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Consistency distinguishes the (weighted) Shapley
value, the (weighted) surplus division value and

the prenucleolus

Pedro Calleja and Francesc Llerena ∗

Abstract
On the domain of cooperative games with transferable utility, we inves-

tigate how the main results in Hart and Mas-Colell (1989) vary when we
replace self consistency by projected consistency or max consistency. As a
consequence, we obtain several axiomatic comparison among the (weighted)
Shapley value, the (weighted) surplus division solution and the prenucleolus.

1 Introduction
A cooperative game with transferable utility (hereafter game) describes a situation
in which a society or community can profit from joint efforts. It consists of a finite
set of players and a real-valued function defined on the set of coalitions of players.
Assuming that the grand coalition will form, the question is how to allocate the
gains from cooperation among the players. A single-valued solution (or rule) is
a mapping that assigns to each game a feasible payoff vector, being one of the
objectives of the axiomatic method to identify a solution by a set of appealing
properties.

Probably, the most relevant single-valued solution is the Shapley value (Shap-
ley, 1953b), Sh, which consider that players should be paid according only to
their marginal contributions to all coalitions. In front of this marginality princi-
ple, the equal surplus division solution (Driessen and Funaky, 1991), ES,1 relies
on egalitarian considerations: it assigns to every player what they can achieve for
themselves alone, and distributes equally what is left of the gains of cooperation.
Both, Sh and ES, satisfy equal treatment of equals. This property states that if
two players have equal contributions to all coalitions, they must receive the same
∗Dep. de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona

Dep. de Gestió d’Empreses, Universitat Rovira i Virgili-CREIP,
e-mail: calleja@ub.edu (Pedro Calleja), francesc.llerena@urv.cat (Francesc Llerena).

1The ES solution is also known as the center-of-gravity of the imputation set.



payoff. Nevertheless, in many applications, and because of external features of
the players, the assumption that every player has the same abilities may not be
appropriated. The weighted Shapley value (Shapley, 1953a), Shw, and the weighted
surplus division solution (Calleja and Llerena, 2016), ESw, take care of this aspect
by assigning exogenously each player to a strictly positive weight, representing such
abilities.2 A different prominent rule is the prenucleolus (Schmeidler, 1969), ν∗,
that takes specially care of minimizing complains of coalitions to a particular allo-
cation. Interestingly, although the definitions of the (weighted) Shapley value, the
(weighted) surplus division solution and the prenucleolus differ completely, from an
axiomatic approach the difference can be pointed out to one axiom: consistency,
an outstanding relational property in the axiomatic method.3

Our starting point is the work of Hart and Mas-Colell (1989). By combin-
ing self consistency together with some of the following well-established proper-
ties (for two-person games): efficiency, w−proportionality, scale invariance, strong
aggregate monotonicity and equal treatment of equals, they obtain several charac-
terizations of both the Shapley value and the family of weighted Shapley values.
Here, we are particularly interested in analysing which is the set of rules that
arise from substituting self consistency in Hart and Mas-Colell’ results by either
projected consistency (Funaki, 1998), satisfied by ESw, or max consistency (Davis
and Maschler, 1965), satisfied by ν∗. Our approach follows similar lines to thoes
in Chang and Hu (2007), that compare the equal allocation of nonseparable cost
value (Moulin, 1985) with Sh in terms of consistency. Without consistency, differ-
ent axiomatic comparisons of Sh and ES can be found in van den Brink (2007),
Kamijo and Kongo (2012) and Casajus and Huettner (2014). To make a parallel
analysis between Sh and ν∗, the papers of Orshan (1993) and Hokari (2005) are
fundamental.

The paper is organized as follows. Section 2 contains some preliminaries on
games. Section 3 is divided in three subsections. In Subsection 3.1, we com-
bine self consistency or projected consistency with (weighted) standardness. Apart
from consistency, a property that plays an important role in our work is aggregate
monotonicity (Megiddo, 1974), that says that if the worth of the grand coalition
increases, whereas the worth of all other coalitions remains the same, then ev-
erybody should be weakly better-off.4 Because of Shw and ESw distribute any
variation in the worth of the grand coalition following a fix pattern reflecting some

2Other authors, like Kalai and Samet (1987), Monderer, Samet and Shapley (1992) or Nowak
and Radzik (1995) give a more general definition of Shw that allows some players to have zero
weight. Béal et al. (2015) consider a wide class of weighted surplus division values where any set
of players is assigned to a vector of weights which may contain negative coordinates and differs
for different sets.

3See Thomson (2011) and Thomson (2012) for essays on the consistency principle.
4In the literature, several notions of monotonicity have been introduced to characterize solu-

tions on different frameworks (e.g., Kalai and Smorodinsky, 1975; Kalai, 1977; Kalai and Samet,
1985 or Thomson, 1987).
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previous agreement among players, we introduce strong regular aggregate mono-
tonicity which captures this idea of regularity. In Subsection 3.2, self consistency
and projected consistency are considered together with strong regular aggregate
monotonicity and scale invariance (for two-person games). In Subsection 3.3, we
also consider the classical properties of dummy player and individual rationality.
Impossibility results emerge when some of the above properties are required on
the domain of all games, not only for two-person games. In Section 4, we study
the compatibility of max consistency with the aforementioned properties. This
allow us to compare the family of weighted Shapley values, the family of weighted
surplus division rules and ν∗. Interestingly, new impossibility results are manifest
when max consistency appears in scene. Finally, Appendix A contains some of the
proofs of the characterization results, while Appendix B shows the independence
of the properties.

2 Preliminaries
The set of natural numbers N denotes the universe of potential players. We assume
that the set of potential players contains at least two players. A coalition is a
non-empty finite subset of N and let N denote the set of all coalitions of N. Given
S, T ∈ N , we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T and S 6= T .
By |S| we denote the cardinality of the coalition S ∈ N . A transferable utility
coalitional game (a game) is a pair (N, v) where N ∈ N is the set of players and
v : 2N −→ R is the characteristic function that assigns to each coalition S ⊆ N
a real number v(S), representing what S can achieve by agreeing to cooperate,
with the convention that v(∅) = 0. For simplicity of notation, and if no confusion
arises, we write v(i), v(ij), . . . instead of v({i}), v({i, j}), . . .. By Γ we denote the
class of all games.

Given N ∈ N and ∅ 6= S ⊆ N , the unanimity game (N, uS) associated to S is
defined as uS(R) = 1 if S ⊆ R and uS(R) = 0 otherwise. Given a game (N, v) and
∅ 6= N ′ ⊂ N , the subgame (N ′, v|N ′) is defined as v|N ′(S) = v(S) for all S ⊆ N ′.
For any two games (N, v), (N,w), and α ∈ R, we define the game (N, v + w) as
(v +w)(S) = v(S) +w(S), and the game (N,α · v) as (α · v)(S) = α · v(S), for all
S ⊆ N . The null game (N,0) is defined by 0(S) = 0 for all S ⊆ N .

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,
x = (xi)i∈N , and for all S ⊆ N , x(S) = ∑

i∈S xi, with the convention x(∅) = 0.
Given ∅ 6= S ⊆ N , eS ∈ RN is defined as eS,i = 1 if i ∈ S and eS,i = 0 otherwise. For
each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT .
Given two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all i ∈ N , while x > y if xi > yi,
for all i ∈ N .

