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Abstract

In this paper, we investigate the relationship between airline network structure and airport

congestion. More specifically, we study the ways in which airlines adjust frequencies to

delays (as a measure of airport congestion) depending on the network type they operate.

Our results suggest that network structure has a fundamental impact. Thus, while airlines

operating fully-connected configurations reduce frequencies in response to more frequent

delays, airlines operating hub-and-spoke structures increase frequencies. Therefore, net-

work airlines have incentives to keep frequencies high even if this is at the expense of a

greater congestion at their hub airports. This result sheds light on previously unclear

results in the literature.
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1 Introduction

Network airlines increasingly concentrate their services at a small number of hub airports at

which they channel a high proportion of their total flights. At these hubs, dominant network

carriers exploit transfer traffi c through coordinated banks of arrivals and departures. The

operation of such hub-and-spoke (HS) configurations enables airlines to reduce their costs since

they can exploit economies of traffi c density and offer high flight frequencies, the latter being

greatly valued by business and connecting passengers.1 As Flores-Fillol (2010) points out,

network carriers have strong incentives to add new routes to their HS networks because by

doing so they gain simultaneous access to one new local market and many connecting markets.

By offering a wide diversified range of destinations, hub airports contribute substantially to

the competitiveness of firms located in the urban areas under their influence.2 While low-cost

carriers may also concentrate their traffi c in just a few airports, they basically operate fully-

connected (FC) networks in which most air services are point-to-point.

However, the concentration of traffi c favored by HS networks has contributed to an increase

in airport congestion. Baumgarten et al. (2014) suggest that HS operations may aggravate

congestion problems at peak times because more flights are operated for a given capacity dur-

ing banks. Furthermore, the larger number of connecting passengers results in an increasing

complexity of airport and airline operations. Daniel and Harback (2008) show that dominant

airlines at many major US hub airports concentrate their flights at peak times, thereby forcing

non-hubbing airlines to cluster their traffi c in uncongested periods. The potentially negative

effects associated with congestion may be substantial both for passengers and airlines, as re-

ported in several empirical studies. For example, Forbes (2008) uses data from New York-La

Guardia airport (one of the four slot constrained airports in the US) to study price responses

to flight delays. She finds an average price reduction per additional minute of delay of $1.42

for direct passengers; this price decrease amounts to $0.77 for connecting passengers. Britto

et al. (2012) examine the impact of delays on consumer and producer welfare for a sample of

US routes. They find that delays raise prices and reduce demand. From their results, a 10%

decrease in delays implies a benefit of $1.50-$2.50 per passenger, while the gains for airlines of

reducing delays are about three times higher. Peterson et al. (2013) use a recursive-dynamic

model to examine the costs of flight delays both for airlines and passengers, finding that a 10%

reduction in delayed flights increases net US welfare by $17.6 billion.

HS networks, therefore, are associated with both positive and negative effects. The em-

pirical challenge consists in ascertaining which of these two dominates. This paper aims at

understanding the extent to which airlines react to airport congestion. More specifically, we

seek to test the impact of airline network type on carriers’reactions to congestion: that is, do
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airlines operating HS and FC networks behave differently?

A closely related study to the one conducted here is provided by Bilotkach et al. (2013).

Drawing on data for the period 2007-2011, they study the impact of the merger between Delta

and Northwest on the distribution of traffi c between primary and secondary hubs, considering

the potential negative effect of increased congestion at the main hub airports. They report a

post-merger redistribution of traffi c in favor of primary hubs and no effect of congestion as a

brake on this concentration of traffi c. The authors claim that they are surprised by this apparent

indifference of the merged entity (Delta-Northwest) to congestion and speculate that it might

be due to the economic downturn following the financial crisis in 2008. Our study sheds further

light on this puzzling outcome.

Most studies of airport congestion analyze the relationship between delays and airport con-

centration, focusing on the internalization debate. The internalization hypothesis states that

airlines at heavily concentrated airports are likely to internalize the effects of self-imposed con-

gestion.3

While several works analyze the determinants of delays, less attention has been devoted to

the impact of delays on airline frequencies.4 The exceptions are the studies published by Pai

(2010) and Zou and Hansen (2014), which yield contradictory results. Using data for a sample

of US routes, Pai (2010) finds a negative relationship between frequencies and delays. More

precisely, he concludes that every extra minute of delay at the airports of origin or destination

could result in 2-3 fewer flights per month. By contrast, Zou and Hansen (2014), also using a

sample of US routes, find a positive relationship between frequencies and delays.

Our analysis seeks to reconcile the results in this scarce and incipient literature by undertak-

ing a more general analysis in which we introduce a new relevant element: network structure.

