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The Variance-Frequency Decomposition as an Instrunme for

VAR ldentification: an Application to Technology Shocks

Yuliya Lovchd&*, Alejandro Perez-Laborda

& Universitat Rovira-i-Virgili and CREIP

Abstract: This paper proposes a new framework to study ifileation in structural
VAR models. The framework is based on the varidnegduency decomposition and
focuses on the contribution of the identified shaxkhe variance of model variables in
a given frequency range. We use the hours-prodtyctiebate as a connecting thread in
our discussion since the identification problem h#sacted a lot of attention in this
literature. To start, we employ the framework tadstthe business cycle properties of a
set of different identification schemes for teclogy shocks. Grounded on the
simulation results, we propose a new model-basedepiure which delivers a precise
estimate of the response of hours. Finally, wegtithe schemes to work with real data,
obtaining substantial evidence in favor of plausiBIBC parametrizations, especially
from identification restrictions that perform beti@ simulations. This analysis also
reveals that the schemes that recover a very stesgpnse of hours (higher than the
implied by typical RBC parameterizations) tend teerstate the contribution of the
technology shock to the fluctuations of hours wdrkébusiness cycle frequencies.
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1. INTRODUCTION

Estimated impulse responses from vector autoregres§VAR) are often employed
to validate macroeconomic models. For example, G8®9) open a large debate on the
validity of the Real Business Cycle (RBC) modehding a negative response of hours
to a technology shock using a VAR identified withoag-run restriction. His work has
been reexamined from several perspectives, indithe treatment of the persistence of
hours (Christiano et al., 2004, Pesavento and R®86b or Lovcha and Perez-Laborda,
2015), or the influence of low-frequency cyclestlie results (Fernald, 2007, Francis
and Ramey, 2009, Canova et al., 2010 or Gospodihal,, 2010). In these studies, the
final conclusion is built on the sign of the estiethresponse of hours: a negative
response is considered as evidence against thenRR®I€l, and a positive response is an
evidence in favor of the RBC model.

Obviously, the identification of the technology skdecomes a critical issue here.
Simply put, in order to validate the model with ttesults that emerge from the VAR,
one has to be sure that the technology shock imtbeel and the technology shock
identified from the data is the same thinig. this study, we propose a new methodology
to study VAR identification which focuses directlyn the business cycle (BC)
properties of the identified shock. To study theseperties, we make use of the
variance-frequency (VF) decomposition (see e.gtjgAét al., 2011, DiCecio and
Owyang, 2010). The VF decomposition measures theeshof the model’s variables
fluctuations that are attributed to each structdrsiurbance at a given frequency (or in
a frequency range). Thus, it can be understoodh@dréquency-domain alternative to
the usual forecast error variance (FEV) decompmwsitiHowever, it has a clear

advantage for BC analysis over its time-domain tewpart, since the BC is naturally

! See Ramey (2016) for an excellent review on tketification of macroeconomic shocks.
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defined in terms of frequency-domain concepts (Iiswycles with periods ranging
from 8 to 32 quarters) while there is not such @i connection between the BC
definition and the FEV decompositién.

We organize the discussion as follows. To startemg@loy Monte-Carlo methods to
examine within this framework the small sample ertips of a set of identification
schemes proposed in the hours-productivity del@dte.question we address is whether
the identified shock in the VAR and the true tedbgyg shock in the model employed
as data generating process (DGP) have similar ibatitns to the variance of the
variables at BC frequencies. In our view, if thesatributions diverge substantially, the
identified shock should not be considered as ahtielogy shock” according to the
model and consequently, the empirical and the@letesponses are not comparable no
matter sign they have. Specifically, we study thBofving five schemes: the usual
short-run and long-run restrictions, the modifiedd-run procedure (Christiano et al.,
2006), the Max-Share method (Francis et al., 2044y the identification in the
frequency domain (DiCecio and Owyang, 2010). Caestswith previous findings, the
short-run scheme performs remarkably well in simoies (see Christiano et al., 2007
or Lovcha and Perez-Laborda, 2015). Yet, the timasgumptions required for its
application are seen by some researchers as toa@ties. The results obtained with
other schemes are significantly worse. The samplingertainty in the estimated
responses questions their practical use in maogtsans, and the BC properties of the

identified shock usually differ substantially fratre properties which the true shock has

> The forecast error variance decomposition compht®s much of the (h-step) total forecast error
variance of each of the variables can be expldiyeelach shock. The typical use of this method iespé
one-to-one mapping between forecast error andaatatiomponents, which is far from being true since
the h-periods ahead forecast error contributebeaovariability of the variables in all frequenciest just

at business cycle.



in the DGP. Among them, the Max-Share method per$onoticeably better, although
caution should still be used in its application.