The set of feasible payoff vectors of (N, v) is defined by X∗(N, v) := {x ∈
RN |x(N) ≤ v(N)}, while the preimputation set contains the efficient payoff
vectors, that is, X(N, v) := {x ∈ RN |x(N) = v(N)}. The set of imputations is
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defined by I(N, v) := {x ∈ X(N, v) |xi ≥ v({i}) for all i ∈ N}. The core of (N, v)
is the set of those imputations where each coalition obtain at least its worth, that
is C(N, v) := {x ∈ I(N, v) | x(S) ≥ v(S) for all S ⊂ N}. A game (N, v) is said to
be balanced if C(N, v) 6= ∅.

A solution on a class of games Γ′ ⊆ Γ is a correspondence σ that associates
with each game (N, v) ∈ Γ′ a subset σ(N, v) of X∗(N, v). A solution σ on Γ′ ⊆ Γ
is said to be single-valued if |σ(N, v)| = 1 for all (N, v) ∈ Γ′. Note that a single-
valued solution is always non-empty but not necessarily an efficient allocation. We
say that a single-valued solution σ on Γ′ ⊆ Γ satisfies efficiency (E) if all the
gains from cooperation are shared among the players, that is, for all N ∈ N and
all (N, v) ∈ Γ′, it holds ∑i∈N σi(N, v) = v(N). For our purposes, we introduce
some well-known efficient single-valued solutions defined on Γ. Let N ∈ N and
(N, v) ∈ Γ. The Shapley value, Sh, is defined by

Shi(N, v) :=
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i})− v(S)) for all i ∈ N.

Let (N, v) ∈ Γ and let αT = ∑
S⊆T (−1)|T |−|S|v(S) for all ∅ 6= T ⊆ N . Then

we can express the game (N, v) by a linear combination of the unanimity games
as v = ∑

∅6=T⊆N αTuT . The weighted Shapley value relative to a list of positive
weights w = (wi)i∈N ∈ RN

++, Shw, is defined by

Shw(N, v) :=
∑
∅6=T⊆N

αT · Shw(N, uT ),

where

Shwi (N, uT ) =


wi∑
j∈T wj

if i ∈ T
0 if i ∈ N\T

.

Note that when wi = wj for all i, j ∈ N, then Shw(N, v) = Sh(N, v).
The equal surplus division solution, ES, is defined by

ESi(N, v) := v(i) + 1
|N |

(
v(N)−

∑
i∈N

v(i)
)

for all i ∈ N.

The weighted surplus division solution relative to a list of positive weights
w = (wi)i∈N ∈ RN

++, ESw, is defined by

ESwi (N, v) := v(i) + wi∑
j∈N wj

(
v(N)−

∑
i∈N

v(i)
)

for all i ∈ N.

Given a list of positive weights w, ESw can be interpreted as a two-stage rule: after
assigning to every player what they can achieve for themselves alone, it distributes
what is left of the gains of cooperation proportionally according to w. Note that
when wi = wj for all i, j ∈ N, then ESw(N, v) = ES(N, v).
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3 (Weighted) Shapley value versus (weighted)
surplus division rule

The main concern of this section is to show that, from an axiomatic point of view,
the consistency principle distinguishes Shw and ESw. The section is organized
as follows. First, we introduce the notion of consistency. In every subsection
we study how consistency combines with other basic properties: Subsection 3.1
considers weighted standardness. Subsection 3.2 focus on strong regular aggregate
monotonicity together with scale invariance. Finally, Subsection 3.3 is devoted to
strong regular aggregate monotonicity, the dummy player property and individual
rationality. For a clearer presentation, the proofs of the characterization results
that make use of technical arguments are consigned in Appendix A. Appendix B
contains the independence of the properties of the characterizations.

Consistency is a sort of internal stability requirement that relates the solution
of a game to the solution of a reduced game that results when some agents leave.
The different ways in which the agents that remain evaluate the possible coalitions
give rise to different notions of reduced game. In this section, we deal with two
ways of reducing a game: the self reduced game and the projected reduced
game. The terminology is taken from Thomson (2003).

Definition 1. Let σ be a single-valued solution, N ∈ N , (N, v) ∈ Γ, and ∅ 6=
N ′ ⊂ N . The self reduced game relative to N ′ at σ is the game

(
N ′, rN

′
S,σ(v)

)
defined by

rN
′

S,σ(v)(R) :=
{

0 if R = ∅,
v(R ∪N \N ′)−∑i∈N\N ′ σi(R ∪N \N ′, v|R∪N\N ′ ) if ∅ 6= R ⊆ N ′.

Definition 2. Let N ∈ N , (N, v) ∈ Γ, x ∈ RN and ∅ 6= N ′ ⊂ N. The projected
reduced game relative to N ′ at x is the game

(
N ′, rN

′
P,x(v)

)
defined by

rN
′

P,x(v)(R) :=
{
v(R) if R ⊂ N ′,
v(N)− x(N \N ′) if R = N ′.

In the self reduced game (relative to N ′ at σ), the worth of a coalition R ⊆ N ′

is determined under the assumption that R joins all members of N \N ′, provided
they are paid according to σ in the subgame associated to R ∪ (N \ N ′). In the
projected reduced game (relative to N ′ at x), when players in N \ N ′ leave the
game, for a proper subcoalition R ⊂ N ′ cooperation is no longer possible with
them.

The following notions of consistency rely on the above definitions of reduced
game. A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Self consistency (SC): if for all N ∈ N , all (N, v) ∈ Γ′ and all ∅ 6= N ′ ⊂ N,

then
(
N ′, rN

′
S,σ(v)

)
∈ Γ′ and σ(N, v)|N ′ = σ

(
N ′, rN

′
S,σ(v)

)
.
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• Projected consistency (PC): if for all N ∈ N , all (N, v) ∈ Γ′, all ∅ 6=
N ′ ⊂ N and x = σ(N, v), then

(
N ′, rN

′
P,x(v)

)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′
P,x(v)

)
.

Self consistency and projected consistency state that in the self reduced game
and in the projected reduced game, respectively, the original agreement should be
confirmed.

3.1 Consistency and weighted standardness
For the two-agent case, many solutions in the literature coincide with the standard
solution or its weighted generalizations.

The standard solution, ST , is defined as follows: for all N = {i, j} ∈ N and
all (N, v) ∈ Γ,

STi(N, v) := v(i) + 1
2 (v(N)− v(i)− v(j)) ,

STj(N, v) := v(j) + 1
2 (v(N)− v(i)− v(j)) .

The weighted standard solution relative to a list of positive weights w =
(wi)i∈N ∈ RN

++, STw, is defined as follows: for all N = {i, j} ∈ N and all (N, v) ∈
Γ,

STwi (N, v) := v(i) + wi
wi + wj

(v(N)− v(i)− v(j)) ,

STwj (N, v) := v(j) + wj
wi + wj

(v(N)− v(i)− v(j)) .

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Standardness (ST): if for all N = {i, j} ∈ N and all (N, v) ∈ Γ′, it holds
σ(N, v) = ST (N, v).

• w-proportionality (w−P) (w.r.t. a list of positive weights w ∈ RN
++): if

for all N = {i, j} ∈ N and all (N, v) ∈ Γ′, it holds σ(N, v) = STw(N, v).

A solution satisfies Standardness if for any two player game (N, v) assigns to
each player what they can achieve for themselves and equally divides the surplus
v(N)−v(i)−v(j), while it satisfies w-proportionality if shares this surplus propor-
tionally according to a given list of positive weights w. Note that standardness is
a particular case of w-proportionality where all the players have the same weight.
Sh and ES satisfy standarness and, for a given w ∈ RN

++, Shw and ESw satisfy
w-proportionality.