In particular, we undertake an empirical analysis of the US market during the period 2005-2013

to examine the relationship between airline frequencies and delays (as a measure of airport con-

gestion) under different route structures. We study the different ways in which airlines adjust

their frequencies to airport congestion depending on the network type they operate.

The results of the empirical analysis suggest that the effect of the network structure is

fundamental. We provide some evidence about the different reaction to congestion of carriers

operating HS networks (i.e., network carriers) as compared with carriers operating FC networks

(i.e., mainly low-cost carriers). We find that while airlines operating FC configurations reduce

frequencies in response to more frequent delays, airlines operating HS structures increase fre-

quencies. Therefore, network airlines have incentives to keep frequencies high even if this is at

the expense of greater congestion at their hub airports. The rationale behind this result would

seem to lie in the higher yield associated with flight banks; the cost savings from an intense

exploitation of economies of traffi c density; and the strategic behavior of airlines that may adopt
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a preemptive strategy so as to avoid losing market power, which involves releasing slots that

might be taken over by other competing airlines.5

Our results confirm the theoretical findings in Fageda and Flores-Fillol (2015), which suggest

that congestion typically increases the profitability of HS networks (since frequencies are higher

than those in FC networks). Our findings are also in line with the empirical results in Brueckner

(2002), which show that delays are higher in hub airports after controlling for airport size and

other airport attributes. Finally, our paper goes some way to accounting for the non-existent

reaction to congestion by the merged Delta-Northwest airline reported in Bilotkach et al. (2013).

This is unlikely to have been caused by the economic downturn in 2008, but rather represents

an active decision on the part of the consolidated airline.

The rest of this paper is organized as follows. In the next section, we explain the data used in

the empirical analysis. In Section 3, we specify the empirical model and state our expectations

for the explanatory variables. Section 4 deals with various econometric issues and then we

report the regression results and Section 5 provides some robustness checks. The last section

contains our concluding remarks.

2 Data

We have data for 50 large US continental airports, including all hubs and the country’s most

congested airports, during the period 2005-2013. Data on airline frequencies and flight shares

at the airport level have been obtained from RDC Aviation (Capstats Statistics), representing

an aggregation of the T-100 dataset collected by the US Department of Transportation. Since

we focus on US domestic traffi c, intercontinental flights are excluded from the analysis. More-

over, we only include airlines that provide at least one flight per week from the airport under

consideration. The unit of observation of our regressions is the airline-airport pair, so that our

final sample comprises 4259 observations.

We also consider the variables that might affect flight demand at the airports in our sample.

Specifically, we use data on population and GDP per capita obtained from the US census, which

refer to the Metropolitan Statistical Area (MSA) in which the airport is located.

An essential feature of our analysis is the distinction drawn between network airlines that op-

erate HS networks and other airlines (usually low-cost airlines) that operate FC configurations.

Alaska Airlines, American Airlines, Continental, Delta, Northwest, United, and US Airways are

identified as network airlines; and AirTran, Allegiant Air, Cape Air, Frontier, Great Lakes, Jet

Blue, Pacific Wings, Republic, Southwest, Spirit, Sun Country, USA3000, and Virgin America

are identified as low-cost carriers. All network airlines are integrated in an international alliance
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(i.e., Oneworld, Star Alliance, and SkyTeam) in the period under study, with the only excep-

tion of Alaska Airlines that has code-share agreements with several airlines integrated in airline

alliances. Note also that all network airlines rely extensively on regional carriers to feed their

flights. These regional carriers may be either subsidiaries of a network carrier or independent

airlines that have signed contracts with a network carrier.6

By definition, hub airports are those airports in which a dominant network carrier exploits

the transfer traffi c through coordinated banks of arrivals and departures. As such, hub airports

usually present two key characteristics: they are big and a network carrier operates a high

proportion of the airport’s flights.

Hence, our dataset includes the following hub airports: Portland (PDX) and Seattle (SEA)

for Alaska Airlines; Dallas (DFW), Miami (MIA), Chicago (ORD), and Saint Louis (STL) for

American Airlines;7 Cleveland (CLE), Houston (IAH), and Newark (EWR) for Continental;

Atlanta (ATL), Cincinnati (CVG), New York (JFK), and Salt Lake City (SLC) for Delta;

Detroit (DTW), Memphis (MEM), and Minneapolis (MSP) for Northwest; Chicago (ORD),

Denver (DEN), San Francisco (SFO), and Washington Dulles (IAD) for United; and Charlotte

(CLT), Philadelphia (PHL), and Phoenix (PHX) for US Airways.8

Southwest has the largest volume of passengers in terms of US domestic traffi c and occupies

a leading position in several airports included in our sample. Although Southwest passengers

might take advantage of a connecting flight, Southwest’s network can still be considered an FC.

