barely altered.
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This supports our tenet that public capital is actually a predetermined variable.

[Insert Table 2]

We then obtained an estimate of the direct individual effects (i.e., µ) and the “potential”

of their spatial spillovers (i.e., α) using these IV estimates. However, we found that while

the estimated direct efffects were generally statistically significant (both using FGLS and IV

estimates), the “potential” of the spatial spillovers of the invididual effects were only statistically

significant under the strict exogeneity assumption. Under the assumption that capital is a

predetermined variable, the estimated α’s were not statistically significant.16

Seeking for alternative, more efficient specifications that yielded statistically significant

α’s, we used a variables-selection procedure that resulted in the specification reported in

Table 3.17 Notice that the (common) estimated model coefficients are not that different

from those reported in Table 2. Also, the correlation between the estimated µ’s and α’s

(obtained from the estimates reported in Table 2 and Table 3) is 0.99 and 0.90, respectively.

However, 14 out of the 48 estimated α’s are now statistically significant at standard confidence

levels. Alternatively, we considered an ad-hoc model selection procedure in which we explored

different specifications in terms of instruments (e.g., using squared terms) and/or variables

(e.g., dropping the unemployment, as in Holtz-Eakin and Schwartz 1995). This also produced

16We use t-statistics to test the statistical significance of the individual effects and their spatial spillovers.
In particular, the standard errors were obtained from V̂ ar(µ̂ − µ) = 1

T 2 Ψ′X∗Σ̂ΠµX
∗′Ψ + σ̂2

µIN −
2 1
T Ψ′X∗Mµ

̂E
[
ηυ′µ

]
, with E [·] denoting the mathematical expectation, ΣΠµ = V ar(Π̂µ) and Π̂µ−Πµ = Mµη.

The expression for V̂ ar(α̂ − α) is analogous, only differing in the subindices (i.e., using Σ̂Πα instead of Σ̂Πµ ,
σ̂2
α instead of σ̂2

µ, Mα instead of Mµ, and υ′α instead of υ′µ). Under standard assumptions, these are consistent
and (approximately) normally-distributed estimators of V ar(µ̂−µ) and V ar(α̂−α), respectively. Notice that
these estimated variances allow us to also test whether the direct effects of two states are statistically equal
(rather than whether the direct effect of one state is statistically equal to zero, as we did).

17In particular, we proceeded as follows. We dropped the most non-significant variable (i.e., that with the
higher p-value) in the original specification (that reported in Table 2), reestimated the model and determined
which was the most non-significant variable in the new specification. We then tested whether these two variables
were jointlty statistically significant in the original specification. If the null hypothesis of this Wald test was not
rejected, we dropped the two variables and considered again the most non-significant variable in the resulting
specification. Then, we constructed a new Wald test for the null that the three variables were not jointly
statistically significant in the original specification. We went on dropping variables and testing their joint
significance untill either the jointly statistically non-significant hypothesis was rejected or all the variables in
the model were statistically significant.
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specifications in which the α’s were statistically significant and highly correlated with those

obtained using the results reported in Table 2, while the coefficients of the model and their

statistical significance remained generally unaltered. This was the case, for example, when

dropping public capital from WX, the unemployment from Πµ, and the unemployment and

its spatially weighted counterpart from the set of instruments.

Given the illustrative aim of this empirical exercise, determining which is the best model

specification is clearly beyond the scope of this paper. It is important to stress, however, that

little differences were observed among the alternative specifications we considered when we

plotted on a map of the US states the estimated values of µ and α (available from the authors

upon request). Bearing this in mind, we have used the IV estimates reported in Table 3 to

analyse the geographical distribution of the estimated direct individual effects and their spatial

spillovers. In particular, our spillover effects are based on LeSage and Chih (2016), who define

“spill-in” and “spill-out” effects as the cumulating off-diagonal elements from row- and column-

sums of the matrix of marginal effects in (2.2), respectively.

[Insert Table 3]

To be precise, LeSage and Chih (2016) interpret the row-sums of wαj (i.e.,
N∑
l=1

wilαj,

assuming that wii = 0) as the “spill-in effects” on the outcome of unit i. Thus, this spill-

in effect captures the impact on the outcome of unit i of all the units neighbouring i having the

unobserved characteristics of j. However, we find more interesting to report
N∑
l=1

wilαl, which is

the impact on the outcome of unit i of all the units neighbouring i having their unobserved

characteristics (i.e., the impact on the outcome of unit i of the individual effects of the units

neighbouring i). This is reported in Figure 1a.

Similarly, LeSage and Chih (2016) interpret the colum-sums of wαj (i.e., αj
N∑
l=1

wli, assuming

that wii = 0) as “spill-out effects” of unit i. In particular, this spill-out captures the impact of

unit i having the unobserved characteristics of j on the outcome of the neighbours of unit i.