Second, we propose a new identification strategit lmn the grounds of the
simulation study. The method is also based on tRed¥composition and uses RBC
model values for the fractions of hours and proitgtgrowth variances explained by
the technology shock in several frequency rangest®Carlo results show that the
proposed procedure provides a precise identifinatiothe technology shock, reducing
the uncertainty in the estimated responses. Obljioosr proposed scheme is model
dependent. However, the degree of uncertainty adsdcwith other methods turns
precision a very valuable property. In fact, theado use RBC characteristics for
identification is not new. Uhlig (2004) analyzethaoretical model concluding that the
contribution of technology shocks contribute mosttihe variance of the forecast
revision of productivity peaks at intermediate konis. Based on this, the author
employs a middle-run scheme imposing that techryobsgthe only shock affecting the
FEV of productivity at a horizon of four years. ther, we are not the first researchers
to employ the VF decomposition for identificatioDiCecio and Owyang (2010)
identify the technology shock in the frequency donmaaximizing the contribution of
this shock to productivity variance at several freacy ranges, although they do not
evaluate their method in simulations. Unlike theme reach identification by
minimizing the difference between empirical and otleéical contributions, thus
combining the ideas of the previous two works. Tthistinction is crucial since the

DiCecio and Owyang (2010) procedure can only bgfiegd when the maximization is



carried out over the low-frequencies, and everhat tange has still associated a large
degree of uncertainty in the estimated respohses.

Finally, we put all the schemes to work with reata] finding substantial support to
the RBC specifications of Christiano et al. (200Ggpecially from the schemes that
perform better in the Monte-Carlo study. Our resaliso accommodate quite well the
recursive assumptions required for short-run idieation. Besides, the empirical study
reveals that schemes that recover very large reggoof hours in the data (higher than
those implied by typical RBC parametrizations) témdverstate the BC contribution of
the technology shock.

The remainder of this paper is organized as folld®extion 2 briefly describes the
econometric framework. The Monte-Carlo study mayfdaend in Section 3. Section 4
proposes a new identification scheme based on theldtomposition. The real data
analysis (RDA) is carried out in Section 5. FinalBection 6 offers some concluding
remarks. There is also a separate Appendix contpitile description of all the
identification schemes that were analyzed. A “ddgendly” code to compute the VF

decomposition of a structural VAR is also availaéi¢he authors’ sité.

2. ECONOMETRIC FRAMEWORK
2.1 The Structural VAR

For the sake of simplicity, consider the standardarate specification in the

literature, where the first variable in the vectr=(Inl,,Aln yt)' is defined as the

logarithm of hours worked and the second variablgeifined as productivity growth.

% As shown in the Monte-Carlo study, their procedimes well in terms of the bias when maximizat®n i
carried out over low frequencies, yet with a ladggree of uncertainty. However, when it is apptied
other frequency ranges, the method is judged rutogpiate to recover impulse-responses.

* The Appendix and the code can be downloaded tas:Hsites.google.com/site/ylovcha/Research
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The reduced-fornVAR( p) can be written inVIA(«) form as:
X =[1-F(L)] u, (1)
where | is the identity matrix,F(L) is a matrix polynomial of ordep in the lag

operatorL , and the reduced form errots have a zero mean ar@ variance-
covariance matrix. The structural representatiothefmodel is given by:
-1
X, =[1-F(L)] A )
where ¢, is a vector of uncorrelated, zero mean structemalrs with identity variance-
covariance matrix. The structural matrix:
a b
A=
c d
maps the structural shocks into the reduced raidthus satisfyind) = AA':
0% =a%+b’
o2 =c*+d”? (3)
o,, =ac+hd

This implies a system of 3 equations and 4 unknownsl therefore one additional
restriction is needed to recover all the paraméteFie imposition of this restriction is
a central issue in the hours-productivity debatel, several identifying assumptions had
been proposed in the literature. Each of them lsascated a different response of

hours, which has fueled the debate.

® See e.g. Rubio-Ramirez et al (2010) for a generallysis of identification. Also, note that sign
restrictions to the responses of hours and prodtictjrowth to their own shocks are also requirdsl.is

common in the literature, we assume that both aséipe (a,d > 0).



2.2 The Variance-Frequency Decomposition

Consider the structural representation of the VA&et, and letf (a)) be the2x2

spectral density matrix ok, at a given frequencgw:

B , -1
(@) =5 (1-F (&))" aa(1-F () @
wherei denotes the imaginary unit, aer(e““’) is the complex conjugate (Ff(ei“).

The main diagonal of (a)) contains the univariate spectral densities of)(loaurs and

productivity growth and the off-diagonal elements the cross-spectral densities. The

univariate spectrum of the” variable can be re-written from (4) as:

ACE AN | ®)

21T k=1

C, is then” row of the matrix[l -F (e‘“)]_l, and A, is thek"element of columm in

the structural matrixA . This equation expresses the spectrum of the hlariaat a
given frequencyw as the sum of terms associated with each struatlisturbance.
Given that the spectrum of a process can be irgergras the decomposition of the
variance into a set of uncorrelated componentsaah drequency, the percentage
contribution of thek™ shock to the variance of variabfe attributed to cycles of

frequencyw is given by:

(@) (6)

W, (w):‘Cn(e“")Akn
Thus, the fraction of the fluctuations of the vhl@n in the frequency range

R:[cq,a%] accounted fok" shock can be computed easily from (6)as:

®The definite integrals in (7) can be approximateyl summations for the Fourier frequencies

W = an/T, j= O,l,...T/ ¢ that belong to the given range (see e.g., Sar§eBf, ch.11, equation (20)).



w, (R) :{I\cn () A dw}@ . (w)dw}1 )

As can be deduced from the previous two expressithes contribution of the
different shocks to the variance of a variable agivzen frequency (or in a given
frequency range) depends crucially on the way thetiral shocks are identified (it is,
how the entries of the structural matriX are obtained), and therefore it varies

substantially with the particular identificationhgme applied.

