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Abstract

We consider a correlated random effects specification of the spatial Durbin (dynamic)

panel model with an error-term containing individual effects and their spatial spillovers.

We derive the likelihood function of the model and the asymptotic properties of the quasi-

maximum likelihood estimator. We also provide illustrative evidence from a growth-initial

level equation and the country dataset analysed by Lee and Yu (2016). While largely

replicating their estimates, our results indicate the existence of spatial contagion in the

individual effects. In particular, estimated spill-in/out effects reveal the existence of groups

of countries with common patterns in their spillovers.
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1 Introduction

The spatial Durbin model is a widely used specification in cross-section studies using

georeferenced data (LeSage and Pace, 2009; LeSage, 2014). However, its use appears to be

more limited with panel data. Although it has a certain appeal as a general framework to

analyse spatial relations, concerns have been raised about its estimation and identification,

particularly in its dynamic version (Elhorst et al., 2010; Elhorst, 2012). Despite these concerns,

the spatial Durbin dynamic panel model (or, simply, dynamic spatial Durbin model) is expected

to gain popularity in applied work, since identification conditions and Monte Carlo evidence for

2-Stage Least Squares (2SLS) and Quasi Maximum Likelihood (QML) estimators have recently

been provided by Lee and Yu (2016). It is also interesting to note that Yu et al. (2008) and

Su and Yang (2015) have analysed the asymptotic properties of QML estimators in restricted

versions of the model specification analysed by Lee and Yu (2016).

In this paper we consider a correlated random effects specification (Mundlak, 1978;

Chamberlain, 1982) of the spatial Durbin (dynamic) panel model and, following Yu et al.

(2008) and Su and Yang (2015), derive the likelihood function of the model and proof that the

QML estimator is consistent and asymptotically normal. To be precise, our model specification

corresponds to a restricted version of the dynamic spatial Durbin model of Lee and Yu (2016),

since we do not include the spatial lag of the lagged dependent variable among the regressors.1

This means that, in terms of spatial dependence, our model specification lies somewhere in

between that of Yu et al. (2008), who only consider the spatial lag of the dependent and lagged-

dependent variables, and that of Su and Yang (2015, p. 231), in which “spatial dependence is

present only in the error term”. A major difference with respect to these papers is that while

they consider a rather general variance-covariance matrix of the error term (which may contain

individual and/or time effects), we consider an error-components structure with individual

effects and their spatial spillovers (time effects can easily be incorporated), which results in a

specific albeit involved variance-covariance matrix (see also Kapoor et al., 2007). Our proofs,

1See e.g. Elhorst (2012) for an overview of empirical studies using this model specification. Notice that the
inclusion of the spatial lag of the lagged dependent variable would not make a substantial difference in proving
the asymptotic properties of the QML estimator (other than complicate it).
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however, are derived under rather standard assumptions in the spatial econometrics literature.2

Our model specification is inspired by the work of Beer and Riedl (2012), who advocate using

an extension of the spatial Durbin model for panel data that controls for both the individual

effects and the spatially weighted individual effects (see also Miranda et al., 2017). Ultimately,

however, they argue that “it is (...) advisable to remove the spatial lag of the fixed effects

from the equation as the inclusion of both, [the individual effects] and [their spatial spillovers],

leads to perfect multicollinearity” (p. 302). Removing the spatial lag of the fixed effects does

not generally preclude the consistent estimation of the parameters of the model. However, this

practice rules out obtaining an estimate of the individual-specific effects (net of the spatially

weighted effects), which can be critical in certain applications. This is the case, for example,

in growth models, where a measure of the unobserved productivity of the geographical units

under study can be obtained from the estimated individual effects (Islam, 1995). Distinguishing

the individual effects from their spatial spillovers can thus provide interesting insights into how

the unobserved characteristics of the neighbouring territories affect the output of a certain

territory and, conversely, how the unobserved characteristics of a territory affect the output of

the neighbouring territories.

To illustrate this point, we estimate a growth-initial level equation using OECD data from

Lee and Yu (2016). Unlike previous studies (e.g., Yu and Lee, 2012; Ho et al., 2013), however,

our model specification not only accounts for observable “technological interdependences” (à

la Ertur and Koch 2007) but also for unobserved ones (through the spatial spillovers of the

individual effects). Interestingly, our estimated coefficients and standard errors largely replicate

those reported by Lee and Yu (2016). This means that, since the spatial autoregressive

parameter is not statistically significant, “the role played by technological interdependence

on the growth of [OECD] countries” may not be as important as previously thought (Ertur and

Koch 2007, p. 1052; see also Elhorst et al. 2010). In contrast, our results point to the existence of

“unobservable technological interdependences” (i.e., spatial contagion in the – weakly significant

– individual effects). Following Islam (1995), this may be interpreted as evidence that the

growth of some countries is partially explained by the impact that the (unobserved productivity)

2See e.g. Kelejian and Prucha (1998, 2001); Lee (2004); Yu et al. (2008) and Su and Yang (2015).
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of the neighbouring countries have on their economies. Lastly, computation of the “spill-in” and

“spill-out” effects of the individual effects indicate that countries that impact less/more on other

countries tend to be those that are less/more affected by the spillovers from their neighbours

(Debarsy et al., 2012; LeSage and Chih, 2016). Further, they tend to have larger/smaller

individual effects.

The rest of the paper is organised as follows. In Section 2 we present the model. In Section 3

we discuss its estimation by QML and derive the asymptotic properties of the QML estimator.

In Section 4 we provide illustrative evidence. Section 5 concludes.