Again, we find more interesting to report αi
N∑
l=1

wli, which is the impact on the outcome of the

units neighbouring i of the individual effect of unit i. Notice, however, that our proposed spill-

out effect is the product of αi (the “potential” of the spatial spillovers of the individual effects)
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and
N∑
l=1

wli (which in essence determines the spatial contagion, i.e., which units are affected by

the spillover). Since our spill-in effect already reflects the spatial contagion of the individual

effects, it seems more interesting to report α rather than αi
N∑
l=1

wli. This is consequently what

we do in Figure 1b.

[Insert Figure 1]

Results indicate that the geographical distribution of the spatial contagion, as measured by

the spill-in (Figure 1a) and spill-out (Figure 1b) effects, follows very much the same pattern

(with some notable exceptions, such as Nebraska and Nevada). This means that most states

show spill-in and spill-out effects that are of analogous magnitude. However, the “inwards”

spatial contagion of the spill-in effects is generally not statistically significant (Colorado,

Montana, Texas and Utah being the exceptions). We thus concentrate on the analysis of

the spill-out effects which, as previously pointed out, tend to be statistically significant.

Figure 1b shows that, in absolute values, West-Central (from Texas to Kansas, but also

North-Dakota and Indiana) and West-Mountain (New Mexico and Wyoming) states stand

out as the areas with the highest “outwards” spatial contagion. These are thus states with

individual effects that strongly and negatively spill over the neighbouring states. Interestingly,

these spill out effects are generally statistically significant at conventional confidence levels.

On the other hand, there are two areas of low spill-out effects (in absolute values): the West-

Pacific (California and Washington) and the North-East (New York in the mid-Atlantic and

Connecticut, Rhode Island, Massachusetts and Vermont in New England). These are thus

states with individual effects that negatively spill over the neighbouring states, but for which

the relative magnitude of these spillovers is small (and, in fact, not statistically significant).

Further, Figure 1c reveals that the states that have the highest estimated values of the

direct individual effects are mostly located in the North and West of the country (plus Texas

and Louisiana in the South): more precisely, in the East (Illinois, Michigan and Ohio) and West

(Nebraska) North Central, the mid-Atlantic (New York and Pennsylvania), the West-Mountain

(Montana and Wyoming) and West-Pacific (California and Washington) regions. Figure 1c
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also shows that the states with the lowest estimated values of the direct individual effects

concentrate in New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode

Island and Vermont), although we also find some states in the West-Mountain (i.e., Idaho,

Utah and Nevada) and the South-Atlantic (North and South Carolina) regions.

Lastly, it is interesting to note the overlap between Figure 1a, Figure 1b and Figure 1c. In

fact, since the estimated values of the individual effects and their spatial spillovers show different

sign (see the signs of the Π-coefficients in Table 1, Table 2 and Table 3), Figure 1 points to

a negative relation between µ̂ and α̂ (wα̂). Importantly, this “proportionality” between the

direct and indirect effects is not a feature of the model specification (LeSage and Chih, 2016).

Rather, it arises as a genuine characteristic of the data.18

Therefore, states with larger/smaller estimated direct individual effects tend to have

larger/smaller negative spatial spillovers (both spill-in and spill-out). Notice, however, that

this is mostly driven by New England states (with small direct individual effects and small

negative spatial spillovers) and the central and southern states (with large direct individual

effects and large negative spatial spillovers, except for Nebraska, which shows large direct

individual effects and small negative spatial spillovers). The West and North-East states, on

the other hand, tend to have large estimated direct individual effects and small negative spatial

spillovers.

To conclude, it is worth noting that negative spillovers that “might shift economic activity

from one location to another” have previously been found by, for example, Boarnet (1998, p.

382) and Sloboda and Yao (2008) with respect to the stock of and the investment in public

infrastructure, respectively. However, the source of this “crowding out” effect in our model

are the unobservable characteristics of the states or “unobserved productivity” (which these

studies cannot identify). In fact, consistent with the work of Holtz-Eakin and Schwartz (1995)

and Kelejian and Robinson (1997), results reported in Table 2 show that the spatially weighted

public capital has a negative coefficient, but is not statistically significant (while private capital

18A simple regression between µ̂ and α̂, for example, indeed has a negative and statistically significant slope
(−0.34, with a p-value of 0.03), whereas a simple regression between α̂ and wα̂ has a positive and statistically
significant slope (0.86 with a p-value of 0.00).
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is, and has a positive sign). Notice also that both private and public capital are positively

related to the states’ unobserved productivity (both variables show positive and statistically

signs in Πµ). However, the role of these variables in the spatial spillover of the productivity,

Πα, differs. While the investment in private capital is associated with negative spillovers, the

investment in public capital is associated with positive spillovers.