On the domain of all games, and for a given w ∈ RN
++, Shw is the unique single-

valued solution that satisfies self consistency and w-proportionality (Theorem 5.7 in
Hart and Mas-Colell, 1989). In addition, Theorem B in the same paper states that
Sh is the unique single-valued solution satisfying self consistency and standardness.
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Interestingly, ESw and ES can be characterized by replacing self consistency with
projected consistency.5

Theorem 1. Let w ∈ RN
++ be a list of positive weights. The weighted surplus

division value, ESw, is the unique single-valued solution on Γ satisfying projected
consistency and w−proportionality (w.r.t. w ∈ RN

++).

By using standardness instead of w-proportionality it follows the next corollary,
already stated by van den Brink et al. (2016) and implicitly suggested by Driessen
and Funaki (1997).

Corollary 1. The equal surplus division value, ES, is the unique single-valued
solution on Γ satisfying projected consistency and standardness.

The above characterizations are summarized in the following scheme:

ESw ≡ PC + w−P (Th. 1).

Shw ≡ SC + w−P (Th. 5.7 in Hart and Mas-Colell, 1989).

ES ≡ PC + ST (Cor. 1).

Sh ≡ SC + ST (Th. B in Hart and Mas-Colell, 1989).

3.2 Consistency, monotonicity and scale invariance
In this subsection, our goal is to replace the prescriptive property of w-proportionality
by scale invariance and a strong version of aggregate monotonicity.

A single-valued solution σ on Γ′ ⊆ Γ satisfies:

• scale invariance (SI): if for all N ∈ N , all (N, v) ∈ Γ′, all α > 0 and all
d ∈ RN , if (N,w) is such that w(S) = α · v(S) + d(S) for all S ⊆ N , then
σ(N,w) = α · σ(N, v) + d.

• Strong aggregate monotonicity (SAM): if for all N ∈ N and all (N, v),
(N, v′) ∈ Γ′ with v(S) = v′(S) for all S ⊂ N and v(N) < v′(N), it holds
σ(N, v) < σ(N, v′).

• Equal aggregate monotonicity (EAM): if for all N ∈ N and all (N, v),
(N, v′) ∈ Γ′ with v(S) = v′(S) for all S ⊂ N , it holds

σ(N, v′)− σ(N, v) =
(
v′(N)− v(N)

|N |
, . . . ,

v′(N)− v(N)
|N |

)
.

5Here, it is worth to remark that the class of weighted surplus division solutions introduced
by Béal et al. (2016) is not projected consistent.
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Scale invariance is a classical invariant requirement w.r.t. changes in scale that
are comparable with positive affine transformations. Strong aggregate monotonicity
states that everybody is strictly better off whenever the worth of the grand coalition
increases and the worth of every other coalition remains unchanged. Remarkably,
both Sh and ES satisfy equal aggregate monotonicity, which is a much stronger
property imposing that agents share equally the raise of the worth of the grand
coalition.6

According to equal aggregate monotonicity, any set of players N agree on dis-
tribute equally any amount t ∈ R, representing the difference of the worth of the
grand coalition between two games. However, there are many other monotonic
ways of distributing t. A monotone path is just a complete list of these monotonic
agreements.
Definition 3. A (strict) monotone path is a function f : N × R → ⋃

N∈N RN

satisfying the following conditions: for all N ∈ N and all t ∈ R,
1. f(N, 0) = (0, . . . , 0) ∈ RN ,

2. f(N, t) ∈ RN and ∑i∈N fi(N, t) = t,

3. if t′ ∈ R is such that t′ > t, then fi(N, t′) (>) ≥ fi(N, t) for all i ∈ N .
Note that a monotone path assigns non-negative (non-positive) vectors to pos-

itive (negative) real numbers.
Let Fmon denote the class of monotone paths. Examples of functions in Fmon

that will be used along the paper are:
1. For all N ∈ N , all t ∈ R and all i ∈ N , define f̄i(N, t) = t

|N | .

f̄ distributes t equally among players in N .

2. Let w ∈ RN
++ be a list of positive weights. For all N ∈ N , all t ∈ R and all

i ∈ N , define fwi (N, t) = wi∑
j∈N

wj
· t.

fw distributes t among players in N proportionally according to their weights
w.

3. Let π be a permutation on N. For all N ∈ N and all t ∈ R, define fπ(N, t) =
t · e{j}, being j ∈ N such that π(j) ≥ π(i) for all i ∈ N .
fπ assigns all the amount t to the last player in N according to π.

Instances of strict monotone path are f̄ and fw, while fπ is not.
By using the notion of a strict monotone path, we introduce strong regular

aggregate monotonicity.
A single-valued solution σ on Γ′ ⊆ Γ satisfies

6A property related with equal aggregate monotonicity is weak fairness (van den Brink et al.,
2016). This property together with efficiency imply equal aggregate monotonicity.
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• Strong regular aggregate monotonicity (SRAM): if there exists a strict
monotone path f ∈ Fmon such that, for all N ∈ N and all (N, v), (N, v′) ∈ Γ′
with v(S) = v′(S) for all S ⊂ N , it holds σ(N, v′)− σ(N, v) = f(N, v′(N)−
v(N)).

Strong regular aggregate monotonicity requires that any set of players N ∈
N reaches an agreement (which can be different for different sets) on how to
distribute monotonically any change in the worth of the grand coalition. Clearly,
strong regular aggregate monotonicity implies strong aggregate monotonicity and it
is implied by equal aggregate monotonicity.

Theorem C in Hart and Mas-Colell (1989) states that Sh can be characterized
by means of self consistency and, for two-person games, efficiency, scale invariance
and strong aggregate monotonicity.7 Unfortunatly, it is still an open question if
replacing self consistency by projected consistency we reach a characterization of
the family of weighted surplus division solutions. However, it turns out that this
class of single-valued solutions can be characterized by means of projected con-
sistency and, for two-person games, scale invariance and strong regular aggregate
monotonicity. To prove this result (Theorem 2 (i)) we make use of three lemmas
(Lemma 2, Lemma 3 and Lemma 4 stated in Appendix A) that show that if a
single-valued solution σ satisfies these three properties, then there exists a list of
positive weights w ∈ RN

++ such that σ also satisfies w-proportionality (w.r.t. w). It
is straightforward to check that these lemmas also hold by replacing projected con-
sistency with self consistency. This fact, together with Theorem 5.7 in Hart and
Mas-Colell (1989), leads to a parallel characterization for the family of weighted
Shapley values ((Theorem 2 (ii)).

Theorem 2. Let σ be a single valued solution on Γ that satisfies scale invariance
and strong regular aggregate monotonicity for two-person games. Then,

(i) σ satisfies projected consistency if and only if there exists a list of positive
weights w ∈ RN

++ such that σ = ESw.

(ii) σ satisfies self consistency if and only if there exists a list of positive weights
w ∈ RN

++ such that σ = Shw.

A direct consequence of Theorem 2 is a characterization of ES and Sh by
replacing strong regular aggregate monotonicity with equal aggregate monotonicity.

Corollary 2. Let σ be a single valued solution on Γ that satisfies scale invariance
and equal aggregate monotonicity for two-person games. Then,

(i) σ satisfies projected consistency if and only if σ = ES.
7In Hart and Mas-Colell (1989), scale invariance and strong aggregate monotonicity are named

TU-invariance and monotonicity, respectively.
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(ii) σ satisfies self consistency if and only if σ = Sh.

Remark 1. Let us point out two facts:

1. All the characterization results and the non-redundancy of the properties
stated in this section remains valid even if scale invariance, strong regular
aggregate monotonicity and equal aggregate monotonicity are formulated on
the domain of all games, not only for two-person games.