2 Model specification

In this paper we are interested in the following dynamic spatial autoregressive model with

spatially weighted regressors and spatially weighted fixed effects:

Ynt = ρ0Yn,t−1 + λ0WnYnt +Xntβ10 +WnXntβ20 + µn +Wnαn + εnt (2.1)

where the subindex 0 denotes the “true” parameters of the model (e.g, ρ0, λ0, β10 and β20),

Ynt = (y1t, y2t, · · · , ynt)′ is an n−dimensional vector of dependent variables at time t, Wn is

the exogenous spatial weight matrix that describes the spatial arrangement of the units in the

sample, Xnt = (x′1t, x
′
2t, · · · , x′nt)′ is a n × K matrix of regressors (i.e., xit is a row vector of

1×K), and εnt is the n−dimensional vector of disturbances at time t, with εnt ∼ (0, σ2
ε), whose

stochastic properties are discussed below. We assume, without loss of generality, that data is

available for i = 1, . . . , n spatial units and t = 1, . . . , T time periods.3

Notice that this model specification critically differs from alternative specifications of the

spatial Durbin dynamic panel data model (see e.g. Elhorst 2012) in that it includes both

the individual effects (µn) and their spatial counterparts (αn). Although the inclusion of

3Dealing with a “complete panel” is just meant to simplify notation and the burden of some proofs. Our
results can easily be extended to incomplete panels. Notice similarly that the model does not contain time effects
but these can easily be incorporated into the model (by e.g. including time dummies among the regressors, as
we illustrate in the empirical application of Section 4).
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WnYnt in the right-hand side of 2.1 produces “global” spatial contagion (Anselin, 2003) in

the individual effects, our interest here lies in the existence of “local” spatial contagion. In

particular, the individual-specific effects and their spatially weighted counterparts need to be

estimated in order to determine which units are “locally” affecting and which units are “locally”

affected, respectively, by the spatial spillover of the individual effect, and how intense such a

“local” spillover is with respect to the total effect (i.e., the partial derivative of the conditional

expectation of the dependent variable with respect to the individual effect). We discuss this

issue in detail below, but first it is important to notice that this is generally not possible

because 2.1 is observationally equivalent to a model that only includes individual effects (Beer

and Riedl, 2012).

In this paper we follow Miranda et al. (2017) in using a correlated random effects

specification to identify the local spatial contagion in the individual effects. This means making

use of the following correlation functions (Mundlak, 1978):

µn = lnc0 +Xnπµ0 + υnµ

αn = Xnπα0 + υnα,
(2.2)

where Xn = (X
′
1·, X

′
2·, . . . , X

′
n·)
′ are composed of the period-means of the regressors, X i· =

1

T

T∑
t=1

xit, πµ0 and πα0 are K × 1 (“true”) parameter vectors, ln is the unit vector of dimension

n×1, and c0 is the constant term to be estimated. The error terms, υnµ and υnα, are assumed to

be random vectors of dimension n, with υnµ ∼ (0, σ2
µ0
In) and υnα ∼ (0, σ2

α0
In), uncorrelated with

εnt. Notice, however, that υnµ and υnα are not assumed to be independent, the covariance, σµα0 ,

being such that E(υnµυ
′
nα) = σµα0In with E denoting the mathematical expectation. Notice

also that although we assume that the correlation functions are linear and have the means

of the regressors as their main component, this does not always need to be the case. Non-

linear functions, different moments and/or other variables may be employed to construct the

correlation functions (Chamberlain, 1984). For the sake of simplicity, however, in this paper

we restrict the analysis to the linear-means case.
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Plugging equations 2.2 into model 2.1 we obtain

Ynt = lnc0 + ρ0Yn,t−1 + λ0WnYnt +Xntβ10 +WnXntβ20 +Xnπµ0 +WnXnπα0 + ηnt (2.3)

where ηnt = υnµ + Wnυnα + εnt = Vn + εnt (see also Kapoor et al., 2007). Notice that

the variance-covariance matrix of this error term is given by E [ηntη
′
nt] = E [VnV

′
n] + σ2

ε0
In,

where E [VnV
′
n] = σ2

µ0
In + σµα0(Wn +W ′

n) + σ2
α0
WnW

′
n is the variance-covariance matrix of the

composed error term of the individual effects and their spatial spillovers, Vn. Thus, if we define

Σ0 =
1

σ2
ε0

(
σ2
µ0
In + σµα0(Wn +W ′

n) + σ2
α0
WnW

′
n

)
, then the variance-covariance matrix of the

error term can be rewritten as E [ηntη
′
nt] = σ2

ε0
(Σ0 + In).

It is also worth noting the alternative specifications that are nested in our error term

structure. The most obvious, perhaps, is the standard “random effects” (without spatial

contagion), which is derived from our model by imposing the constraints πµ0 = πα0 = 0,

σ2
α0

= 0 and σ2
µ0 6= 0 (see e.g. Mundlak 1978 and Chamberlain 1982). Notice, however, that we

may alternatively consider a “random effects” specification with spatial contagion by imposing

the constraints πµ0 = πα0 = 0, σ2
α0
6= 0 and σ2

µ0
6= 0 and σµα0 6= 0 and, as a particular case, a

“random effects” specification with proportional spatial contagion by imposing the constraints

πµ0 = πα0 = 0, σ2
µ0
6= 0, σ2

α0
= a2σ2

µ0
and σµα0 = aσ2

µ0
(or simply πµ0 = πα0 = 0 and αn = aµn),

with a 6= 0 constant. These, in turn, can be seen as a simplified version of the error structure

proposed by Kapoor et al. (2007). Interestingly, however, our model also covers “fixed effects”

versions of the previously discussed structures (“fixed” in the sense of being correlated with

– some of – the regressors). That is, by imposing alternative constraints we may derive: i) a