5 Conclusions

In this paper we analyse the problem of estimating individual effects and their spatial spillovers

in linear panel data models. In particular, we consider models in which the exogenous regressors

are spatially weighted and there is no spatially lagged dependent variable (i.e., the so-called

spatial-X model). We first show that in this model specification the individual effects and their

spatial spillovers are not identified for any spatial weight matrix. Under mild assumptions,

however, we show that they are identified in a correlated random effects specification. To

be precise, we show that there is no identification problem in a spatial−(X,Ψ) panel data

model with correlated random effects if certain rank conditions hold and the individual effects

correspond to deviations with respect to the constant term.

We then consider the estimation of the parameters of the (identified) model. Under

strict exogeneity of the covariates, OLS estimates are consistent. Here, though, we provide

more efficient FGLS estimators (at least more efficient with respect to the coefficients of

the variables that compose the correlation functions) and propose an IV estimator to tackle

situations in which the strict exogeneity assumption may not hold and a sequential exogeneity

assumption is upheld. In particular, we suggest using the means of the exogenous explanatory

variables constructed using values up to period t as instruments for the endogenous explanatory

variables used to construct the correlation function (which, ultimately, are “means-up-to-T”

of the exogenous variables). Also, dropping the most recent periods used to construct these

instrumental variables (i.e., using “means-up-to-(t − s)”, with s being a positive integer) may

provide further instruments and/or instruments for potentially endogenous regressors.
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Lastly, we present results from an empirical application: the estimation of a Cobb-Douglas

production function using US state data. We find statistically significant differences between

the FGLS and IV estimates, which suggest that the strict exogeneity assumption that sustains

the FGLS estimates may not hold because the public capital variable is actually predetermined.

Also, IV (and FGLS) estimates show that the variables that compose the correlation functions,

as well as the variance components, all tend to be statistically significant. This supports our

correlated random effects model specification.

The geographical distribution of the IV-estimated direct individual effects and their spatial

spillovers reveals the existence of three major regions: i) Central and South states, where

both direct individual effects and negative spatial spillovers tend to be large; ii) New England

states, where both the direct individual effects and negative spatial spillovers tend to be small;

and iii) West and North-East states, where the estimated direct individual effects tend to be

large and the negative spatial spillovers tend to be small. In addition, both the “inwards” and

“outwards” spatial contagion of the individual effects (i.e., the spill-in and spill-out effects)

involve negative spillovers, although this sign is mostly associated with the private capital (and

labour) and is only statistically significant for the spill-out effects. Public capital, on the other

hand, is behind the positive spatial contagion of the individual effects. Consistent with previous

literature, however, public capital itself does not seem to convey statistically significant spatial

spillovers.
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Appendix: Proofs of Propositions

Proof of Proposition 1. The model in (2.1) is not identified for any spatial weight matrix

w because Ψ and WΨ are perfectly collinear. We prove this by showing that

det

[(
Ψ WΨ

)′ (
Ψ WΨ

)]
is zero for any spatial weight matrix w. Let

A =
(

Ψ WΨ
)′ (

Ψ WΨ
)

= T

 IN w

w′ w′w

 (5.1)

Then, by Schur complement,

det(A) = T 2N det (IN) det
(
w′w −w′ (IN)−1 w

)
= T 2N det (w′w −w′w) = 0 (5.2)

Proof of Proposition 2. Since the correlated random effects spatial−(X,µ) panel data model

is linear in parameters, it is identified iff det(X̃′X̃) 6= 0. If X̃ has full rank, it is easy to show

that det(X̃′X̃) > 0 (see e.g. Corollary 14.2.14 and Theorem 14.9.4 in Harville 2008).

Proof of Proposition 3. Let λ̂OLS, λ̂w and λ̂GLS be the OLS, within and GLS estimators of λ.

We prove first that λ̂OLS = λ̂w. To this end, we start by noting that, by the Frisch-Waugh-

Lovell theorem and given that ΨΨ′ΨΨ′ = TΨΨ′,

λ̂OLS = (X′M 1X)
−1

(X′M 1y)

with M 1 = INT− 1
T
ΨΨ′X∗ (X∗′ΨΨ′X∗)−1X∗′ΨΨ′. Also, let Q = INT− 1

T
ΨΨ′, which satisfies

that Q′Q = Q and QΨ = 0. Lastly, since X′ =
(

0K×1 IK×K

)
X∗′, it can be proved that

X′M 1 = X′Q. Consequently,

λ̂OLS = (X′QX)
−1X′Qy = λ̂w
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This concludes the first part of the proof. Next we prove that λ̂GLS = λ̂OLS = λ̂w. To

this end, we start by noting that λ̂GLS corresponds to the OLS estimator of the considered

correlated random effects model transformed using the (upper triangular part of the) Cholesky

decomposition of the inverse of the variance covariance matrix of η, Ω−1 = DD′. Therefore,