Southwest uses just one aircraft type, it has no regional subsidiaries feeding its main airports,

and its flights are not clustered in coordinated banks of arrivals and departures. In this same

vein, Boguslaski et al. (2004) show that the bulk of Southwest’s traffi c is found on dense

point-to-point routes.

Our analysis assumes that network airlines operate in an HS manner at their hub airports,

while the rest of the airlines provide point-to-point connections (i.e., FC networks). This is a

simplification since all airlines can offer connecting services at any airport when their frequencies

are suffi ciently high. However, we consider this a sensible assumption given that the bulk of HS

operations in the US domestic market constitute the services of network airlines at their hub

airports.

Here, we measure congestion at the airport level. We define the level of congestion as

the percentage of originating flights that are delayed by more than fifteen minutes at a given

airport.9 Data regarding delays have been obtained from the US Department of Transportation.

Fig. 1 shows the evolution of delayed flights at the airports in our sample. While the data in

this figure present a peak in 2007, the percentage of delayed flights was higher than 20% in all

the years of the period under consideration with the exception of 2009 and 2012. Thus, a high

proportion of flights in the US domestic market are affected by delays over a relatively long
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period of time.

−Insert Fig. 1 here−

Table 1 shows some features of the airports included in our sample.10 In the case of hub

airports, the share of the dominant airline (in terms of total airport departures) is usually well

above 50%. The exceptions are New York (JFK), Chicago (ORD), and Phoenix (PHX) where

two airlines have relatively large shares, and also Denver (DEN) and Portland (PDX). In the

period considered, the percentage of delayed flights at hub airports was well above 20%, and it

was close to 30% in the most congested airports: New York (EWR and JFK), Chicago (ORD),

and Philadelphia (PHL). In fact, Salt Lake City (SLC), Seattle (SEA), Portland (PDX), and

Phoenix (PHX) are the only hub airports with a percentage of delayed flights below 20%.

−Insert Table 1 here−

Several non-hub airports are dominated by Southwest. Indeed, the share of Southwest is

above 50% in Albuquerque (ABQ), Baltimore (BWI), Dallas (DAL), Houston (HOU), Chicago

(MDW), Oakland (OAK), and Sacramento (SMF). Southwest is also clearly the leading airline

at other airports, including Las Vegas (LAS), San Diego (SAN), and San Antonio (SAT), with a

share higher than 40%. Overall, the levels of concentration at the airports dominated by South-

west may be as high as those reported for the hub airports. However, the percentage of delayed

flights at Southwest-dominated airports is usually around 20% or less. Therefore, the levels

of congestion seem to be generally lower than those registered at hub airports. The non-hub

airports at which Southwest is not the clearly dominant airline present, in general, low concentra-

tion levels and their congestion levels are similar to those reported at the Southwest-dominated

airports. However, Boston (BOS) and New York (LGA) report relatively high percentages of

delayed flights.

3 Empirical model

The hypothesis that we seek to test here is whether airlines operating under an HS structure

react less to delays than airlines operating under an FC structure. Hence, we estimate the

following equation for airline i at airport a in urban area u

Freqi,a,t = β0 + β1Delaysa,t−1 + β2D
HS
i,a + β3D

HS
i,a xDelaysa,t−1 + β4D

network_non−hub
i,a

+β5D
network_non−hub
i,a xDelaysa,t−1 + β6D

low-cost_non-hub
i,a + β7D

low-cost_non-hub
i,a xDelaysa,t−1

+β8Popu,t−1 + β9GDPpcu,t−1 + β10HHIa,t−1 + β11D
slot
a + β12D

hubs_smaller_merged_airline
i,a + µt + ε.

(1)

5



The dependent variable (Freqi,a,t) is the total number of annual flights that each airline

offers at the corresponding airport. The explanatory variables refer to year t−1 because airline
frequencies at the airport level in period t are influenced by airport and airline features in the

previous period.

We consider a measure of airport congestion (Delaysa,t−1), which is constructed as the

percentage of total flights at an airport suffering a delay in excess of fifteen minutes. The effect

of this variable is, a priori, ambiguous. On the one hand, according to Zou and Hansen (2014),

airlines might reduce their frequencies when delays increase because of higher operation costs;

on the other hand, they might have incentives to increase frequencies to profit from higher yields

and to avoid losing market power.

Furthermore, we consider dummy variables for airlines that operate HS and FC networks.

Note that the reference case for all these dummies (observations with zero value) is airline’s

flights from non-hub airports.

Regarding airlines that operate HS networks, the dummy variable DHS
i,a refers to network

airline flights from/to their hubs (e.g., American Airlines’flights from/to Miami (MIA)). Con-

trolling for local demand, the frequencies of network airlines at their hub airports (i.e., airlines

operating HS networks) should be higher than the frequencies of other airlines. The reason for

this is their exploitation of connecting traffi c, which is independent of local demand. Thus, we

expect a positive sign for the coeffi cient associated with DHS
i,a .