“fixed effects” error term (πµ0 6= 0, πα0 = 0, σ2
α0

= 0 and σ2
µ0
6= 0) analogous to that discussed

by Mundlak (1978) and Chamberlain (1982), Xnπµ0 + υnµ; ii) a “fixed effects” error term with

spatial contagion (πµ0 6= 0, πα0 6= 0, σ2
α0
6= 0 and σ2

µ0
6= 0) and, if we impose that σ2

α0
= 0, a

fixed effect error term analogous to that discussed by Debarsy (2012), Xnπµ0 +WnXnπα0 +υnµ,

in which we cannot guarantee the existence of spatial contagion in the individual effects4; and

iii) a “fixed effects” error term with proportional spatial contagion (πα0 = aπµ0 6= 0, σ2
µ0 6= 0,

4Except if we impose, as we do, that the direct effect of the individual effects of a unit (see below) only
depends on the characteristics of that unit and not on those of the other units.
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σ2
α0

= a2σ2
µ0

and σµα0 = aσ2
µ0

, with a 6= 0 constant; or, simply, πµ0 6= 0 and αn = aµn).

2.1 Marginal effects: spatial spillovers and diffusion effects

Thus, providing that an estimate of µn and αn is available, our model specification allows us

to consider the existence of both “local” and “global” (through λ0) spatial contagion in the

individual effects (Anselin, 2003). However, because of the presence of the dynamic term Yn,t−1

in the model, we may also consider the existence of “diffusion effects” in the partial derivative

of the (conditional expectation of the) dependent variable with respect to the individual effects

(Debarsy et al., 2012). To see this, let us rewrite the model in 2.1 as (by repeated substitution):

Ynt = ρt0S
−t
0 Yn,0 +

t−1∑
s=0

ρs0S
−(s+1)
0 [Xn,t−sβ10 +WnXn,t−sβ20 + µn +Wnαn + εn,t−s]

where S0 = In − λ0Wn = Sn(λ0).5 In full matrix form:

Y = G0Yn,0 + C0Xβ10 + C0WXβ20 + C0(lT ⊗ In)µn + C0W(lT ⊗ In)αn + C0ε (2.4)

with Y = (Y ′n1, Y
′
n2, . . . , Y

′
nT )
′
, X = (X ′n1, . . . , X

′
nT )
′
, ε = (ε′n1, . . . , ε

′
nT )
′
, W = IT ⊗ Wn,

G0 =
(
ρ0(S−1

0 )′, ρ2
0(S−2

0 )′, . . . , ρT0 (S−T0 )′
)′

and

C0 =



S−1
0 0 0 · · · 0

ρ0S
−2
0 S−1

0 0 · · · 0

ρ2
0S
−3
0 ρ0S

−2
0 S−1

0 · · · 0
...

...
...

. . .
...

ρT−1
0 S−T0 ρT−2

0 S
−(T−1)
0 ρT−3

0 S
−(T−2)
0 · · · S−1

0


5We denote matrices and vectors depending on parameters of the model with the name of the matrix and

vector, respectively, followed by the parameter(s) in brackets. For example, S(λ) = Sn(λ). In particular,
in the case of the “true” parameters we simply add the subindex zero to the name of the matrix. Thus,
S0 = Sn(λ0). Notice also that we use bold letters to denote n× T matrices (and similarly for nT × 1 vectors),
i.e., matrices resulting from stacking n−dimensional matrices. For example, Y = (Y ′n1, Y

′
n2, . . . , Y

′
nT )
′

and
X = (X ′n1, . . . , X

′
nT )
′
, but also S(λ) = InT − λ(IT ⊗Wn) and S0 = IT ⊗ S0.
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Lastly, let ej be the j-th column of lT ⊗ In with j = 1, . . . , n. The marginal effects of the

individual-specific effects are:

∂

∂ej
E (Y|X) = C0 [IT ⊗ (Inµj +Wnαj)] (2.5)

where the diagonal elements of this matrix represent the direct marginal effects of unit j and

the off-diagonal elements of this matrix represent the spillovers or indirect marginal effects

of unit j (LeSage and Pace, 2009). Notice, however, that the dynamics of the model make

direct and indirect effects stretch over time. That is, although the individual-specific effects are

time-invariant, its marginal effects vary over time (to the extent that ρ0 6= 0). Yet we cannot

interpret these variations as the result of “temporary” or “permanent” changes in the individual

effects over time (which is the standard interpretation for regressors; see e.g. Debarsy et al.

2012). Bearing this in mind, the impact on the dependent variable in period t = 1, ..., T is

∂

∂ej
E (Ynt|X) =

t∑
s=1

ρs−1
0 S−s0 (Inµj +Wnαj) (2.6)

This expression can be interpreted as the “global” marginal effect (in period t), to the extent

that it involves all the spatial units and not only at those considered to be neighbours by Wn

(Anselin, 2003). However, if we rewrite 2.6 as

∂

∂ej
E (Ynt|X) =

t∑
s=1

ρs−1
0 (Inµj +Wnαj) +

∞∑
r=1

λr0W
r
n

t∑
s=1

ρs−1
0

s−1∑
m=0

S−m0 (Inµj +Wnαj),

we notice that the first term in this expression only involves the neighbouring units (as defined

by Wn). Thus, we may interpret
t∑

s=1

ρs−1
0 (Inµj +Wnαj) as the “local” marginal effect (Anselin,

2003). In fact, this is the marginal effect when λ0 = 0, since in that case WnYnt is missing from

the model and there is no “global” spatial contagion.