2. In view of the fact that Lemma 2 (see Appendix A), that connects scale in-
variance for two person games and projected consistency with efficiency, also
holds by imposing either self consistency or max consistency instead of pro-
jected consistency, if the universe of potential players contains, at least, two
players, efficiency can be dropped in Theorem C in Hart and Mas-Colell
(1989). When scale invariance is required for all games, not only for two-
person games, Peleg and Sudhölter (2007) (Lemma 6.2.11 and Lemma 8.3.8)
already note that either scale invariance together with self consistency and
scale invariance together with max consistency imply efficiency.

Next, we outline the above characterizations:

{ESw | w ∈ RN
++} ≡ PC + {SI + SRAM} (2-person games) (Th. 2 (i)),

{Shw | w ∈ RN
++} ≡ SC + {SI + SRAM} (2-person games) (Th. 2 (ii)).

ES ≡ PC + {SI + EAM} (2-person games) (Cor. 2 (i)),

Sh ≡ SC + {SI + EAM} (2-person games) (Cor. 2 (ii)).

3.3 Consistency, monotonicity and dummy player prop-
erty or individual rationality

Here, we compare axiomatically Sh with ES by imposing, for two-person games,
either equal aggregate monotonicity and dummy player property or equal aggregate
monotonicity and individual rationality instead of strong regular aggregate mono-
tonicity and scale invariance. The dummy player property says that players that
do not contribute anything (except their individual worth) should receive their
individual worth. Individual rationality means that no single player can improve
the payoff proposed by the solution without cooperation.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Dummy player property (DP) if for all N ∈ N , all (N, v) ∈ Γ′ and i ∈ N ,
if v(S ∪ i)− v(S) = v(i) for all S ⊆ N \ {i}, then σi(N, v) = v(i).

• Individual rationality (IR) if for all N ∈ N and all (N, v) ∈ Γ′ with
I(N, v) 6= ∅, it holds σi(N, v) ≥ v(i) for all i ∈ N .
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Taking into account that standardness is equivalent to dummy player prop-
erty and equal aggregate monotonicity or individual rationality and equal aggregate
monotonicity (for two-player games) (see Lemma 6 in Appendix A), by Theorem
B in Hart and Mas-Colell (1989) and Corollary 1 we obtain, respectively, the fol-
lowing characterizations of Sh and ES.

Theorem 3. Let σ be a single-valued solution on Γ that satisfies equal aggregate
monotonicity and dummy player property for two-person games. Then,

(i) σ satisfies self consistency if and only if σ = Sh.

(ii) σ satisfies projected consistency if and only if σ = ES.

Theorem 4. Let σ be a single-valued solution on Γ that satisfies equal aggregate
monotonicity and individual rationality for two-person games. Then,

(i) σ satisfies self consistency if and only if σ = Sh.

(ii) σ satisfies projected consistency if and only if σ = ES.

Remark 2. Two observations on the compatibility of the above properties on the
universal domain of games:

1. Since Sh satisfies equal aggregate monotonicity and the dummy player prop-
erty, Theorem 3 (i) also holds on the universal domain of games. On the con-
trary, Theorem 3 (ii) does not. Indeed, suppose there exists a single-valued
solution σ on Γ satisfying projected consistency, equal aggregate monotonic-
ity and dummy player property on the domain of all games. Then, it must
coincides with ES. But ES fails to satisfy dummy player property for games
with an arbitrary number of players, which leads to a contradiction.

2. In a similar way, Theorem 4 (i) is not true on the domain of all games, since
equal aggregate monotonicity and individual rationality together characterize
ES (see Theorem 1 in Calleja and Llerena, 2016), which fails to satisfies
self consistency. On the contrary, Theorem 4 (ii) holds on the domain of all
games since ES satisfies equal aggregate monotonicity and individual ratio-
nality, but the properties are redundant.

Theorem 5. There is no single-valued solution on Γ that satisfies

(i) Projected consistency, equal aggregate monotonicity and dummy player prop-
erty.

(ii) Self consistency, equal aggregate monotonicity and individual rationality.

We end summarizing the above results:
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Sh ≡ SC + {DP + EAM} (2-person games) (Th. 3 (i)).

ES ≡ PC + {DP + EAM} (2-person games) (Th. 3 (ii)),

Sh ≡ SC + {IR + EAM} (2-person games) (Th. 4 (i)),

ES ≡ PC + {IR + EAM} (2-person games) (Th. 4 (ii)),

PC + DP + EAM are incompatible (Th. 5 (i)),

SC + IR + EAM are incompatible (Th. 5 (ii)).

4 Remarks on max consistency
The aim of this section is to study how well max consistency combines with some
of the properties we have used in the previous section.

Definition 4. Let N ∈ N , (N, v) ∈ Γ, x ∈ RN and ∅ 6= N ′ ⊂ N . The max
reduced game relative to N ′ at x is the game

(
N ′, rN

′
M,x(v)

)
defined by

rN
′

M,x(v)(R) :=


0 if R = ∅,

max
Q⊆N\N ′

{v(R ∪Q)− x(Q)} if ∅ 6= R ⊂ N ′,

v(N)− x(N \N ′) if R = N ′.

In the max reduced game (relative to N ′ at x), the worth of a coalition R ⊂ N ′

is determined under the assumption that R can choose the best partners in N \N ′,
provided that it pays them according to x.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Max consistency (MC): if for all N ∈ N , all (N, v) ∈ Γ′, all ∅ 6= N ′ ⊂ N,

and x = σ(N, v), then
(
N ′, rN

′
M,x(v)

)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′
M,x(v)

)
.

A solution satisfies max consistency if it assigns the same payoff to players in
both the original game and the max reduced game.

A well-known single-valued solution satisfying max consistency is the prenu-
cleolus. Let N ∈ N and (N, v) ∈ Γ. With any preimputation x ∈ X(N, v)
we associate the vector of all excesses e(S, x) = v(S) − x(S), ∅ 6= S ⊂ N , the
components of which are non-increasingly ordered. The prenucleolus, ν∗, is the
preimputation that minimizes with respect to the lexicographic order8 the vector
of excesses over the set of preimputations.

The next two properties will be a key tool in order to compare axiomatically
Shw, ESw and ν∗.

A single-valued solution σ on Γ′ ⊆ Γ satisfies
8Given two vector x, y ∈ RN , we say that x ≤lex y if either x = y, or x1 < y1 or there exists

k ∈ {2, . . . , |N |} such that xi = yi for all 1 ≤ i ≤ k − 1 and xk < yk.
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• Weighted proportionality (WP) if there exists a list of positive weights
w ∈ RN

++ such that σ satisfies w-proportionality (w.r.t. w).

The property of 2−Weighted standardness (Hokari, 2005) is closely related with
weighted proportionality.

Given a pair of agents N ′ = {i, j} ∈ N , let ∆N ′ := {(a, b) ∈ RN ′
+ | a + b = 1}.

For each α ∈ ∆N ′ , consider the following single-valued solution on the domain of
all games with set of players N ′. The weighted standard solution relative to
α, STα, is defined as follows: for all (N ′, v) ∈ Γ,

STαi (N ′, v) := v(i) + αi(v(N ′)− v(i)− v(j)),

STαj (N ′, v) := v(j) + αj(v(N ′)− v(i)− v(j)).