We make a distinction between two different types of flights operated by airlines in FC

networks. First, the dummy variableDnetwork_non−hub
i,a refers to flights of network airlines from/to

airports that are a hub of another network airline (i.e., United Airlines’flights from/to Miami

(MIA)). Second, the dummy variable Dlow-cost_non-hub
i,a refers to flights of low-cost airlines from/to

airports that are a hub of a network airline (i.e., Southwest’flights from/to Miami (MIA)). The

expected sign of the coeffi cients associated with these variables is not clear a priori.

Given that our dependent variable is the frequency at the airline-airport level, we can make

the distinction between a network airline that operates at its hub airports (which is considered

as a HS carrier) and the same network airline operating at other airports (which is considered as

a FC carrier). Hence, our definition of airlines operating HS structures is based on two features:

i) being a network airline, and ii) operating at its hub airports. Consequently, we implicitly

consider that non-hub airlines at hub airports (dominated by a hub airline) operate point-to-

point services at those airports. For example, Delta concentrates a large share of its total flights

at Atlanta (ATL), where it exploits the transfer traffi c through coordinated banks of arrivals

and departures. By contrast, American Airlines uses Atlanta (ATL) mainly to provide direct

services from/to its hub airports.

We also include three variables that are formed from the interaction between the dummy vari-
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ables for airlines operating HS and FC networks and the measure of congestion (DHS
i,a xDelaysa,t−1,

D
network_non−hub
i,a xDelaysa,t−1, and D

low-cost_non-hub
i,a xDelaysa,t−1). The relationship between fre-

quencies and delays for airlines operating HS networks is determined by coeffi cients β1 and β3,

while the same relationship for airlines operating FC networks is determined by coeffi cients β1
and β5 on the one hand, and by coeffi cients β1 and β7 on the other hand. Thus, we can test

whether airlines react differently to congestion according to the network structure they operate

by examining the estimated coeffi cients β3, β5, and β7. If network airlines react less to delays

at their hubs, we would expect β3 > 0, β3 > β5, and β3 > β7. These are the main hypotheses

being tested in this study.

Among the explanatory factors, we include two control variables related to local demand:

population (Popu,t−1) and GDP per capita (GDPpcu,t−1). We can expect a positive sign for the

coeffi cients associated with these variables since airlines should have incentives to increase the

number of flights on routes that have as their endpoints airports located in more populated and

richer urban areas (i.e., areas with a higher local demand).

The Herfindahl-Hirschman index in terms of flight frequencies at the airport level is also

considered an explanatory variable (HHIa,t−1). Airlines operating at more concentrated airports

typically operate higher frequencies because they have higher yields and are better able to

exploit economies of traffi c density. This variable may control for the strategic behavior of

airlines according to the intensity of competition in the airport. We also include a dummy

variable that takes a value of one for slot-constrained airports (Dslot
a ) as these constraints may

affect an airline’s frequency choices.11

Bilotkach et al. (2013) show that the merger between Delta and Northwest led to a reor-

ganization of route structures in favor of the hubs formerly operated by Delta. Therefore, we

include a variable that seeks to control for mergers that took place during the period under

consideration (Dhubs_smaller_merged_airline
i,a ). This variable takes a value of one for merged airlines

operating at the hubs formerly operated by the smaller airline (see footnote 10).

Finally, Eq. (1) also includes time fixed effects (µt) to capture shocks common to all air-

ports and airlines during the period under consideration. We use the same year controls in all

regressions. The excluded year dummy is 2005 and our results do not change by excluding any

other year of the considered period.

4 Estimation and results

Eq. (1) is estimated using the fixed effects estimator, which allows us to control for any omitted

time-invariant variable correlated with the variables of interest. A further advantage of the
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fixed effects model is that it allows us to account for different types of heterogeneity in the data.

More specifically, we use airline fixed effects to control for airline heterogeneity. Here, we can

identify the different behavior of airlines operating at the same airport. We exploit, as a source

of variation in the data, the fact that airlines can operate in the same year at hub and non-hub

airports.

A notable econometric challenge in our analysis is the possible simultaneous determination

of frequencies and delays. Note here that the frequency variable is at the airline-airport level,

while the delays variable is at the airport level. Although this could mitigate the bias in the

estimation, it is still needed to address the potential endogeneity problem. We deal with this

potential bias by using several instruments for the delays variable. First, we use further lags

as instruments. A typical shortcoming of the lags approach is that the correlation between

several lags may be high if the variable of interest has a strong inertia. However, this is not the

case in the data that is used here. The correlation between the delays variable and its lagged

values is 0.76, 0.58, 0.40, and 0.24 for one, two, three, and four lags, respectively. Lagged delays

further than four years are highly non-significant in the first-stage regression of the instrumental

variables procedure. Second, we also use as instruments climatic variables of the urban area

where the airport is located (temperature and precipitation).12 These variables may work as

appropriate instruments as delays should be correlated with the weather while frequency choices

of airlines should be mainly affected by climatic variables through external delays imposed by

bad weather.