3. MONTE-CARLO ANALYSIS

In this section, we evaluate by means of simulatithe short sample properties of a
set of five identification schemes which have bpesposed in the hours-productivity
literature: the short-run (SR), the long-run (LR)e Christiano et al. (2006) modified
long-run strategy (MLR), the Max-Share method (M&}rancis et al. (2014), and the
identification in the frequency domain (FD) of Di&l@ and Owyang (2010). Details on
the application of these schemes are providederséparate Appendix to this work. We
do not restrict the study to the analysis of impuissponses, as previously done in the
literature and additionally we use (7) to evaluate contribution of the identified shock
to the variances of hours worked and productivigngh at BC frequencie.

To do so, we simulate 1=1,000 artificial quartedigtasets of 244 observations each,
containing artificial data on hours worked and pratd/ity from both the standard and
the recursive versions of the two-shock RBC modeClaristiano et al. (2007), using
their benchmark parameterizatidihis model provides a good fit to the data comghare

to other RBC specifications and has been alreagyiamed for the analysis of the IRFs

’ As in the literaturewe define the BC range as formed for cycles wittioos between 2 and 8 years.
® The model solution and the state-space repres@mizan be found in the technical Appendix of Loach
and Perez-Laborda (2015), at: https://sites.gocae/site/ylovcha.
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in Monte-Carlo studies (see Christiano et al., 2600Zovcha and Perez-Laborda 2015).
The recursive version is included in the analysigvaluate SR restrictions, which are
not satisfied in the standard formulation. At eaafificial dataset, we estimate a
VAR(4), which is the standard lag-length in theed#tture, and we identify the
technology shock using the five proposed schemlegs,Teach dataset represents what
an econometrician would estimate based on a saofif#é4 observations. For the MS
method, the finite horizoh is fixed at 10 years, as in Francis et al. (20Edy. FD
identification, we employ two different bands foraxmmization: the BC band, with
periods ranging from 2 to 8 years, as in DiCecid &wyang (2010), and the low-
frequency (LF) band, containing cycles with peritateyer than 8 years.

3.1 MonteCarlo Analysis of the Response of Hours

Figures 1 and 2 depict the mean of the estimatggbrese of hours to the identified
technology shock across the 1000 simulations, uboty the standard and recursive
versions of the RBC. The shadowed areas corresfmtite 10th and 90th estimated
percentile bands, which measure the sampling waiogytassociated with the particular
identification method. We also include in the figsrthe true responses from the
corresponding DGP. Note that for the recursiveigarghe positive response follows a
contemporaneous zero response, which is a direosequence of the timing
assumptions which make this version compatible BRhrestrictions.

As can be seen in Figure 2, SR identification penfooutstandingly well with data

generated from the recursive model. There is noexwe of bias in the estimated

° DiCecio and Owyang (2010) employ the same BC dtfim but they split the LF band into medium-
long (cycles from 8 to 20 years) and very-long (egdrom 20 to 200 years). However, with the stadda
lengths available in real datasets, the last bamdists merely on a single frequency, so we merge t
medium-long and very-long into a single band. Nal®o that, given the unit root of productivity, the
spectrum of this variable is infinite at zero freqay. As standard practice, we exclude this frequéor

identification using the LF range.



response and the sampling uncertainty is very srifalever, this scheme does not
work well when data come from the standard RBCyFédl) since this model does not
satisfy the restrictions needed for SR identifmati According to simulations, LR
identification produces on average slightly ovetireated responses, for both standard
and recursive versions of the DGP. More importarthe fact that the percentile bands
are always very wide, containing the zero respaisall horizons. Thus, uncertainty
associated with the LR scheme is so huge, that avaegative response for hours
recovered from the real data can be perfectly cailvipawith the validity of RBC
models in many situatiod8.The MLR procedure of Christiano et al. (2006) lideato
slightly narrow the bands, but the associated uaicgy is still large. When the
technology shock is identified with the MS methtite depicted bands are considerably
narrower than those obtained with the LR and MLResees, and the response of hours
is on average just slightly underestimated. Notedwer that the bands still include the
zero at all-time horizons. Overall, the simulatenmalysis of the response of hours with
the first four schemes is in line with the reswtstained by Christiano et al. (2007),
Lovcha and Perez-Laborda (2015) and Francis €2@14)** The figures also plot the
results for FD identification, which has not yeehesvaluated in Monte-Carlo studies.
This scheme performs well in terms of the biasstineated responses if maximization
is produced over the LF band. In this case, thepaghuncertainty is smaller than with
the LR and MLR schemes, but the band is still $iggtly wider than those of the SR
and MS methods. However, when maximization is pceduover the BC range of

frequencies, the estimated response is not comparalihe theoretical response, no

19 As noted in Christiano et al. (2007), as far @sdbnfidence intervals for impulse responses refree

true degree of uncertainty observed in simulatitims,LR restrictions are still “appropriate”, inetsense
that an econometrician would not be misled in iefee using this scheme. Yet, the impulse-responses
would not be informative in most of the situations.

" The reader is referred to these works for resultthe accuracy of confidence intervals.
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matter the DGP. Note that maximizing the contribitof the technology shock to the
productivity variance in other frequency rangegks$atheoretical justification and is not
satisfied in the DGP.