In particular, the row i and column m elements of
t∑

s=1

ρs−1
0 S−s0 (Inµj + Wnαj) and

t∑
s=1

ρs−1
0 (Inµj + Wnαj) can be interpreted as the global and local impact, respectively, on

7



the outcome of unit i of unit m having the unobserved characteristics of unit j. Following

Miranda et al. (2017), however, we find that is of greater interest to report the impact of unit

m having its own unobserved characteristics (i.e., the unobserved characteristics of unit m) on

the outcome of unit i. This means using the matrices

t∑
s=1

ρs−1
0 S−s0 [diag(µn) +Wndiag(αn)] (2.7)

and

t∑
s=1

ρs−1
0 [diag(µn) +Wndiag(αn)] (2.8)

to compute the global and local marginal effects of interest, respectively. That is, the global

and local marginal effects for each unit of all the other units having their own characteristics.

Thus, the main diagonal elements of these matrices provide, respectively, the direct global

and local marginal effects (to reiterate, the impact on each unit of its own characteristics),

whereas the off-diagonal elements of these matrices provide, respectively, the indirect global

and local marginal effects (for a given time period t). We also obtain the spill-in and spill-

out effects of the individual effects by respectively row- and column-summing the off-diagonal

elements of these matrices (LeSage and Chih, 2016). In this vein the spill-in effect provides the

global and local impact on the outcome of unit i of all the units neighbouring i having their

unobserved characteristics, whereas the spill-out effect provides the global and local impact on

the outcome of the units neighbouring i of the individual effect of unit i.

3 QML estimation: likelihood function and asymptotic

properties

In this section we derive the quasi likelihood function of the spatial Durbin dynamic panel

model with correlated random effects. We also study the consistency and asymptotic normality

of the associated QML estimator. All results are obtained assuming that Yn0 is exogenous.
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The endogenous case, which is more involved (see e.g. Su and Yang, 2015), is left for future

research.6

3.1 The QML estimator

Following the notation introduced in 2.4, let us now define Y−1 =
(
Y ′n0, Y

′
n1, . . . , Y

′
n(T−1)

)′
,

X = lT ⊗Xn, X̃ =
(
lnT Y−1 X WX X WX

)
, and η = (η′n1, . . . , η

′
nT )
′
. We can then

rewrite the model in 2.3, evaluated at any parameter value and to include all nT observations,

as

SY = X̃θ + η (3.1)

with θ =
(
c, ρ, β′1, β

′
2, π

′
µ, π

′
α

)′
. Further, let ψ =

(
θ′, σ2

ε , δ
′)′, δ = (σ′, λ)′, σ′ = (σ1, σ2, σ3)′,

η(λ, θ) = S(λ)Y − X̃θ and σ2
εΩ(σ) = σ2

ε (JT ⊗ Σ(σ) + IT ⊗ In), with Σ(σ) = σ1In + σ2(Wn +

W ′
n) + σ3WnW

′
n. Then, the quasi-loglikelihood function of the model in 3.1 can be written as

L(ψ) = ln |S(λ)| − nT

2
ln(2π)− nT

2
ln(σ2

ε)−
1

2
ln |Ω(σ)| − 1

2σ2
ε

η′(λ, θ)Ω−1(σ)η(λ, θ). (3.2)

where |·| denotes the determinant of a matrix. Notice that, given δ, the values of θ and σ2
ε that

maximize 3.2 are given by:

θ̂(δ) =
(
X̃′Ω−1(σ)X̃

)−1

X̃′Ω−1(σ)S(λ)Y

σ̂2
ε(δ) =

1

nT
η̂′(δ)Ω−1(σ)η̂(δ),

(3.3)

where η̂(δ) = S(λ)Y − X̃θ̂(δ). Thus, substituting 3.3 into 3.2 we obtain the concentrated

quasi-loglikelihood function of δ:

Lc(δ) = ln |S(λ)| − nT

2
(ln(2π) + 1)− nT

2
ln
(
σ̂2
ε(δ)

)
− 1

2
ln |Ω(σ)| (3.4)

6In any case, it is interesting to note that Monte Carlo evidence reported by Su and Yang (2015, p. 202-203)
shows that, in the random effects case, estimating a model assuming that Yn0 is exogenous when it is actually
not yields “estimates [that] are in general quite close to the true estimates except [when ρ is] large and positive”
whereas, in the fixed effects model, “a wrong treatment on the initial values may lead to misleading results
though to a much lesser degree as compared with the case of random effects model”.
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Maximising 3.4 yields the QML estimator of δ, δ̂ = (σ̂′, λ̂)′, whereas the QMLE estimators of

θ and σ2
ε are given by θ̂ ≡ θ̂(δ̂) and σ̂2

ε(δ̂) = σ̂2
ε , respectively. Further, the QML estimator of(

σ2
µ, σµα, σ

2
α

)
is given by

(
σ̂2
µ, σ̂µα, σ̂

2
α

)
= σ̂2

ε (σ̂1, σ̂2, σ̂3) = σ̂2
ε σ̂. Therefore, ψ̂ =

(
θ̂′, σ̂2

ε , δ̂
′
)′

.

3.2 Asymptotic Properties

To derive the asymptotic properties of the QML estimator of the model, we must first ensure

that ψ =
(
θ′, σ2

ε , δ
)′

is identifiable. Notice, however, that given 3.3 it suffices to ensure that

δ = (σ′, λ)′ is identifiable. To this end, let us define L∗c(δ) = max
θ,σ2

ε

E [L(ψ)]. It can be proved

that the arguments that maximize E [L(ψ)] given δ are:

θ̃(δ) =
[
E(X̃′Ω−1(σ)X̃)

]−1

E
[
X̃′Ω−1(σ)S(λ)Y

]
(3.5)

σ̃2
ε(δ) =

1

nT
E
[
η̃′(δ)Ω−1(σ)η̃(δ)

]
(3.6)

with η̃(δ) ≡ η(θ̃(δ), λ). Consequently:

L∗c(δ) = ln |S(λ)| − nT

2
(ln(2π) + 1)− nT

2
ln
(
σ̃2
ε(δ)

)
− 1

2
ln |Ω(σ)| (3.7)

Notice also that, by using Lemma A.3, θ̃(δ0) = θ0 and σ̃2
ε(δ0) = σ2

ε0
.