Tests of instrument appropriateness are reported in the table of results: i) the Hansen test,

in which the null hypothesis is that the instruments are exogenous, and ii) the Kleibergen-Paap

LM, in which the null hypothesis is that the instruments are not strong. The Hansen test

determines the selection of the lags that we use as instruments of the delays variable.

Table 2 shows the descriptive statistics of the variables used in the empirical analysis. All

the variables show suffi cient variability to provide robust estimations. It is important to recall

that, although the unit of observation of our analysis is the airline-airport pair, some variables

are taken at either the airport or the urban level.

−Insert Table 2 here−

Table 3 shows the results of the estimation of Eq. (1) using airline fixed effects. Standard

errors are robust to heteroscedasticity and clustered by airline to account for any autocorrelation

problem. In specification 1, we consider all explanatory variables included in equation (1).

In specification 2, we exclude the dummy variables for slot-constrained airports and merged

airlines operating at the hubs formerly operated by the smaller airline (i.e., Dslot
a and

D
hubs_smaller_merged_airline
i,a ). These exclusions do not change the results for the rest of variables.
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In specification 3, we exclude the dummy variables that identify the airline network structure

(i.e., DHS
i,a , D

network_non−hub
i,a , Dlow-cost_non-hub

i,a ). Note here that the high correlation between these

variables and the interaction variables could pose a problem of multicollinearity that might

distort the individual identification of regressors. However, the results of these regressions are

qualitatively identical to the regressions that include all the variables.

−Insert Table 3 here−

The overall explanatory power of the model is quite high. The impact of the population

and income variables on frequencies does not seem to be relevant in our regressions, given that

the year fixed effects may capture some of the effect of population and income. The dummy

variable for slot constrained airports and the dummy variable for merged airlines operating at

the hubs formerly operated by the smaller airline are also non-significant in all regressions.

The coeffi cient associated with the airport concentration variable is positive and statistically

significant. Hence, airline frequencies at the more concentrated airports are higher. Higher

yields and a better exploitation of density economies by airlines operating at more concentrated

airports account for this result.

As expected, the coeffi cient of DHS
i,a is positive and statistically significant. Naturally, the

frequencies of airlines operating HS structures are higher than those of other airlines as they

provide both direct and connecting services. Additionally, the coeffi cients of Dnetwork_non−hub
i,a

and Dlow-cost_non-hub
i,a are also positive but not statistically significant.

The coeffi cient associated with the delays variable is positive but not statistically significant.

However, the relationship between frequencies and delays is jointly determined by the coeffi cient

associated with the delays and the interaction variables. In fact, our main interest lies in the

interaction variables since our focus is on identifying the different behavior of airlines operating

either HS or FC networks.

We find that airlines operating HS networks increase their frequencies as the percentage of

delayed flights at their hub airports increases. The coeffi cient associated with the interaction

variable DHS
i,a xDelaysa,t−1 is positive and statistically significant. Furthermore, note that the

magnitude of the coeffi cient of this interaction variable is higher than that of the delays variable.

By contrast, the coeffi cients associated with the interaction variablesDnetwork_non−hub
i,a xDelaysa,t−1

and Dlow-cost_non-hub
i,a xDelaysa,t−1 are negative and statistically significant. The magnitude of the

coeffi cients associated with these interaction variables are similar to that of the delays variable.

Given that Dnetwork_non−hub
i,a xDelaysa,t−1 and D

low-cost_non-hub
i,a xDelaysa,t−1 refer to non-hub

airlines operating at hub airports, our results indicate that airlines operating at other airlines’

hub airports may be more prone to reduce their frequencies than hub airlines in reaction to

more frequent delays at such airports.
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In short, we find evidence of a differentiated behavior between airlines operating HS and

FC networks. Indeed, the estimated coeffi cients of the interaction variables clearly indicate this

result since β3 > 0, β3 > β5, and β3 > β7. Hence, our results suggest that airlines operating

HS networks have incentives to maintain high frequencies at their hubs even when congestion

at these airports increases.

The results of our analysis may reconcile the conflicting results obtained in previous studies

examining the impact of delays on airline frequencies (see Pai, 2010; and Zou and Hansen, 2014).

The positive relationship between airline frequencies and delays arises when airlines operate HS

structures, while the negative relationship characterizes FC configurations.