3.2 Monte-Carlo Analysis of the BC Contribution ofthe Technology Shock
3.2.1 The BC contribution of the technology shock in the RBC

Table 1 presents the percentage contribution of tdahnology shock to the
variability of hours and productivity growth at Bi&equencies in the model employed
as DGP in our simulation study. As can be seerh@ntable, the percentages in the
standard and recursive versions are virtually thenes The contribution of the
technology shock for the variability of productiigrowth at BC frequencies is around
80% in the two versions while the percentage fgr hours is much smaller (around
8%). Thus, interestingly, the timing assumptionsioet affect the BC properties of the
technology shock and, in fact, it can be shown thatdifferences between the two
versions are only major at high frequencies (withie year).

In order to illustrate how much these numbers chanigh the model specification,
Table 1 also reports the BC contribution of théntedogy shock in several alternative
scenarios. Using the standard version, we firsingbathe value of the parameter
governing the Frisch elasticity of labor supplynfraghe benchmark value @f =1 to
o =0, which implies infinite Frisch elasticity. We alsonsider an alternative scenario
with Frisch elasticity equal to 0.6&7(=6). Second, we change the specification of the
model and compute the decomposition in the threetskxtension, which includes the
investment tax shock.

As can be seen in the table, the contributiongheftechnology shock to the hours
variance at BC frequencies in the alternative stesare always small and close to the

benchmark value. On the other side, the contribsti productivity growth variance,
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although always large, vary a little more with gegticular specification. If the utility is
linear in leisure (indivisible labor), this contution is slightly lower than in the
benchmark case (62%) and rises to 92% if we contheecaser = 6. As expected, the
three-shock extension decreases the contributiotheoftechnology shock to the two
variances since variability is explained by onecshmore. However, the decrease is not
huge. As an overall, the results are similar togeeeentages obtained by Christiano et
al. (2007) by HP filtering model data.

3.2.2 The BC contribution of the identified technology shock in the VAR

Once we have assessed the true contribution oftébknology shock at BC
frequencies in the two versions of the RBC modepleyed as DGP, we study the
shares that account for the identified shock usiagh of the schemes in the Monte-
Carlo study. Table 2 reports the average perceragiibutions of the identified shock
in the VAR to the variance of hours and producyigtowth at BC frequencies across
the 1,000 replications. The numbers inside parasighmrrespond to the 10th and 90th
percentiles of the estimated percentages with ekettification method.

When the artificial data come from the standard RB€ SR method substantially
understates the contribution of the technology khtx the hours’ variance and
overstates that of productivity growth. Howeverngsthe recursive model (where SR
restrictions are satisfied), this identificatiorrfjpems well, obtaining average values that
do not differ much from true values, with only a aecate degree of uncertainty. The
LR and MLR schemes overstate significantly the sharthe hour variance which is
explained by the technology shock and underst&esltiare of productivity growth. The

percentile bands are huge, no matter the RBC eraglty generate the data. Thus, in a

"2 Christiano et al. (2007) compute these valuestjudtustrate differences among model specificagion
The authors neither employ these percentages éoevhluation of competing identification schemes no

to propose alternative identification methods.
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large percentage of cases, these schemes are nagowhocks with completely
different BC properties than those which the traeck has in the DGP. On average, the
MS method recovers a lower contribution to thearace of hours than is explained by
the true shock and a higher contribution to proigitgtgrowth variance?* Uncertainty,
albeit large, is substantially smaller than thaoagted with the LR and MLR schemes.
Note, however, that for data generated from thedstal version, the true contribution
to productivity growth variance lies outside thergamtile bands, below the down
bound. Note also that, while it is inside for dataning from the recursive version, the
true value still lies very close to the down boulsdthis a strong pitfall of the method?
In our opinion, it is not. Note that, unlike IRF$e percentages explained by the
technology shock are not usually the final objedt tbe inference, and the
econometrician has no need to determine with exaetiwhether the real percentages
are over or under a certain threshold. Our resultgjest that using the MS scheme in
empirical applications, the identified shock almosttainly overstates the contribution
of the technology shock to the variance of proditgtigrowth at BC frequencies. Yet,
it is much more likely that the BC properties oé tidentified shocks are similar to the
properties of the real shock using this scheme taen LR (or MLR) restrictions are
applied. Turning to FD identification, when the tdvution of the technology shock to
productivity variance is maximized over the LF ranghe average shares for the
variances of hours and productivity growth at B€gfrencies lie above and below the
true percentages respectively, as with the LR ntktiibe percentile bands, although
somehow narrower than LR bands, are still too l&ndee confident on the properties of

the identified shock in real data. Not surprisinglyhen the targeted range for

13 Note that the imposition of the MS and FD schenegsiires productivity to enter in (log) level imet
VAR. In the estimation of the spectral density wepéoy the proper filterB (L) =[1 0; 0 (1-L)]

to recover the contribution of the technology shtackroductivity growth.
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identification is the BC, the contribution of thechnology shock to the productivity
growth variance at these frequencies is largelystated, and the true value lies below
the percentile bands despite the version of the R&%l to generate the data.

Overall, the Monte-Carlo study shows that only i scheme performs well both in
terms of the estimated responses and in termseopéncentages of model variances
accounted for by the identified shock. Howeverrehs still a requirement with respect
to the timing of shocks that are often seen asréstrictive. The responses recovered
with other identification schemes suffer from largampling uncertainty and the
schemes very often recover shocks with BC propethat differ strongly from those
which the technology shock has in the DGP. Amormpththe MS method does much
better in simulations but still is associated watttonsiderable amount of uncertainty
and is likely to understate the contribution of teehnology shock to the variance of

productivity growth at BC frequencies.