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• 2−Weighted standardness (2−WS) (Hokari, 2005) if

(a) for each pair of agents N ′ = {i, j} ∈ N , there exists α ∈ ∆N ′ such that, for
all (N ′, v) ∈ Γ, σ(N ′, v) = STα(N ′, v); and

(b) for all distinct three players {i, j, k} ∈ N , if α = (αi, αj), β = (βi, βk) and
γ = (γj, γk) are such that σ({i, j}, v) = STα({i, j}, v) for all ({i, j}, v) ∈
Γ, σ({i, k}, v) = ST β({i, k}, v) for all ({i, k}, v) ∈ Γ, and γ({j, k}, v) =
ST γ({j, k}, v) for all ({j, k}, v) ∈ Γ, then αi ≤ αj and γj ≤ γk imply βi ≤ βk.

Note that weighted proportionality implies 2-weighted standardness, but the
reverse implication does not hold.

Theorem 1 in Hokari (2005) states that, on the domain of all games, the prenu-
cleolus can be characterized by means of efficiency, zero-independence,9 2−weighted
standardness and max consistency. Since standardness implies 2−weighted stan-
dardness, scale invariance implies zero-independence and scale invariance with max
consistency together imply efficiency (see Remark 1 (ii)), Theorem 1 in Hokari
(2005) can be rewritten in terms of max consistency, scale invariance and stan-
dardness. Interestingly, this reformulation of Hokari’s result together with the
characterizations of Sh and ES provided, respectively, by Theorem B in Hart and
Mas-Colell (1989) and Corollary 1, lead to the following comparison:

ν∗ ≡ MC + ST + SI,

Sh ≡ SC + ST (Th. B in Hart and Mas-Colell, 1989),
9A single-valued solution σ on Γ′ ⊆ Γ satisfies zero-independence if for all N ∈ N , all

(N, v) ∈ Γ′ and all d ∈ RN , if (N,w) is such that w = v + d, then σ(N,w) = σ(N, v) + d where
w(S) = v(S) + d(S) for all S ⊆ N . Note that zero-independence is a particular case of scale
invariance for α = 1.
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ES ≡ PC + ST (Cor. 1).

By replacing standardness with weighted proportionality we obtain an additional
comparative analysis. Proposition 1 in Hokari (2005) states that, on the domain of
all games, efficiency, 2−weighted standardness and max consistency jointly imply
standardness. Since weighted proportionallity implies 2−weighted standardness, ν∗
can be characterized in terms of weighted proportionality, scale invariance and max
consistency. On the other hand, max consistency together with scale invariance
imply efficiency (see Remark 1 (ii)). This, together with Theorem 1 and Theorem
5.7 in Hart and Mas-Colell (1989) lead to the following comparison:

ν∗ ≡ MC + WP + SI,

{Shw | w ∈ RN
++} ≡ SC + WP,

{ESw | w ∈ RN
++} ≡ PC + WP.

According to this axiomatic analysis, consistency distinguishes these three so-
lution concepts since all of them satisfy scale invariance.

Theorem 2 compares axiomatically the family of weighted surplus division rules
with the family of weighted Shapley values by means of scale invariance and strong
regular aggregate monotonicity (for two-person games) together with either pro-
jected consistency or self consistency, respectively. These two results also hold
imposing scale invariance and strong regular aggregate monotonicity on the do-
main of all games (see Remark 1 (i)). Unfortunately, we find an impossibility if
we consider max consistency.

Theorem 6. There is no single valued solution on Γ that satisfies max consistency,
scale invariance and strong regular aggregate monotonicity.

In summary,

MC + SI + SRAM are incompatible (Th. 6),

{ESw | w ∈ RN
++} ≡ PC + SI + SRAM (Th. 2 (i)),

{Shw | w ∈ RN
++} ≡ SC + SI + SRAM (Th. 2 (ii)).

As commented in Subsection 3.3, equal aggregate monotonicity, the dummy
player property and self consistency characterize Sh (see Remark 2 (i)), but com-
patibility is lost if we deal with projected consistency (Theorem 5 (i)). This im-
possibility result also holds by considering max consistency. In addition, max
consistency, individual rationality and equal aggregate monotonicity also are in-
compatible since individual rationality and equal aggregate monotonicity together
characterize ES (see Theorem 1 in Calleja and Llerena, 2016), which fails to sat-
isfies max consistency.
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Theorem 7. There is no single-valued solution on Γ that satisfies

(i) Max consistency, equal aggregate monotonicity and dummy player property.

(ii) Max consistency, equal aggregate monotonicity and individual rationality.

In summary,

Sh ≡ SC + DP + EAM.

PC + DP + EAM are incompatible (Th. 5 (i)),

MC + DP + EAM are incompatible (Th. 7 (i)),

SC + IR + EAM are incompatible (Th. 5 (ii)),

MC + IR + EAM are incompatible (Th. 7 (ii)).

Finally, we introduce Equal treatment of equals, which states that if two players
contribute equal amounts to all coalitions, their payoff should be equal.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Equal treatment of equals (ETE): if for all N ∈ N , all (N, v) ∈ Γ′ and
i, j ∈ N , if v(S∪ i) = v(S∪j) for all S ⊆ N \{i, j}, then σi(N, v) = σj(N, v).

It is well-known that efficiency, scale invariance and equal treatment of equals
for two-person games are equivalent to standardness. Moreover, Sh and ES sat-
isfies these properties for any game. Since, scale invariance together with either
self consistency or projected consistency imply efficiency (see Remark 1 (i)), The-
orem B’ in Hart and Mas-Colell (1989) and Corollary 4.4. in Driessen and Funaki
(1997) can be reformulated in terms of scale invariance and equal treatment of
equals together with either self consistency or projected consistency, respectively.10

Interestingly, Orshan (1993) characterizes the prenucleolus making use of scale in-
variance, equal treatment of equals and max consistency. This lead to the following
comparison:

ν∗ ≡ MC + ETE + SI (Orshan, 1993),

Sh ≡ SC + ETE +SI,

ES ≡ PC + ETE + SI (Driessen and Funaki, 1997).
10In Driessen and Funaki (1997), efficiency is included in their definition of single-valued solu-

tion.
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Appendix A
Before proving the characterization results, we need some previous results.

The next lemma will be of help to prove Theorem 1.

Lemma 1. Let σ be a single-valued solution on Γ satisfying projected consistency
and w−proportionality (w.r.t. w ∈ RN

++). Then, σ satisfies efficiency.

Proof Let σ be a single-valued solution on Γ satisfying PC and w-P w.r.t. w ∈
RN

++. Let ({i}, v) be a one-person game and, for some j ∈ N\{i}, consider
the game ({i, j}, v′) defined by v′(i) = v′(ij) = v(i) and v′(j) = 0. By w-P,
σi({i, j}, v′) = v(i) and σj({i, j}, v′) = 0. It is easy to check that ({i}, v) =(
{i}, r{i}P,x(v′)

)
being x = σ({i, j}, v′). By PC, σ({i}, v) = v(i) which means that σ

satisfies efficiency for one-person games. Let N ∈ N with |N | ≥ 2, (N, v) ∈ Γ and
i ∈ N . Then, efficiency for one-person game implies σi

(
{i}, r{i}F,x(v)

)
= r

{i}
F,x(v)(i) =

v(N)−∑j∈N\{i} σj(N, v), where x = σ(N, v). By PC, σi(N, v) = σi
(
{i}, r{i}F,x(v)

)
and thus σi(N, v) = v(N)−∑j∈N\{i} σj(N, v), which proves E.

To prove Theorem 2, the following lemmas will be of help.