Our results are in line with those obtained by Daniel and Harback (2008), which show that

dominant airlines at many major US hub airports concentrate flights in departure/arrival banks

during peak periods, constraining non-hub airlines to cluster their traffi c in the uncongested

periods. In fact, our aggregate measure of delays could behave as a proxy for concentrated

flight banks of dominant hub carriers. In such a case, the positive effect of delays on frequencies

that we find for airlines operating HS networks could be related to the benefits they obtain from

having dominated departure/arrival banks at their hub airports.

Therefore, network airlines have incentives to keep frequencies high even if this comes at

the expense of greater airport congestion at their hub airports. The rationale behind this result

would seem to lie in the higher yield associated with flight banks; the cost savings from an

intense exploitation of economies of traffi c density; and the strategic behavior of airlines that

may adopt a preemptive strategy so as to avoid losing market power which involves releasing

slots that might be taken over by other competing airlines.

Our results are consistent with the empirical findings in Brueckner (2002), which show that

delays are higher in hub airports, and confirm the theoretical results in Fageda and Flores-

Fillol (2015), which suggest that congestion typically increases the profitability of HS net-

works. Finally, our findings explain the non-existent reaction to congestion by the merged

Delta-Northwest airline reported in Bilotkach et al. (2013), which is not likely to have been

caused by the economic downturn in 2008 but rather represents an active decision on the part

of the consolidated airline.

5 Robustness checks

In this section, we report and comment the results of some additional regressions that provide

several robustness checks. In Table 4, we show the results using different instruments of the

lagged delays variable. In specification 1, we use as instruments three and four lags of the delays
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variable. Results of this regression are very similar to those reported in the previous section

where we use as instruments three and four lags of the delays variable along with the climatic

variables.

In specification 2, we only use the climatic variables as instruments (i.e., rain and tem-

perature of the urban area where the airport is located). In this regression, the coeffi cient

of DHS
i,a is positive but not statistically significant while the coeffi cients of Dnetwork_non−hub

i,a

and D
low-cost_non-hub
i,a are negative and not statistically significant. Regarding the interaction

variables, the coeffi cient of DHS
i,a xDelaysa,t−1 is positive and statistically significant while the

coeffi cients of Dnetwork_non−hub
i,a xDelaysa,t−1 and D

low-cost_non-hub
i,a xDelaysa,t−1 are also positive

but not statistically significant. The magnitude of the coeffi cient of DHS
i,a xDelaysa,t−1 is much

higher than those of the other interaction variables. Hence, this regression confirm our main

result, i.e., β3 > 0, β3 > β5, and β3 > β7.

Thus, the use of different sets of instruments does not seem to alter our conclusion regarding

the relationship between frequencies and delays under different network structures. Having said

this, we must be cautious in the interpretation of the results as the reverse causality between

frequencies and delays can still be considered a cause for concern.

−Insert Table 4 here−

In Table 5, we show the results using different variables to identify airlines operating FC

networks. In specification 1, the interaction variableDnon−hub
i,a xDelaysa,t−1 refers to the flights of

non-hub airlines at hub airports (e.g., American Airlines’flights and Southwest’s flights from/to

Atlanta (ATL)). This regression does not distinguish between network and low-cost carriers in

its identification of airlines operating FC configurations. The results of this regression are very

similar to those reported in the previous section where we make a distinction between network

and low-cost airlines operating in hub airports of other airlines.

In specification 2, we run the regression using airport fixed effects instead of airline fixed

effects. Here, we can control for airport heterogeneity, so that the different behavior of air-

lines operating at different airports can be identified. Hence, DHS
i,a is the same as that in the

regression with airline specific effects and Dlow-cost_dominant
i,a is a dummy variable that takes the

value one for dominant airlines operating at non-hub airports. We consider as dominant those

airlines that have a share of total flights at the airport greater than 50%. Thus, this regression

draws a distinction between network airlines operating at their hub airports (e.g., American

Airlines’flights from/to Dallas (DFW)) and low-cost airlines operating at their main airports

(e.g., Southwest’s flights from/to Dallas (DAL)). Both American Airlines and Southwest con-

centrate a very high proportion of total flights at Dallas (DFW) and Dallas (DAL), respectively.

However, American Airlines exploits the transfer traffi c through coordinated banks of arrivals
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and departures at Dallas (DFW), while the bulk of the activity of Southwest at Dallas (DAL) is

based on point-to-point services. With airport fixed effects, we exploit as a source of variation

in the data the fact that airports may be dominated by different types of airline (i.e., either

network or low-cost airlines).