Let us now denote by ∆ = ∆σ × ∆λ the (compact) parameter space of δ, with ∆σ and

∆λ being the (compact) parameter spaces of σ and λ, respectively.7 Further, let us redefine

δ̂ = max
δ∈∆
Lc(δ). We then require the following assumptions to prove that the QML estimator

of the model, ψ̂ = (θ̂′, σ̂2
ε , δ̂
′)′, is consistent and asymptotically normally distributed:

Assumption 1. The available observations are (yit, xit), i = 1, ..., n and t = 1, ..., T , with

T ≥ 2 fixed and n→∞. Also, all the elements of xit are independent across i, and have 4 + ε0

moments for some ε0 > 0.

7Notice that we do not require specific assumptions about the parametric space of ρ0. In particular, since
we concentrate on the case of T finite and Yn0 exogenous, we do not need to assume that |ρ0| < 1 to derive the
results obtained in the paper (see Su and Yang, 2015, p. 236).
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Assumption 2. The elements of the disturbance vector εit are i.i.d. for all i and t, with

E (εit) = 0, V ar (εit) = σ2
ε0

and E |εit|4+ε0 <∞ for some ε0 > 0. Similarly, (υiµ, υiα) are i.i.d.

with E (υiµ) = E (υiα) = 0, V ar (υiµ) = σ2
µ0

, V ar (υiα) = σ2
α0

, Cov (υiµ, υiα) = σµα0 and have

4+ε0 finite moments for some ε0 > 0. Moreover, εit and (υjµ, νjα) are i) mutually independent,

and ii) independent of xsr for all i, j, s = 1 . . . n and r, t = 1 . . . T . Lastly, σ0 = (σ10, σ20, σ30)′

is in the interior of ∆σ.

Assumption 3. The elements of Wn, Wnij, are at most of order h−1
n , uniformly in all i and j

with hn/n→ 0 as n→∞.

Assumption 4. Matrix S (λ) is nonsingular for all λ ∈ ∆λ, with λ0 being in the interior of

∆λ.

Assumption 5. The sequence of matrices Wn and S−1 (λ) are uniformly bounded in both row

and column sums and uniformly in λ in the compact parameter space ∆λ.8

Assumption 6. lim
n→∞

1

nT

{
ln
∣∣σ2
ε0S
−2
0 Ω0

∣∣− ln
∣∣σ̃2
ε(δ)S(λ)−2Ω(σ)

∣∣} 6= 0 for any δ 6= δ0. Also,

1

nT
X̃′X̃ is positive definite almost surely for n sufficiently large.

Assumption 7. Let Hn (ψ) =
∂2

∂ψ∂ψ′
L(ψ) be the hessian of the likelihood function and

Gn (ψ) =
∂

∂ψ
L(ψ)

∂

∂ψ′
L(ψ) be the product of the score vector. Both H = lim

N→∞

1

nT
E [Hn (ψ0)]

and G = lim
n→∞

1

nT
E [Gn (ψ0)] exist. Also, G and −H are positive definite matrices.

Assumption 8. Matrix Ω−1
0 is uniformly bounded in both row and column sums.

These assumptions are commonly used in the (spatial) panel data literature. In particular,

Assumption 1 is standard for (dynamic) linear panel data models with large n and small T

where Yn0 is exogenous. The first part of Assumption 2 is also rather standard in random-

effects panel data models. What is not that common is the part that refers to the bivariate

8We say that a k ×m matrix A (or a sequence of matrices An) is bounded in both row and column sums if

there exists a constant c <∞ such that max
j

k∑
i=1

Aij < c and max
i

m∑
j=1

Aij < c.
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random vector (υiµ, υiα), which is justified by the existence of spatial spillovers in the individual

effects of our model.

As for the next three assumptions, they are widely used in spatial econometrics models. In

particular, Assumption 3 is a necessary condition for Assumptions 6 and 7 that can be found

in e.g. Lee (2004) and Su and Yang (2015). It is always satisfied if {hn} is a bounded sequence

and essentially allows the weight matrices to be rather “general”, “cover[ing] spatial weights

matrices where elements are not restricted to be nonnegative and those that might not be

row-normalized” (Lee, 2004, p. 1903). Assumptions 4 and 5 can be found in e.g. Lee (2004)

and parallel Assumptions 3 and 5 of Yu et al. (2008). In particular, Assumption 5 was first

employed by Kelejian and Prucha (1998, 2001). While Assumption 4 guarantees that Y can

be expressed exclusively in terms of the exogenous variables, Assumption 5 essentially limits

the spatial correlation. Notice also that Assumption 4 holds if λ0 ∈
(

1

ωmin

,
1

ωmax

)
, where

ωmin denotes the smallest and ωmax denotes the largest characteristic root of the spatial weight

matrix Wn (ωmin < 0, ωmax > 0).

The last three assumptions have also been previously used to derive the asymptotic

properties of a QML estimator in spatial econometrics models for cross-section and panel

data (Lee, 2004; Su and Yang, 2015). Firstly, Assumption 6 basically provides conditions

for the global identification of the estimator. More precisely, the first part is the identification

uniqueness condition (White, 1994), while the second part guarantees that the regressors are

not asymptotically multicollinear. In particular, in the second part of the assumption we can

alternatively assume that
1

nT
E(X̃′X̃) is positive definite for sufficiently large n. This is a

softer condition that only requires some additional proof to be applied. Secondly, Assumption

7 guarantees the existence and positive definiteness of the Hessian and the variance covariance

matrix of the score vector. It thus plays a basic role in the asymptotic normality results. Thirdly,

Assumption 8 is necessary for the Central Limit Theorem we use to derive the asymptotic

normality of the estimator (Kelejian and Prucha, 2001). In particular, it can be shown that

this assumption also holds if (In + TΣ(σ0))−1 is uniformly bounded in both row and column

sums.