Lemma 2. Let σ be a single-valued solution on Γ satisfying scale invariance for
two-person games and projected consistency. Then, σ satisfies efficiency.

Proof Let σ be a single-valued solution on Γ that satisfies SI for two-person games
and PC. Let ({i, j},0) be the null game. Then, by SI (for two-person games) we
have σ({i, j},0) = σ({i, j}, 2 · 0) = 2 · σ({i, j},0) and, consequently, σ({i, j},0) =
(0, 0).

Let ({i, j}, v) be a game such that v(ij) = v(i) + v(j). Then, by SI (for
two-person games) we have

σ({i, j}, v) = σ({i, j}, 1 ·0+(v(i), v(j)) = 1 ·σ({i, j},0)+(v(i), v(j)) = (v(i), v(j)).
(1)

Now, let ({i}, v) be a one person game and, for some j ∈ N\{i}, consider the
game ({i, j}, v′) defined by v′(i) = v′(ij) = v(i) and v′(j) = 0. Since v′(ij) =
v′(i) + v′(j), from (1) it comes that σi({i, j}, v′) = v(i) and σj({i, j}, v′) = 0. It
is easy to check that ({i}, v) =

(
{i}, r{i}P,x(v′)

)
being x = σ({i, j}, v′). By PC,

σ({i}, v) = v(i) which implies efficiency for one-person games and, consequently,
E (following the same argument as in the last part of the proof of Lemma 1).

Remark 3. Lemma 1 and Lemma 2 hold for any consistency property in which
the worth of the grand coalition in the reduced game is the difference between the
worth of the grand coalition in the original game and the payoff received, according
to the solution, by players leaving the game. In particular, they hold for both self
consistency and max consistency.
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Lemma 3. Let σ be a single-valued solution on Γ satisfying scale invariance and
strong regular aggregate monotonicity for two-person games. Then, for all {i, j} ∈
N it holds

1. σ({i, j}, u{i,j}) > (0, 0)

2. σ({i, j}, u{i,j}) = −σ({i, j},−u{i,j})

Proof Let σ be a single-valued solution on Γ that satisfies SI and SRAM for
two-person games. Let N = {i, j} and consider the associated unanimity game
(N, uN). By SRAM (for two-person games), there exists a strict monotone path
f ∈ Fmon such that σ(N, uN) = σ(N,0) + f(N, 1). Similarly, σ(N,−uN) =
σ(N,0) + f(N,−1). By SI (for two-person games), σ(N,0) = (0, 0) and thus
σ(N, uN) = f(N, 1) and σ(N,−uN) = f(N,−1). Hence, σ(N, uN) > (0, 0) which
proves statement 1. Moreover,

σ(N, uN) + σ(N,−uN) = f(N, 1) + f(N,−1)
= f(N, (uN − 0) (N)) + f(N, (0− uN) (N))
= σ(N, uN)− σ(N,0) + σ(N,0)− σ(N, uN)
= (0, 0),

where the last but one inequality follows from SRAM (for two-person games).
This proves statement 2.

Lemma 4. Let σ be a single-valued solution on Γ satisfying projected consistency
and, for two-person games, scale invariance and strong regular aggregate mono-
tonicity. Let N ∈ N with |N | = 3. Then, for all k, s ∈ N it holds

σk(N, uN)
σs(N, uN) =

σk
(
{k, s}, u{k,s}

)
σs
(
{k, s}, u{k,s}

) . (2)

Proof Let σ be a single-valued solution on Γ that satisfies PC and, for two-person
games, SI and SRAM. Let N ∈ N with |N | = 3 and k, s ∈ N . Let us denote
x = σ (N, uN). By the definition of projected reduced game, PC, SI (for two-
person games) and Lemma 3 (2) we obtain, for all pair of agents k, s ∈ N ,

σ|{k,s}(N, uN) = σ
(
{k, s}, r{k,s}P,x (uN)

)
= σ

(
{k, s},

(
r
{k,s}
P,x (uN)(ks)

)
· u{k,s}

)
=

(
r
{k,s}
P,x (uN)(ks)

)
· σ
(
{k, s}, u{k,s}

)
.

(3)

By Lemma 3 (1), σ
(
{k, s}, u{k,s}

)
> (0, 0), which implies that σk(N, uN) and

σs(N, uN) have the same sign. By E, ∑i∈N σi (N, uN) = 1 and thus σi (N, uN) > 0
for all i ∈ N . Finally, from (3) if follows (2).
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Remark 4. Lemma 4 holds for both self consistency and max consistency. For
self consistency the proof follows the same lines as for projected consistency.

The next result extends Lemma 4 when we replace projected consistency by
max consistency, and it will be of help to prove Theorem 6.

Lemma 5. Let σ be a single-valued solution on Γ satisfying max consistency and,
for two-person games, scale invariance and strong regular aggregate monotonicity.
Let N ∈ N with |N | = 3. Then, for all k, s ∈ N it holds

σk(N, uN)− r{k,s}M,x (uN)(k)
σs(N, uN)− r{k,s}M,x (uN)(s)

=
σk
(
{k, s}, u{k,s}

)
σs
(
{k, s}, u{k,s}

) , (4)

where x = σ(N, uN).

Proof Let σ be a single-valued solution on Γ that satisfies SI and SRAM for two-
person games, and MC. Let N ∈ N with |N | = 3. Let us denote x = σ (N, uN).
By MC, SI (for two-person games) and Lemma 3 (2) we obtain, for all pair of
agents k, s ∈ N ,

σ|{k,s}(N, uN) = σk
(
{k, s}, r{k,s}M,x (uN)

)
=

(
r
{k,s}
M,x (uN)(ks)− r{k,s}M,x (uN)(k)− r{k,s}M,x (uN)(s)

)
· σ
(
{k, s}, u{k,s}

)
+

(
r
{k,s}
M,x (uN)(k), r{k,s}M,x (uN)(s)

)
.

(5)
By Lemma 3 (1) σ

(
{k, s}, u{k,s}

)
> (0, 0), which implies

Sign
(
σk(N, uN)− r{k,s}M,x (uN)(k)

)
= Sign

(
σs(N, uN)− r{k,s}M,x (uN)(s)

)
. (6)

We claim that
σk(N, uN)− r{k,s}M,x (uN)(k) 6= 0. (7)

Suppose, on the contrary, σk(N, uN) − r
{k,s}
M,x (uN)(k) = 0. Then, by equality

(6), σs(N, uN)− r{k,s}M,x (uN)(s) = 0. Consequently,

σk(N, uN) = r
{k,s}
M,x (uN)(k) = max{0, 0− σl (N, uN)} ≥ 0,

σs(N, uN) = r
{k,s}
M,x (uN)(s) = max{0, 0− σl (N, uN)} ≥ 0,

(8)

being l ∈ N \ {k, s}. Thus,

σk(N, uN) = σs(N, uN) ≥ 0. (9)
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Now consider the max reduced game
(
{k, l}, r{k,l}M,x (uN)

)
relative to {k, l} at

x = σ (N, uN). From (9) it follows that

r
{k,l}
M,x (uN)(k) = r

{k,l}
M,x (uN)(l) = 0 and r

{k,l}
M,x (uN)(kl) = 1− σs (N, uN) .

By MC and, for two-person games, SI and SRAM, there is a strict monotone
path f ∈ Fmon such that,

σ|{k,l}(N, uN) = σ
(
{k, l}, r{k,l}M,x (uN)

)
= σ ({k, l},0) + f ({k, l}, 1− σs (N, uN))

= f ({k, l}, 1− σs (N, uN)) .