In this regression, the coeffi cients of DHS
i,a and D

low-cost_dominant
i,a are positive and statistically

significant. More importantly, the coeffi cient of DHS
i,a xDelaysa,t−1 is positive and statistically

significant while the coeffi cient of Dlow-cost_dominant
i,a xDelaysa,t−1 is negative and statistically sig-

nificant. In contrast to airlines operating HS networks, we find that dominant airlines operating

at non-hub airports (i.e., Southwest) clearly reduce their frequencies as delays at these airports

increase. Taking into account the results reported in Tables 3 and 5, we can conclude that our

main results seem to be driven by both low-cost airlines and network airlines operating in hub

airports dominated by a different network airline.

−Insert Table 5 here−

In Table 6, we show the results using different indicators of delays. In specification 1, we

use the number of delayed flights, i.e., the number of flights suffering a delay in excess of fifteen

minutes. In this regression, the airport concentration variable is not statistically significant

while the delays variable is positive and statistically significant. Regarding our variables of

main interest, we find that airlines operating HS networks increase their frequencies as the

number of delayed flights at their hub airports increases, while airlines operating FC networks

in hub airports reduce frequencies as the number of delayed flights in those airports increase.

In specification 2, we use total minutes of delay. It should be noted that early arrivals are

set to zero in the computation of total minutes of delays. The results of this regression confirm

the different behavior of airlines operating HS and FC networks as delays increase.

−Insert Table 6 here−

Finally, Table 7 shows the results of the estimates for different sub-samples depending on the

distribution of the concentration variable at the airport level. More precisely, in specifications

1 and 2, we show the results for two different sub-samples excluding observations with values

in the lowest and highest quartile of the concentration variable, respectively. These regressions

that exclude the tails of the distribution of the concentration variable allow examining the extent

to which the level of competition distorts the results on the relationship between frequencies

and delays according to the airline network type. The results of these regressions suggest that

our main result is not altered using a more homogenous sample in terms of airport competition.

Interestingly, specification 2 (that excludes the most concentrated airports) may be helpful

in addressing the potential endogeneity bias. Given that the dependent variable is at the airline-
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airport level and the delays variable is at the airport level, the endogeneity bias should be more

severe for more concentrated airports in which the share of the dominant airline is particularly

high.

Furthermore, in specifications 3 and 4, we show the results for two different sub-samples

that only include observations with values in the second and third quartile of the concentration

variable, respectively. Regressions for the first and fourth quartile are not included here since

most of observations in the highest quartile are for hub airports (84% observations) while no

observations for hub airports can be found in the lowest quartile. The results of these regressions

suggest that the effect that we want to identify is stronger in the third quartile, i.e., when the

market power of the hubbing airline (approximated by its share) is higher. This result suggests

that airlines operating HS structures may follow a preemptive strategy to avoid losing market

power when they keep frequencies high at their hub airports, even if this comes at the expense

of greater congestion.

−Insert Table 7 here−

6 Concluding remarks

The importance of connecting traffi c at hub airports (compared to that of local traffi c) is

dependent on the extensive number of potential destinations, which is of obvious benefit to HS

networks and, consequently, to the urban areas around hubs. However, the concentration of

traffi c favored by HS networks has contributed to an increase in airport congestion resulting in

delays, cancellations, and missed connections.

Our analysis suggests that airlines operating FC networks reduce frequencies in response to

more frequent delays, while airlines operating HS structures increase frequencies. Thus, airlines

operating HS networks seem to ignore the social costs (i.e., airport congestion) resulting from

their network choice. This explains the fact that network carriers are reluctant to give up slots

at their hub airports.

Airport congestion has yet to be adequately tackled from a public policy perspective. This is

attributable to various factors including the diffi culties encountered in implementing congestion

pricing and the high investment costs associated with airport expansions. In addition, while at

many large European airports slot constraints are the norm, in the US market only four airports

are slot-constrained (O’Hare in Chicago, Ronald Reagan in Washington, and La Guardia and

JFK in New York.).13 Thus, congestion remains a severe problem in the air transportation

industry, and it is especially grave in the US.

As a consequence, our model predicts a further reinforcement of the existing hub airports
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over time. Indeed, we expect the current distribution of hubs to remain stable in the near future

as diverting traffi c from these airports seems complicated because airlines have no incentives

to do so. Although our analysis provides evidence about the airlines’short-term responses to

congestion in terms of network structure, long term responses may not be too different given

the strong incentives for network airlines to concentrate traffi c at their hubs.

Since network airlines do not react to congestion, policy measures promoting direct connec-

tions at non-hub airports may have social benefits should problems of congestion become too

severe. Policy makers and airport operators might adopt such tools as congestion tolls, capacity

investment, and a better marketing of cities in which the non-hub airports are located. Addi-

tionally, the rules determining the allocation and use of slots in the US might also be redesigned

so as to create incentives for airlines to increase the size of their aircraft and reduce their flight

frequencies.