Theorem 1. Under assumptions 1 to 6, ψ0 is globally identified and ψ̂ is a consistent estimator
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of ψ0 with ψ̂
p−→ψ0.

Theorem 2. Under assumptions 1 to 8,
√
nT
(
ψ̂ − ψ0

)
d−→N

(
0,H−1GH−1

)
.

Remark 1. Lee (2004), Yu et al. (2008) and Su and Yang (2015) use analog theorems to

prove the consistency and asymptotic normality of their QML estimator in cross-section (Lee,

2004) and panel data (Yu et al., 2008; Su and Yang, 2015) models. In particular, Theorems

1 and 2 are similar to Theorems 3.1 and 3.2 of Lee (2004), Theorems 4 and 5 of Yu et al.

(2008), and Theorems 4.1 and 4.2 of Su and Yang (2015), respectively. Because of the panel

structure, our results are obviously closer to those of Yu et al. (2008), who analyse a spatial

dynamic panel data model with fixed effects and no spatial contagion in the error term (and

large T and n), and those of Su and Yang (2015), who analyse a dynamic panel data with

spatially autocorrelated errors and both fixed and random effects (with small T and large n, as

we do). This means that, on the one hand, our set of regressors is similar to that of Yu et al.

(2008), except that we do not have the spatial lag of the lagged dependent variable and they do

not have the spatially weighted exogenous variables (Su and Yang (2015) do not consider either

spatially weighted regressors or the spatial lag of the – lagged – dependent variable). But, on

the other hand, our error structure does have local spatial contagion, as Su and Yang’s does

(2015), although ours is in the individual-specific effects and theirs is in the idiosyncratic term

(which in turn results in a variance-covariance matrix different from the ones assumed by these

papers). Thus, our model specification is different, and so is the variance-covariance matrix,

but the approach and the proof of our theorems largely follows their work (see Appendices A

and B for details). In particular, the fact that our model specification includes the spatial lag

of the endogenous variable makes the proof more involved than that of Su and Yang (2015). On

the other hand, the scope of our proof is limited by the fact that we do not cover cases where

Yn0 is endogenous, as they do.

4 Empirical application

In this section we provide empirical evidence on a growth-initial level equation (see e.g. Islam

1995 and Elhorst et al. 2010) using the correlated random effects specification of the spatial
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Durbin dynamic panel model presented in this paper. The principal aim of this empirical

exercise is to show that i) we can (largely) replicate the results obtained by Lee and Yu

(2016) using a standard spatial dynamic Durbin model (our benchmark); and ii) our model

specification not only provides an estimate of the individual-specific effects but also of their

spatial spillovers.

To this end, we use the data and (basic) model specification of Lee and Yu (2016). The

dataset covers 28 OECD countries (see Ho et al. 2013 for details) over the period 1970 to

2005 (in time intervals of 5 years). The dependent variable, Ynt, is the real GDP per capita

(units of labour). As for the explanatory variables, Nnt + 0.05 is the sum of the annual average

working-age population growth over the last 5 years (Nnt) and an approximation to the sum

of the exogenous technical progress rate and the capital depreciation rate (see e.g. Ertur and

Koch 2007 for details); Snt is the average investment share in GDP; and Yn,t−1 is the real GDP

per capita lagged 5 years.

[Insert Table 1 about here]

The first column in Table 1 reports the results obtained by Lee and Yu (2016) using a

weighting matrix Wn defined by the geographical distance between the capital of the countries.

Notice that Wn is a row-normalized matrix with zeros in the diagonal. The second column

provides the estimates of our model.9 The parameter ρ measures the effect of the time-

lagged real GDP (Yn,t−1) on the dependent variable, whereas λ measures the intensity of

its contemporaneous spatial interactions (WnYnt). Also, the β-parameters measure the effect

of the exogenous regressors (β1 is the coefficient associated with Nnt + 0.05 and β2 is the

coefficient associated with Snt), whereas the γ-parameters measure the intensity of the spatial

contagion between the OECD countries arising from these exogenous regressors (γ1 and γ2 are

the counterparts of β1 and β2). Lastly, the π-parameters are the coefficients associated with

the variables included in the correlation functions. In particular, the πµ-parameters correspond

to those employed for the individual effects (πµ1 is the coefficient of the mean of Nnt + 0.05

9Estimates were obtained using the optimizing routines of R and the log-likelihood function in 3.2.
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and πµ2 is that of the mean of Snt) and the πα-parameters to those employed for their spatial

spillovers (πα1 is the coefficient of the spatially weighted mean of Nnt + 0.05 and πα2 is that of

the spatially weighted mean of Snt).

The first thing to notice is that our results largely concur with those of Lee and Yu (2016).

This means that in both cases the coefficients of the working-age population growth rate (β1)

are negative and statistically significant at standard confidence levels, while the coefficients

of the savings rate (β2) are positive and statistically significant. Notice also that while the

parameter associated with the time lagged real GDP is positive and statistically significant,

the intensity of the contemporaneous spatial interactions of Ynt is not statistically significant.

This stands in contrast to the findings of Ertur and Koch (2007) and Elhorst et al. (2010).