4. MODEL-BASED IDENTIFICATION

In this section, we propose a new identificationthrod that is aimed at reducing
uncertainty in the associated responses. Our mzstedd (MB) procedure finds the
additional restriction needed to identify the systé3), minimizing the sum of the

squared differences between theoretical and emapicientributions for all frequencies

in a given rang® = [a)l,a)z] . More specifically, MB identification is reacheg:b

2
min > > (W (@) -wES (@) ]

wOR i=1

(8)

st. 0,,=+0%-b?*JoZ-d?+hd
where the restriction in the problem comes from #lubstitution of the first two

equations of the system (3) into the third equatidre termsw’s%, («, ) and \AﬁBefh(a)]) ,

i,tech
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can be computed from (6), and denote the fractiothe variance of the variable

attributed to the technology shock at the Fouriegiencyw, LIR in the estimated

VAR and in the theoretical RBC respectively.

Obviously, the previous procedure is model depensiace it requires the RBC
contribution of the technology shock to the two mlodariances for all Fourier
frequencies in the given range. In order to redmoelel dependence, we propose a
simplified version (SMB) which only requires theewsall contribution in the range

(only two model values):

2
min 3 [ Wi (R) - Wi (R) ]

9)

st. 0,,=+0?-b?\Jo?-d?+hd

To evaluate the proposed MB procedures, we cartytloe same Monte-Carlo
analysis of Section 3. For MB identification, weget various frequency ranges. As we
did with the FD scheme, we chose the LF range (p@hods ranging from 32 quarters
on) and the BC range (with periods from 8 to 32rtpra). However, we also examine
the MB procedure by targeting the whole frequenggctrum (ALL). For the SMB
version of the method, we target the BC range only.

Table 2 contains the average contribution of tlemtified shock for the variance of
the two model variables at BC frequencies usingfthe proposed MB (and SMB)
schemes across the replications. The table shaatsite MB method performs really
well using the two versions of the DGP. The averem&ribution is always very close
to the actual shares and the percentile bandseayenarrow. Thus, in a huge percentage
of cases, the identified and the true technologyck$ have virtually identical BC
properties. More important, this result is irrespexof the frequency range employed

for minimization. Note that even if the LF rangetasgeted, the average shares across

15



replications are also very similar to theoreticalues, with only a small amount of
uncertainty. The simplified version of the procezl(8MB-BC) also performs very well
in the simulation study.

Once we know that the MB schemes work well in idgimgy the technology shock
in the proposed framework, we proceed to analyze ithpulse-response of hours
recovered with these schemes in the Monte-CarldystResults are depicted in the
second part of Figures 1 and 2. As can be sedresetfigures, the MB schemes do well
in terms of the bias when compared to other methblere is absolutely no evidence
of this for data coming from the standard versiod &, depending on the particular
variation, either non-existent or very small fotal@oming from the recursive model.
Interestingly, the simplified SMB variation doestrsthow evidence of bias no matter
whether the data come from the standard versiortherrecursive version. More
important, the MB methods also present very goadlte in terms of the precision of
the estimated responses. The depicted bands aagsaivery narrow, only comparable
to those from the SR and MS methods. However, artlile MS bands, the percentiles
obtained with the MB methods do not always contaro. This occurs, for example,
when minimization is carried out over the whole ctpam, irrespective of the DGP.
Note that also the SMB-BC bands do not always ohelthe zero for data coming from

the recursive version.

5. REAL DATA ANALISYS
Throughout this section, we put all the identificatschemes to work with real data.
We recover the response of hours and assess thes stfathe model variances at BC

which account for the identified shock.
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5. 1 Data Description.

We employ two datasets which differ in their measuiof the hours and of
productivity. The two datasets run from 1948:1 @024, thus covering a slightly
longer period than other popular datasets in ttezaliure, and were constructed by
collecting data from the Federal Reserve Bank of &tis (FRED)"*

Dataset Ais similar to the dataset used in Christiano e(2003). It contains data
from all sectors of the economy (including the fargnsector). The total business
productivity is measured as the log of the outmrthpur of all persons (OPHPBS), and
hours worked as the log of the ratio of the busirtesurs of all persons (HOABS) to the
civilian non-institutional population over the agiel6 years (CNP160V).

Dataset Bis similar to the dataset used by Gali (1999). ©hby difference is the
definition of hours worked. Gali (1999) employs thg of total employee hours in non-
agricultural establishments. Given that hours wdrike RBC models are usually
defined in per capita terms, we perform the anslyssing hours per capita. In
particular, the “non-agricultural business sectadpictivity” is the log of the OPHNFB
series in the FRED dataset. Hours worked are amtistt by subtracting the log of the
civilian non-institutional population over the agk16 years (CNP160V) from the log
of the non-farming business sector hours of albpes (HOANBS).

In both datasets, “the civilian non-institutionabgulation over the age 16” is
converted to quarterly by taking simple averagesnohthly observations. Except for
population, all the series are seasonally adjusted.