(10)

Since f ∈ Fmon and, by (9), σk(N, uN) ≥ 0, we have that 1 − σs (N, uN) ≥ 0.
Consequently, σl(N, uN) = fl ({k, l}, 1− σs (N, uN)) ≥ 0. By expression (8), this
means that σk(N, uN) = σs(N, uN) = 0 and by E (see Lemma 2 and Remark 3),
σl(N, uN) = 1. Then, σl(N, uN) − r

{k,l}
M,x (uN)(l) = 1 − 0 = 1. Since expression

(6) holds for any pair of agents, we have that σk(N, uN) − r
{k,l}
M,x (uN)(k) > 0, in

contradiction with σk(N, uN) = 0. This prove the claim, that is, inequality (7).
But then, from (5) it follows (4).

To prove Theorems 3 and 4, previously we need to connect standardness, the
dummy player property, individual rationality and equal aggregate monotonicity.

Lemma 6. Let σ be a single-valued solution on Γ. Then, the following statements
are equivalent:

(i) σ satisfies dummy player property and equal aggregate monotonicity for two-
person games.

(ii) σ satisfies standardness.

(iii) σ satisfies individual rationality and equal aggregate monotonicity for two-
person games.

Proof To check the implication (i) → (ii), let N = {i, j} ∈ N and (N, v) ∈ Γ. If
v(N) = v(i) + v(j), then by DP (for two-person games) it follows directly ST.
If v(N) 6= v(i) + v(j), consider the associated game (N, v′) defined as follows:
v′(k) = v(k) for all k ∈ N , and v′(N) = v(i) + v(j). By EAM and DP (for
two-person games) we obtain σi(N, v) = σi(N, v′) + 1

2 (v(N)− v′(N)) = v(i) +
1
2 (v(N)− v(i)− v(j)) . In a similar way, σj(N, v) = v(j) + 1

2 (v(N)− v(i)− v(j)).
This prove ST.
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We omit the proofs of the straightforward implications (ii)→ (iii) and (iii)→
(i).

Now, we have all the tools to prove our characterization results.

Proof (Theorem 1) Let w ∈ RN
++ be a list of positive weights. Clearly, ESw

satisfies w-P. Moreover, Calleja and Llerena (2016) show that it also satisfies
PC. To prove uniqueness, suppose there is another single-valued solution σ on
Γ satisfying these two properties. By Lemma 1, σ satisfies E. Let (N, v) be a
game. If |N | = 1, by E we have σ(N, v) = ESw(N, v). If |N | = 2, by w-P we
have σ(N, v) = ESw(N, v). Finally, if |N | ≥ 3, fix i ∈ N and take an arbitrary
j ∈ N\{i}. Let N ′ = {i, j} ⊂ N , then,

σi(N, v) = σi(N ′, rN
′

P,x(v))

= v(i) + wi
wi + wj

(
rN

′

P,x(v)(N ′)− v(i)− v(j)
)

= v(i) + wi
wi + wj

(σi(N, v) + σj(N, v)− v(i)− v(j)) ,

where the first equality follows by PC, the second one by w-P (w.r.t. w ∈ RN
++)

and the definition of projected reduced game, and the last one by E. Reordering
terms, we obtain

σi(N, v)
(

1− wi
wi + wj

)
= v(i) + wi

wi + wj
(σj(N, v)− v(i)− v(j))

= v(i)
(

1− wi
wi + wj

)
+ wi
wi + wj

(σj(N, v)− v(j)) ,

or, equivalently,

(σi(N, v)− v(i))wj = (σj(N, v)− v(j))wi.

Note that this equality holds for all j ∈ N\{i}. Adding up,

(σi(N, v)− v(i))
∑

j∈N\{i}
wj = wi

∑
j∈N\{i}

(σj(N, v)− v(j)) ,

and summing (σi(N, v)− v(i))wi to both sides of the equality we obtain,

(σi(N, v)− v(i))
∑
j∈N

wj = wi
∑
j∈N

(σj(N, v)− v(j))

= wi

v(N)−
∑
j∈N

v(j)
 ,
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where the last equality follows from E. Hence,

σi(N, v) = v(i) + wi∑
j∈N wj

(
v(N)−

∑
i∈N

v(i)
)

= ESwi (N, v).

Proof (Theorem 2)

(i) As we have seen in Theorem 1, for any list of positive weights w, ESw satisfies
PC. It is no difficult to see that it also satisfies, for two-person games, SI
and SRAM (w.r.t.fw as defined in Subsection 3.2). To show uniqueness,
suppose there is a another single-valued solution σ satisfying the above three
properties. By Lemma 2, σ satisfies E. We claim that σ satisfies w̄−P w.r.t.
a list of positive weights w̄ ∈ RN

++ as defined in Hart and Mas-Colell (1989).
Fix a player l ∈ N and define

w̄k =

 1 if k = l
σk({k,l},u{k,l})
σl({k,l},u{k,l}) otherwise

By Lemma 3 (1), w̄ is well defined.
Let (N, v) be a game. If N = {i}, by E we have that σ({i}, v) = v(i) +
w̄i
w̄i

(v(i)− v(i)) = ESw̄({i}, v). If |N | = 2 we distinguish two cases:

1. Case 1: N = {l, i}.
Let us denote α = v(N)− v(l)− v(i).
If α = 0, then by SI (for two-person games) (see expression (1) in
Lemma 2) we have σ(N, v) = (v(l), v(i)) = ESw̄(N, v).
If α > 0, then by SI (for two-person games) and E, for all k ∈ N , we
have

σk(N, v) = σk(N,α · uN + (v(l), v(i))
= α · σk (N, uN) + v(k)

= α · σk (N, uN)
σl (N, uN) + σi (N, uN) + v(k)

= α ·
σk(N,uN )
σl(N,uN )

1 + σi(N,uN )
σl(N,uN )

+ v(k)

= α · w̄k
w̄l + w̄i

+ v(k)

= ESw̄k (N, v)

where the second and the third equalities follow by SI (for two-person
games) and E, respectively.
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If α < 0, notice first that v = (−α)·(−uN)+(v(l), v(i)). By SI (for two-
person games) and Lemma 3 (2), σ(N, v) = α · σ (N, uN) + (v(l), v(i)).
Now, following the reasoning above we obtain σk(N, v) = ESw̄k (N, v),
for all k ∈ N .

2. Case 2: N = {i, j} and l /∈ N .
By the definition of w̄, Lemma 4 and E, it follows that

w̄i
w̄i+w̄j = 1

1+
w̄j
w̄i

= 1

1+
σj({j,l},u{j,l})
σl({j,l},u{j,l})

·
σl({i,l},u{i,l})
σi({i,l},u{i,l})

= 1

1+
σj({i,j,l},u{i,j,l})
σl({i,j,l},u{i,j,l})

·
σl({i,j,l},u{i,j,l})
σi({i,j,l},u{i,j,l})

= 1

1+
σj({i,j,l},u{i,j,l})
σi({i,j,l},u{i,j,l})

= 1

1+
σj({i,j},u{i,j})
σi({i,j},u{i,j})

= σi({i,j},u{i,j})
σi({i,j},u{i,j})+σj({i,j},u{i,j})

= σi
(
{i, j}, u{i,j}

)
.