by the Frisch-Waugh-Lovell theorem,

λ̂GLS = ((D′X)′M 2D
′X)−1((D′X)′M 2D

′y)

with M 2 = INT −D′ΨΨ′X∗(X∗′ΨΨ′Ω−1ΨΨ′X∗)−1X∗′ΨΨ′D. Also, from equation (19) in

Henderson and Searle (1981),

Ω−1 =
(
σ2
εINT + ΨΣυΨ

′)−1 =
1

σ2
ε

INT −
1

σ2
ε

ΨΣυΨ
′Ω−1

=
1

σ2
ε

INT −
1

σ2
ε

Ω−1ΨΣυΨ
′,

which implies that ΨΣυΨ
′Ω−1 = Ω−1ΨΣυΨ

′ and, using again that ΨΨ′ΨΨ′ = TΨΨ′, it can

be proved that

ΨΨ′Ω−1 = Ω−1ΨΨ′ (5.3a)

QΩ−1 = Ω−1Q =
1

σ2
ε

Q (5.3b)

Lastly, by (5.3a) matrix M 2 can be rewritten as

M 2 = INT −
1

T
D′ΨΨ′X∗

(
X∗′Ω−1ΨΨ′X∗

)−1X∗′ΨΨ′D,

and so X′DM 2 = X′QD. Consequently,

λ̂GLS =
(
X′QΩ−1X

)−1
(X′QΩ−1y) =

(
X′QX

)−1
(X′Qy) = λ̂OLS = λ̂w,

where the second equality holds by (5.3b).

29



Table 1: FGLS estimates.

Coefficients β γ Πµ Πα

Private capital 0.199∗∗∗ 0.260∗∗∗ 0.197∗∗∗ −0.477∗∗∗

(0.030) (0.043) (0.052) (0.089)
Labour 0.724∗∗∗ −0.027 −0.212∗∗∗ 0.101

(0.035) (0.050) (0.066) (0.115)
Unemployment rate −0.002 −0.007∗∗∗ −0.013 0.035∗

(0.001) (0.002) (0.010) (0.018)
Public capital −0.023 −0.129∗∗ 0.186∗∗∗ 0.230

(0.030) (0.051) (0.070) (0.146)

Joint LM-test 250.07∗∗∗ 17.83∗∗∗ 13.10∗∗∗ 8.28∗∗∗

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0045∗∗∗ 0.0012∗∗∗ 0.0017∗∗∗ 0.0013∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent variable is the gross state

product. All the variables are in logs, except for the unemployment. Variance components were

estimated by OLS.
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Table 2: IV estimates.

Coefficients β γ Πµ Πα

Private capital 0.255∗∗∗ 0.259∗∗∗ 0.351∗∗∗ −0.601∗∗∗

(0.037) (0.055) (0.081) (0.135)
Labour 0.676∗∗∗ −0.045 −0.666∗∗∗ −0.100

(0.059) (0.078) (0.132) (0.217)
Unemployment rate −0.003 −0.009∗∗∗ 0.009 0.067∗∗

(0.002) (0.003) (0.015) (0.029)
Public capital −0.029 −0.100 0.541∗∗ 0.661∗

(0.125) (0.163) (0.230) (0.347)

Joint LM-test 168.57∗∗∗ 12.40∗∗∗ 12.77∗∗∗ 6.32∗∗∗

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0046∗∗∗ 0.0008∗∗∗ 0.0019∗∗∗ 0.0019∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent variable is the gross state

product. All the variables are in logs, except for the unemployment. The matrix of instruments

consist of backward-up-to-t means of public capital, private capital, labour and unemployment as well

as of their spatially weighted counterparts. Variance components were estimated by OLS.
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Table 3: IV estimates.

Coefficients β γ Πµ Πα

Private Capital 0.252∗∗∗ 0.419∗∗∗ 0.342∗∗∗ −0.909∗∗∗

(0.040) (0.068) (0.084) (0.180)
Labour 0.666∗∗∗ −0.279∗∗∗ −0.776∗∗∗

(0.050) (0.084) (0.118)
Unemployment rate −0.011∗∗∗ −0.008∗∗∗

(0.002) (0.003)
Public Capital 0.660∗∗∗ 0.877∗∗∗

(0.132) (0.193)

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0044∗∗∗ 0.0026∗∗∗ 0.0018∗∗∗ 0.0015∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent variable is the gross state

product. All the variables are in logs, except for the unemployment. The matrix of instruments

consist of backward-up-to-t means of public capital, private capital, labour and unemployment as well

as of their spatially weighted counterparts. Variance components were estimated by OLS.
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Figure 1: Estimated individual effects and their spatial spillovers.

(a) Geographical distribution of wα̂

(b) Geographical distribution of α̂

(c) Geographical distribution of µ̂

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01.
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