5.2 The Response of Hours to Technology Shock in &data

The estimated responses of hours to a positiventdéayy shock in Dataset A and

Dataset B are plotted in Figures 3 and 4, respalgtiihe shadowed areas correspond

4 We have not included the last years of the datader to eliminate the influence of the last hiigis.

Also, in this way the results are directly compéeeb those of Lovcha and Perez-Laborda (2015).
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to the estimated 10% confidence interval computétti won-parametric bootstrdp.
Together with the estimated responses, we alsccidde theoretical values from the
two versions of the RBC that we have employed a® Drsthe Monte-Carlo study, in
order to study the empirical evidence of the RBEctjration employed in the Monte-
Carlo study.

As can be seen in the figures, the response ofshwarked recovered with the SR
identification is positive in the two datasets Igaling the zero contemporaneous
response) and statistically significant in the shon. The LR identification also returns
positive responses, but of significantly higher magle, especially in the Dataset A.
The confidence intervals are much wider, reflectthg high sampling uncertainty
associated with the method. In fact, in DatasethB,response is not significant at any
horizon. Overall, the responses obtained with SR R methods are consistent with
the findings of Christiano et al. (2007) and Chetrial. (2008). The MLR procedure
returns positive but not statistically significaresponses of hours in both datasets. To
the best of our knowledge, this scheme has not applied to real data, and our results
cannot be compared with the previous literaturee Tontemporaneous responses
retrieved with MS identification are negative, tlled by positive responses after 3
quarters (Dataset A), and 1 quarter (Dataset B)wd¥er, they are not statistically
significant at any horizon. Our results differ slily from those reported in Francis et al.
(2014). Note that the authors estimate a VAR witke #ariables while we employ the
standard bivariate specification. Also, they madpecial treatment in order to remove
low-frequency movements in hours. Responses fromdeDtification in the LF range
are similar to those obtained with LR identificaticalso with very wide confidence

intervals. When this identification is carried auer the BC range, the responses are

' For that we employ 1,000 bootstrap replications.
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initially negative, turning positive in the shods, although not significant at any
horizon (recall however that this scheme is judgede inappropriate for the study of
impulse-responses). Finally, the MB (and SMB) idemation produces positive

responses in the short-run regardless of the frexyueange used for identification.
Responses are very precisely estimated with snoalfidence intervals. The positive
response is usually statistically significant ine tishort-run, departing from a
contemporaneous non-significant response.

Note that the responses uncovered with the SR, ai8,the MB schemes are of a
similar magnitude, and also similar to those intti@oretical model. This is especially
relevant in Dataset A, where the responses of hanecsvered with other schemes are
much stronger. Finally, note that the timing asstioms required for SR identification
find quite considerable support within the datathe sense that estimated responses
with most of the schemes usually grow followingeaaz(or non-statistically significant)
contemporaneous value.

5.3 The BC Contribution of the Identified Shock inthe Real Data

Table 3 reports the shares of the variance in hands productivity growth at BC
frequencies attributed to the identified technol@imppck in Dataset A and Dataset B.
The numbers in parenthesis are the 10% confidentervals of the estimated
percentages computed with a non-parametric boptstra

As can be seen in the table, the percentages edtarnth the LR, MLR and FD-LF
identification schemes differ from the theoretigalues in the models employed in the
simulation study, especially for hours worked. Tikiparticularly evident using Dataset
A, where the estimated values are huge and modeldbshares lie outside the estimated
confidence intervals. Note however that our Mongl& results show that these

schemes tend to overestimate drastically the BQGriboion of technology shock to
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hours variance. Other identification strategiesmetesults that are compatible with the
RBCs. The results of the proposed MB identificat&ohemes are characterized by
estimated shares of the BC variances attributeitheéaechnology shock that are very
similar to the RBC-based values, with relativelyraev confidence intervals. Note that
this result holds even if the BC is not the tardatenge for identification. The SR and
MS estimated percentages are similar to the stabtsned with MB strategies, also
supporting RBC values.

Overall, we find substantial evidence in favor bé tRBC model in the real data,
especially from the identification schemes thafqen better in the Monte-Carlo study.
The SR, MS, and MB methods recover responses teaimilar to responses from the
RBC specification and the identified shocks explaimilar percentages of model
variances at BC frequencies.

5.4 Analysis of Empirical Regularities

There is an interesting regularity in the empiriczgults. If an identification scheme
recovers a technology shock that counts for a lahgee of the fluctuations in hours at
BC frequencies (larger than implied by the RBC dations), the estimated response
of hours is positive and very strong (stronger tRBC responses). This occurs for the
LR, MLR, and FD-LF identification schemes, espdygiat Dataset A. Opposite, when
the estimated contribution of the identified shockhe fluctuations in hours is similar
to the RBC value, the response of hours is alsdip@dut highly moderated. Further,
if in addition the estimated contribution to protuty growth variance at BC
frequencies is lower than the contribution implBdRBC specifications, the estimated
response even become negative in the middle-runiththe response that is recovered

with the MS scheme.
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To study this issue further, we performed a smgbleeiment. Using the two sets of
data, we identify the technology shock with the SBIB method. Recall that this
scheme identifies the technology shock by miningzihe difference between the
targeted contributions of the shock to the fludtured of the two model variables at BC
frequencies and the shares that are estimatee idatia. As a result of minimization, the
targeted and the estimated percentages, albeiuahemre very similar. Thus, we can
target different values to see how responses chuaitfpethe contributions identified
from the data. Specifically, we set the targetedtigbution to the variance of hours at
8, 20 and 50%. For each of these values, we grgdtteinge the targeting contribution
to productivity growth variance from 50 to 90%, ndié/ the shock and compute the
response of hours. All the estimated responseglatied in Figure 4.