(11)

Similarly,
w̄j

w̄i+w̄j = σj({i, j}, u{i,j}). (12)

Let us denote α = v(N)− v(i)− v(j). If α > 0, then SI (for two-person
games) together with (11) imply

σi({i, j}, v) = σi({i, j}, (v(ij)− v(i)− v(j)) · u{i,j} + (v(i), v(j)))
= (v(ij)− v(i)− v(j)) · σi({i, j}, u{i,j}) + v(i)

= (v(ij)− v(i)− v(j)) · w̄i
w̄i + w̄j

+ v(i)

= ESw̄i ({i, j}, v)

In a similar way, SI (for two-person games) together with (12) imply

σj({i, j}, v) = ESw̄j ({i, j}, v).

If α ≤ 0, the same arguments used in Case 1 apply in this case. Con-
sequently, σ satisfies w̄−P. Finally, by Theorem 1 we conclude that
σ = ESw̄.

(ii) As we have commented before, Lemmas 2, 3 and 4 hold by replacing projected
consistency by self consistency. This fact, together with Theorem 5.7 in Hart
and Mas-Colell (1989), conclude the proof.
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Proof (Theorem 6) Suppose, on the contrary, that there exists a single-valued so-
lution σ satisfying MC, SI and SRAM on Γ. Since Lemma 2 holds for MC (see
Remark 3), from Lemma 3 and Lemma 5, it is not difficult to check, by following
the same arguments as in the proof of Theorem 2 (i), that σ satisfies w−P (w.r.t.
a list of positive weights as defined in the proof of Theorem 2 (i)). Consequently, σ
satisfies 2−WS. Since SI and MC jointly imply E (see Remark 3), and SI implies
zero-independence, from Theorem 1 in Hokari (2005) it follows that σ coincides
with ν∗. But ν∗ fails to satisfies aggregate monotonicity (see, for instance, Hokari,
2000), contradicting SRAM.

Proof (Theorem 7) Suppose, on the contrary, that there exists a single-valued
solution σ satisfying EAM, DP and MC on Γ. Let (N, v) be a game with
set of player N = {1, 2, 3} and characteristic function v(1) = 0 and v(S) = 1
otherwise. Since player 1 is dummy in (N, v), by DP σ1(N, v) = 0. Now con-
sider the associated root-game (N, vr).11 Let

(
{2, 3}, r{2,3}M,x (vr)

)
be the max re-

duced game of (N, vr) relative to {2, 3} at x = σ(N, vr). By DP and EAM,
σ1(N, vr) = σ1(N, v) + f̄1({1, 2, 3}, 1) = 1

3 . Thus, r{2,3}M,x (vr)(2) = 1, r{2,3}M,x (vr)(3) =
1 and r{2,3}M,x (vr)(23) = 2− 1

3 = 5
3 . Since players 2 and 3 are dummy players in the as-

sociated root-game
(
{2, 3},

(
r
{2,3}
M,x (vr)

)
r

)
, by DP σ

(
{2, 3},

(
r
{2,3}
M,x (vr)

)
r

)
= (1, 1).

By EAM σ
(
{2, 3}, r{2,3}M,x (vr)

)
= (1, 1)+ f̄({2, 3}, −1

3 ) = (1, 1)+
(
−1
6 ,
−1
6

)
=
(

5
6 ,

5
6

)
.

Consequently, by MC
σ(N, vr) =

(1
3 ,

5
6 ,

5
6

)
. (13)

Now consider the max reduced game
(
{1, 2}, r{1,2}M,x (vr)

)
relative to {1, 2} at x =

σ(N, vr): r{1,2}M,x (vr)(1) = 1
6 , r

{1,2}
M,x (vr)(2) = 1 and r{1,2}M,x (vr)(12) = 2 − 5

6 = 7
6 . Since

players 1 and 2 are dummy players in the max reduced game
(
{1, 2}, r{1,2}M,x (vr)

)
, by

DP σ
((
{1, 2}, r{1,2}M,x (vr)

))
=
(

1
6 , 1

)
. Consequently, by MC σ|{1,2}(N, vr) =

(
1
6 , 1

)
,

in contradiction with (13).

Appendix B
This appendix contains the independence of the properties used in the characteri-
zation results.

1. To prove that properties in Theorem 1 are independent, notice that, for a
given w ∈ RN

++, Shw satisfies w-proportionality but not projected consistency.
11Let N ∈ N and (N, v) ∈ Γ. The root-game associated to (N, v), denoted by (N, vr), is

the balanced game with smallest worth for the grand coalition N such that vr(S) = v(S) for all
S ⊂ N .
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Let w′ ∈ RN
++ be a different list of positive weights. Then, ESw′ satisfies

projected consistency but not w-proportionality (w.r.t. w). The independence
of the properties in Corollary 1 follows similar arguments.

2. The see that the properties in Theorem 2 and Corollary 2 independent, let
us first introduce the following single-valued solutions:

Let π be a permutation on N, the fπ−surplus division, denoted by
ESf

π , is defined as follows: for all N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

ESf
π

i (N, v) = v(i) + fπi

(
N, v(N)−

∑
i∈N

v(i)
)
,

being fπ as defined in Subsection 3.2.
The equal divison solution, denoted by ED, is defined as follows: for
all N ∈ N , all (N, v) ∈ Γ and all i ∈ N ,

EDi(N, v) = v(N)
n

.

Let π be a permutation on N, the marginal contribution solution
relative to π, denoted by mcπ, is defined as follows: for all N ∈ N , all
(N, v) ∈ Γ and all i ∈ N

mcπi := v ({j ∈ N |π(j) ≤ π(i)})− v ({j ∈ N | π(j) < π(i)}) .

It is not difficult to check that ESfπ satisfies scale invariance and projected
consistency but not strong regular aggregate monotonicity. Sh satisfies scale
invariance and equal aggregate monotonicity (and thus strong regular aggre-
gate monotonicity) but not projected consistency. ED satisfies equal aggre-
gate monotonicity, projected consistency and self consistency but not scale
invariance for two-person games. On the other hand, mcπ satisfies scale
invariance and self consistency but not strong aggregate monotonicity for
two-person games. ES satisfies scale invariance and equal aggregate mono-
tonicity but not self consistency.

3. To see that the properties in Theorem 3 are independent, let us first introduce
the following single-valued solution ρ: for all N ∈ N , all (N, v) ∈ Γ and all
i ∈ N ,

ρi(N, v) = xi + 1
n

(v(N)− x(N)) ,

where xi = v(i) if i ∈ PD(N, v), and xi = v(N\PD(N,v))
|v(N\PD(N,v)| otherwise, being

PD(N, v) = {i ∈ N | v(S ∪ {i})− v(S) = v(i) ∀ S ⊂ N \ {i}} .
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The single-valued solution ρ satisfies the dummy player property and equal
aggregate monotonicity but neither self consistency nor projected consistency.
ED satisfies equal aggregate monotonicity, self consistency and projected con-
sistency but not the dummy player property for two-person games. ESf

π

satisfies projected consistency and the dummy player property for two-person
games but not equal aggregate monotonicity for two-person games. The
marginal contribution solution mcπ satisfies self consistency and the dummy
player property, but not equal aggregate monotonicity for two-player games.

4. To prove that the properties in Theorem 4 are independent, notice that for
a suitable list of positive weights w, Shw satisfies self consistency, individ-
ual rationality for two-person games, but not equal aggregate monotonicity.
ESw satisfies satisfies projected consistency, individual rationality, but not
equal aggregate monotonicity for two-person games. ED satisfies self consis-
tency, projected consistency, equal aggregate monotonicity but not individual
rationality for two-person games. ES satisfies projected consistency, indi-
vidual rationality, equal aggregate monotonicity but not self consistency. Sh
satisfies self consistency, individual rationality for two-person game, equal
aggregate monotonicity but not projected consistency.
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