A project for future research is to quantify empirically the externalities associated with hub

airports, given that HS networks impose social costs on other airlines and passengers (in terms

of congestion) but, at the same time, passengers flying from hub airports benefit from higher

frequencies and a greater number of non-stop destinations. It is an open empirical question as

to which of these two effects might be more important from a social perspective. Of course,

access to disaggregated passenger data would be required to perform this comprehensive welfare

analysis of HS networks.
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Notes
1It is generally accepted that the route operations of airlines are subject to density economies (Brueckner and

Spiller, 1994), and that airlines can attract more connecting passengers in a HS structure by increasing service

frequency than by increasing aircraft size (Wei and Hansen, 2006).
2For instance, McDonald and McMillen (2000) discuss the centripetal force of Chicago O’Hare airport for

industrial and commercial activities.
3Daniel (1995) is the first that recognizes the potential for internalization. However, he supports the idea that

carriers behave atomistically due to the competitive pressure exerted by fringe carriers (a result that is confirmed
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in Daniel and Harback, 2008). Differently, Brueckner (2002) proposes a model that relates internalization of

congestion with market power. Mayer and Sinai (2003) demonstrate that, even though delays at hub airports

can be longer than those at non-hub gateways, increasing airport concentration does reduce these delays. Rupp

(2009), however, reverses Mayer and Sinai’s findings, using a different measure of delays. Brueckner and Van

Dender (2008) seek a consensus in the internalization debate by showing that some competitive scenarios do

lead to self-internalization, while others do not.
4Several empirical studies have examined the determinants of airline frequencies at the route level. These

studies have generally focused on the effects of either route or airport competition (see, for example, Bilotkach

et al., 2010 and 2013, and Fageda, 2014).
5It is true that low-cost carriers’passengers may have a lower cost of time (as compared to network carriers’

passengers) and that this could be reason for these carriers to incur longer delays. However, our results suggest

that there are other factors that overcome this effect and explain the incentives for network carriers to incur

longer delays (i.e., the higher yield associated with flight banks; the cost savings from an intense exploitation of

economies of traffi c density; and the strategic behavior of airlines).
6Our data set assigns the flight to the major carrier in those cases where it is operated by a regional carrier

on behalf of the major carrier.
7American Airlines eliminated its hub at Saint Louis (STL) in 2010. Hence, our sample includes Saint Louis

as a hub airport until 2009.
8Several network airlines have instigated a de-hubbing process in the period under consideration. For example,

the share of American Airlines at Saint Louis was 57% in 2005 falling to just 12% by 2013, and the share of

US Airways at Pittsburg was 68% in 2005 but had fallen to 29% by 2013. Thus, we do not consider these two

airports to be hubs although they served this function in a previous period. Note that while the share of Delta in

Cincinnati was 92% in 2005, it had fallen to 64% by 2013. Although it seems that Delta is gradually dismantling

its hub in Cincinnati, it still maintains a high volume of connection operations. Thus, this airport is considered

as being a hub.
9Previous empirical studies of the determinants of delays (Mayer and Sinai, 2003; Rupp, 2009; Ater, 2012)

use data at the flight level and measure congestion as the difference between the actual and scheduled time

and/or the difference between the actual and the minimum feasible time of the flight. For the purposes of our

empirical analysis, which is the study of the influence of delays on the frequency choices of airlines at the airport

level, such a disaggregated analysis is not needed.
10Several merger operations have taken place in the period under consideration. For example, since 2010 the

flights of Northwest have been operated by Delta, so that the dominant network carrier at Minneapolis (MSP),

Detroit (DTW), and Memphis (MEM) since 2010 has been Delta and not Northwest. Likewise, since 2012 the

flights of Continental have been operated by United, so that the dominant network carrier at Cleveland (CLE),

Houston (IAH), and Newark (EWR) since 2012 has been United and not Continental. The merger between

American Airlines and US Airways came into effect at the end of 2013 but integration is not yet complete and

does not affect our analysis.
11Only four airports are slot-constrained in the US: Chicago (ORD), New York (JFK), Washington (DCA),

and New York (LGA). Among them, Chicago (ORD) and New York (JFK) can be considered hub airports.
12Data for climatic variables have been obtained from the web site of the National Oceanic and Atmospheric

Administration (NOAA).
13Brueckner (2009) finds that a slot-distribution regime, where slots are distributed to the carriers and then

traded through a clearing house, is equivalent to an effi cient regime of differentiated congestion tolls. He
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recommends that airlines be endowed with clearer property rights over slots to foster more active slot trading.
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Figures and Tables

Fig. 1: Evolution of the percentage of delayed flights at airports in our sample
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