When the targeting contribution to the fluctuatianshours is set at 8% (a value
close to the percentage implied by RBC paramet#oizs), the response of this variable
turns positive if the share for productivity growthtargeted at 70% or higher (Dataset
A) or 60% or higher (Dataset B). This implies ttia¢ SMB scheme reports positive
responses using all parametrizations of the RBCifpation of Christiano et al.
(2007), except for the indivisible labor case udajaset A (see Table 1).

We now turn to the cases where the share of theshworked variance at BC
frequencies accounted by the technology shockt itos#) and 50%. These percentages
are much higher than those implied by RBC paramedidns but are of the magnitude
of the values recovered from the data using theMER, or FD-LF restrictions. When
the percentage is fixed at 20%, the responsedrarggsr in magnitude. Note that in this

case the contemporaneous values for positive resgoare also positive. A further
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increase of this percentage to 50% (or higherpstuall the responses positive and
strong, no matter the percentage targeted for ptodty growth variance?®

Generalizing these results helps to understanté¢havior of identification schemes
in real data. For instance, the LR, CH, and FD-tkesnes overstate substantially the
contribution of the technology shock to the fludtolas of hours at BC frequencies in
the Monte-Carlo exercise. As a result, the estichateares of the variance in hours
accounted by the identified shock in the real daeaso huge (especially in Dataset A)
that, even if the share of productivity growth aaGe at BC frequencies attributed to
the technology shock is estimated to be relatisehall, the recovered responses of

hours are much stronger than the responses imMpyi&BC parameterizatiors.

6. CONCLUSIONS

In this work, we have proposed a framework, basedhe VF decomposition, for
VAR identification. The idea behind this framewdskto study the properties of the
identified shock in terms of its contribution tethariance of model variables in a given
frequency range. We have shown how to perform at®iQarlo study within this
framework in a similar manner to what is usuallyrieal out for the analysis of IRFs.
Also, we have explained how to adapt the frameworkeach identification in the
VAR, leading to precise estimates of the responisdaurs worked. Finally, the
application of the framework to real data has rlacanteresting regularities in the
response of hours.

Throughout this paper, we have employed the horodygtivity debate as a

connecting thread in the narration since identiitca has been at the core of the

'8 |n fact, all the responses are positive and stamug the targeted share for hour variance is 804.
" Note also that these three schemes require dleebatimate of the low frequency movements for

identification, which is difficult to reach.
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discussion in this body of literature, and alsoause RBC models give a natural
frequency range to focus on (i.e., the BC). Notevdweer that the proposed framework
can be applied to another type of theoretical mtiug can be cast in state-space form,
or be employed in the study of other questions @oaddressed with the help of
structural VARSs, as is usually the case in the ymmslof monetary or fiscal policy

issues. We consider these subjects to be integemti@nues for future research.
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FIGURES AND TABLES

Fig. 1 — Monte-Carlo response of hours to a positevtechnology shock; Standard RBC
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Notes: a) The figures depict the mean response of hoark w0 a positive technology shock across
simulations together with the true RBC responsethie) shadowed area corresponds to th&-onff
percentile band; c) The DGP is the two-shock stah&8C of Christiano et al. (2007).
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Fig. 2 — Monte-Carlo response of hours to a positestechnology shock; Recursive RBC
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Notes: a) The figures depict the mean response of hoark w0 a positive technology shock across
simulations together with the true RBC responseths) shadowed area correspond to th&-aa@
percentile band; c) The DGP is the two-shock reeer®@BC model of Christiano et al. (2007).
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Fig. 3 — Response of hours worked to a positive tewlogy shock. Dataset A.
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Notes: a) The solid lines depict the response of hourgkaa to a positive technology shock recovered
from Dataset A. This dataset is similar to thaCbfistiano et al. (2003), and contains data foseditors;

b) the shadowed area corresponds to the 10% CIlueiehpvith nonparametric bootstrap; c) the dashed
and dash-dotted lines are the theoretical respdnsesthe standard and recursive versions of the tw
shock RBC of Christiano et al. (2007) which is eoyeld in the Monte-Carlo analysis.
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Fig. 4 — Response of hours worked to a positive tewlogy shock. Dataset B.
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Notes: a) The solid lines depict the response of hourgkaa to a positive technology shock recovered

from Dataset B. This dataset is similar to thatGali (2003), and contains data for the non-farming

business sector only; b) the shadowed area comdspm the 10% CI computed with nonparametric

bootstrap; c) the dashed and dash-dotted linestheretheoretical responses from the standard and
recursive versions of the two-shock RBC of Christiaet al. (2007) which was employed in the Monte-

Carlo analysis;
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Fig. 5 Empirical regularity: SMB response with different parameterizations
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Notes h :V\{:c (BC) and p=W* _ (BC)are the targeting contributions of the technolobgck to

h tech Alog y tech
the (log) hours and productivity growth variancasB&L frequencies using the SMB identification
procedure. These values arargeting because the SMB minimizes the difference betwdaset
percentages and those obtained from the VAR, aral rasult of minimization these two values do not
coincide with exactitude.