It is also worth noting that only the coefficients associated with Nnt + 0.05 are – weakly –

statistically significant in the correlations functions (the p−value of πµ1 is 0.14, slightly above

the standard 0.10).10 This contrasts with the clear statistical significance of πα1 (and the joint

test for the πα parameters), which supports the existence of spatial spillovers in the individual

effects. However, the estimated variances indicate that the individual effects and their spatial

counterparts do not have a significant random component. All in all, these results seem to be

consistent with an error term specification analogous to the one proposed by Debarsy (2012).

Thus, if we interpret the estimated individual effects as a proxy for the unobserved

productivity of the countries (see Islam 1995), our results suggest that the growth of some

countries may be – weakly – related not only to their unobserved productivity, but also to the

impact that the unobserved productivity of other countries have on their economies.11 More

generally, our results point to the importance of unobserved country-specific intrinsic features

(economic, social, historical, etc.) in growth.

In order to further explore this idea and following the discussion in Section 2, we computed

10We also computed Wald tests for the joint significance of the coefficients in each correlation function.
Results show that while the variables included in πµ are not jointly significant (the p-value was 0.21), the
variables included in πα rejected the null hypothesis (the p-value was 0.01).

11Notice that, given the lack of statistical significance of σα, our results may also be consistent with the
hypothesis (see Debarsy, 2012) that the growth of one country is linked to its unobserved productivity and this,
in turn, is related to the (mean) characteristics of the other countries (but not to their unobserved productivities).
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the direct and indirect global and local effects. However, since the λ coefficient is not statistically

significant, the global and local effects coincide: the global effects are only of a local nature

(Anselin, 2003). Thus, we interpret our results as local effects and, since the weight matrix

is defined in terms of geographical distances, closer neighbours will have greater weight than

distant neighbours in the indirect effects. In particular, we report the local direct effects for

each period in Table 2 and the “spill-in” and “spill-out” effects of the estimated individual

effects for each period in Tables 3 and 4, respectively.

The first column in Table 2 is the direct local effect in period one, which can be interpreted

as the impact on the dependent variable (the log of real GDP per capita) of the estimated

individual effects. In other words, these figures provide, for each country, an estimate of the

difference in the log of real GDP per capita of having or not the unobserved heterogeneity term

(i.e., having a zero value individual effect). As a caveat, notice that, given the weak statistical

significance of the πµ-parameters, these direct effects may not be statistically different than

zero.

With this in mind, results indicate the existence of three groups of countries in our sample:

those with a large individual effect, with values above the third quartile (Canada, Chile, Israel,

Mexico, Netherlands, New Zealand, Turkey and the US); those with a small individual effect,

with values below the first quartile (Austria, Belgium, Denmark, Finland, Greece, Italy, Japan,

Korea, Norway, Portugal and Switzerland); and those with an intermediate individual effect

(Australia, France, Iceland, Ireland, Spain, Sweden and the UK). It is also interesting to note

that, for most countries, our ranking does not substantially differ from that of Islam (1995).

However, in order to make meaningful comparisons, in the last two columns of Table 2 we

report his estimated individual effects (obtained from a model without spatial interactions

and for a sample of 192 countries over the period 1965 to 1985) and our equivalent estimate,

µ̂ + Wnα̂. We can see then that fifteen out of the 25 countries commonly analysed barely

changed their ranking (Austria, Chile, Denmark, France, Greece, Israel, Italy, Netherlands,

New Zealand, Norway, Portugal, Spain, Sweden, Switzerland and the UK) and that, in fact, the

most important differences arise from seven countries that dramatically changed their position

in the rankings (Japan and Belgium, from the top of his ranking to the bottom of ours, and
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Finland, Ireland, Korea, Mexico and Turkey, the other way round).

As for spill-in effects reported in Table 3, for each 5-year period the columns report the

(local) impact on the log of real GDP per capita of each country associated with the unobserved

characteristics of the other countries. The most affected countries (above the third quartile) are

Austria, Finland, France, Ireland, Italy, Korea, Netherlands, Norway, Sweden and Switzerland,

whereas the least affected countries (below the first quartile) are Australia, Canada, Chile,

Iceland, Israel, Japan, Mexico, New Zealand, and the US. Notice that most of the countries

with a small/large individual effect are among the most/least affected by their neighbours (in

terms of geographical distance). Also, as expected figures in the other columns of the table

show that, to a large extent, these groups remain stable over time.

Lastly, the columns in Table 4 contain, for each 5-year period, the estimated (local) impact

on the log of real GDP per capita of the neighbouring countries associated with the unobserved

characteristics of each country. However, rather than reporting the spill-out effect as described

in Section 2, we simply report the estimated
t∑

s=1

ρs−1αn, which provides essentially the same

picture.12 Results show that the countries that impact least on their neighbours are Canada,

Chile, Iceland, Israel, Korea, Mexico and New Zealand, whereas the countries that impact most

on their neighbours are Austria, Belgium, Denmark, Finland, France, Italy, Japan, Sweden,

Switzerland and the UK. Notice that countries that impact least/most on other countries tend

to be those that are less/more affected by the spillovers from their neighbours (and generally

have a larger/smaller individual effect). That is, there is a negative correlation between the

estimated individual effects and the estimated spill-in (on average, −0.4) and spill-out (on

average, −0.7) effects. Notice also that, as expected, these results largely hold for the seven

periods considered.

12In particular, following Miranda et al. (2017, p. 4) we may interpret

t∑
s=1

ρs−1αn “as the “potential” of the

spatial spillovers of the individual effects” in each period (i.e., “a measure of the “potentiality of the spatial
contagion” associated with the individual effect of [each] unit” in each period).
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5 Conclusions

In this paper we consider a correlated random effects specification of the spatial Durbin dynamic

panel model. We derive the likelihood function of the model and prove the consistency and

asymptotic normality of the QML estimator under rather standard assumptions in the spatial

econometrics literature. A major difference with respect to previous studies is that our model

specification includes individual effects and their spatial spillovers.