29



Tab. 1 —BC contribution of the technology shock imifferent RBC specifications.

RBC Inl, Alny,
Simulation study: 2 shocks: benchmark
Standard version: 7.49 80.36
Recursive version: 7.12 80.55
Alternative (non-recursive) specifications:
2 shocks:o = 0 (Indivisible labor) 7.95 62.80
2 shocks:o = 6 (Frisch elasticity = 0.63) 7.07 92.49
3 shocks: benchmark 5.34 73.28

Notes a) the numbers in the table are the % contributb the technology shock to the variances of
hours and productivity growth at BC frequenciesti® RBC specification corresponds to the model of
Christiano et al. (2007); c) the benchmark usegptrameterization proposed by the authersX).

Tab. 2 — BC contribution of the identified technolgy shock; Monte-Carlo.

% contribution to the BC
variance of:

Inl,

Alny,

STANDARD RBC

Model Value: 7.48 80.36
SR 1.67 [0.05, 6.58] 94.75 [88.22, 99.09]
LR 34.50 [0.98, 34.50] 56.09 [ 6.13, 98.70]
MLR 36.09 [1.46, 83,64] 66.81 [ 4.80, 99.54]
MS 3.72[0.18, 12.05] 94.37 [83.74, 99.57]
FD-LF 20.70[0.43, 66.07] 71.43 [15.34, 99.34]
FD-BC 4,94 [0.16, 15.36] 97.81 [93.28, 99.86]
MB-LF 7.32[1.49, 15.08] 81.55[67.17, 94.91]
MB-BC 7.66 [1.90, 14.28] 81.85[78.59, 87.23]
MB-ALL 7.25[1.84, 15.09] 82.75[72.94, 91.06]
SMB-BC 9.69 [1.54, 22.53] 80.36 [80.36, 80.36]
RECURSIVE RBC
Model Value: 7.12 80.55
SR 8.51[1.57, 17.69] 79.79 [67.60, 90.48]
LR 32.01[0.99, 78.92] 57.12 [7.65, 97.73]
MLR 38.32 [2.16, 88.40] 64.09 [4.38, 99.43]
MS 4.58[0.33, 12.77] 92.74 [80.36, 99.01]
FD-LF 19.38 [0.57, 66.95] 72.75 [14.85, 98.83]
FD-BC 6.99[1.04, 17.18] 97.48 [93.04, 99.86]
MB-LF 8.47 [1.44, 15.13] 81.70 [65.25, 96.70]
MB-BC 8.10[1.11, 16.13] 82.25[79.00, 91.33]
MB-ALL 7.81[1.07, 16.82] 81.26 [71.44, 90.85]
SMB-BC 9.55 [0.88, 24.79] 80.55 [80.55, 80.55]

Notes a) The numbers in the table are the average %ilotion of the technology shock to the variance
of (log) hours and productivity growth at BC fregoes across simulations, identified with the
corresponding scheme. The parenthesis corresponte t18' and 98' percentile percentages; b) The
DGP is the standard and the recursive versionseoRBC model of Christiano et al. (2007).
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Tab. 3 —BC contribution of the identified technolog shock; Datasets A and B

% contribution to the BC
variance of:

Inl,

Alny,

DATASET A
SR 17.29[ 6.27, 31.33] 82.82 [66.83, 92.21]
LR 80.70 [28.08, 94.59] 59.68 [36.07, 85.35]
MLR 89.61[ 9.62, 93.72] 88.67 [13.41, 96.23]
MS 9.07 [ 1.48, 30.66] 68.71 [34.16, 94.54]
FD-LF 75.73 [12.54, 96.20] 64.01 [33.93, 88.46]
FD-BC 7.82[ 1.78, 31,87] 77.71[59.81, 91.14]
MB-LF 15.45 [ 4.91, 23.60] 82.29 [60.17, 91.94]
MB-BC 9.86 [3.17, 17.70] 79.50 [66.38, 86.71]
MB-ALL 8.79 [ 3.09, 24.14] 78.64 [66.76, 89.65]
SMB-BC 9.16 [ 4.02, 16.53] 78.95 [67.55, 82.27]

DATASET B
SR 8.80 [1.70, 22.07] 73.13[55.17, 86.77]
LR 23.42[2.20, 65.89] 78.02 [49.52, 87.80]
MLR 10.07 [2.13, 79.47] 90.72 [39.60, 97.40]
MS 5.53 [0.90, 32.64] 66.03 [39.14, 89.26]
FD-LF 12.63 [1.35, 56.36] 75.25 [47.18, 87.18]
FD-BC 5.06 [1.24, 35.30]
MB-LF 8.24 [1.30, 15.66] 67.95 [43.44, 85.73]
MB-BC 10.05 [3.02, 18.56] 72.61 [58.63, 83.18]
MB-ALL 8.11[0.85, 18.04] 70.32 [57.34, 81.23]
SMB-BC 12.70 [4.42, 18.66] 76.56 [65.31, 80.36]

Notes: a) The numbers in the table are the % contributibthe identified technology shock to the
variance of (log) hours and productivity growth;th numbers in parenthesis are the 90% confidence
intervals computed with nonparametric bootstrapaBet A is similar to that of Christiano et al. Q30

and contains data for all sectors. Dataset B idaino that of Gali (2003) and contains data fog hon-
farming business sector only.
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