Obtaining an estimate of the individual-specific effects (net of the spatially weighted

effects) can be critical in certain applications, such as growth models in which a measure

of the unobserved productivity of the geographical units under study can be obtained from

the estimated individual effects and hence the existence of spatial spillovers in (unobserved)

productivity can be analysed. We illustrate this point by estimating a growth-initial level

equation using OECD data and providing evidence of spatial contagion in the individual effects.

Our results point to the importance of unobserved country-specific characteristics and

their spatial spillovers in growth. In particular, we find that countries with a small/large

estimated individual effect tend to be among the most/least affected by the impact of the

estimated individual effects of their neighbours and among those whose individual effects

impact most/least on the other countries (in terms of geographical distance). This means

that, if we interpret the individual effect as a proxy for the unobserved productivity, more/less

productive economies are less/more interrelated with the other economies. According to our

estimates, examples of countries that fit into the first pattern include Chile, Israel, Mexico and

New Zealand, whereas examples of countries that fit into the second pattern include Austria,

Finland, Italy and Switzerland.
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Table 1: QML estimates

Variable Parameters Lee and Yu (2016) Our model

WYt λ −0.040 −0.011
(0.045) (0.020)

Yt−1 ρ 0.889∗∗∗ 0.919∗∗∗

(0.046) (0.049)

Nt + 0.05 β1 −0.198∗∗∗ −0.200∗∗∗

(0.04) (0.042)

St β2 0.143∗∗∗ 0.141∗∗∗

(0.047) (0.048)

W (Nt + 0.05) γ1 0.102∗∗ 0.108∗∗

(0.047) (0.048)

WSt γ2 0.003 −0.001
(0.057) (0.057)

Nt + 0.05 πµ1 0.115
(0.079)(

St
)

πµ2 −0.061
(0.057)

W
(
Nt + 0.05

)
πα1 −0.284∗∗∗

(0.091)

WSt πα2 −0.004
(0.065)

Variance Components

σ2
µ σ2

α σµα σ2
ε

0.0001 0.0000 0.0001 0.004∗∗∗

(0.0002) (0.0002) (0.0002) (0.0005)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. We denote the
time-mean of a variable with an upper bar.
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Table 2: Local Direct Effects

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Islam (1995) µ̂+Wnα̂

Australia -0.40 -0.77 -1.11 -1.42 -1.70 -1.97 -2.21 1.69 0.35
Austria -0.42 -0.81 -1.16 -1.49 -1.79 -2.07 -2.32 1.72 0.38
Belgium -0.42 -0.82 -1.17 -1.50 -1.81 -2.09 -2.34 1.75 0.35
Canada -0.39 -0.74 -1.07 -1.37 -1.64 -1.90 -2.13 1.81 0.37
Chile -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.49 0.34
Denmark -0.42 -0.80 -1.15 -1.48 -1.77 -2.05 -2.30 1.74 0.38
Finland -0.43 -0.82 -1.19 -1.52 -1.83 -2.11 -2.37 1.66 0.39
France -0.41 -0.79 -1.14 -1.46 -1.75 -2.02 -2.27 1.75 0.39
Greece -0.42 -0.80 -1.16 -1.48 -1.78 -2.06 -2.31 1.60 0.35
Iceland -0.41 -0.78 -1.13 -1.45 -1.74 -2.01 -2.26 – 0.36
Ireland -0.41 -0.78 -1.12 -1.44 -1.73 -1.99 -2.24 1.60 0.40
Israel -0.39 -0.76 -1.09 -1.40 -1.68 -1.94 -2.18 1.70 0.37
Italy -0.43 -0.82 -1.18 -1.52 -1.82 -2.10 -2.36 1.69 0.37
Japan -0.44 -0.84 -1.22 -1.56 -1.87 -2.16 -2.43 1.75 0.29
Korea -0.42 -0.80 -1.16 -1.48 -1.78 -2.05 -2.31 1.60 0.39
Mexico -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.65 0.38
Netherlands -0.39 -0.75 -1.08 -1.39 -1.67 -1.92 -2.16 1.73 0.41
New Zealand -0.39 -0.75 -1.08 -1.38 -1.66 -1.91 -2.15 1.69 0.37
Norway -0.42 -0.81 -1.16 -1.49 -1.79 -2.06 -2.32 1.77 0.39
Portugal -0.42 -0.81 -1.17 -1.50 -1.81 -2.09 -2.34 1.58 0.35
Spain -0.41 -0.79 -1.14 -1.46 -1.76 -2.03 -2.28 1.75 0.38
Sweden -0.41 -0.79 -1.14 -1.46 -1.75 -2.02 -2.27 1.73 0.39
Switzerland -0.43 -0.82 -1.18 -1.52 -1.82 -2.10 -2.36 1.70 0.37
Turkey -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.53 0.39
United Kingdom -0.40 -0.77 -1.11 -1.42 -1.70 -1.96 -2.21 1.73 0.39
United States -0.39 -0.75 -1.09 -1.39 -1.67 -1.93 -2.17 1.80 0.36

The last two columns provide the estimated individual effects reported by Islam (1995) and our equivalent
estimate, µ̂+Wnα̂.
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Table 3: Spill-in Effects

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Australia 0.75 1.45 2.09 2.67 3.21 3.71 4.16
Austria 0.80 1.53 2.21 2.83 3.40 3.93 4.41
Belgium 0.78 1.50 2.15 2.76 3.32 3.83 4.30
Canada 0.76 1.46 2.10 2.69 3.24 3.74 4.19
Chile 0.72 1.38 1.99 2.55 3.06 3.54 3.97
Denmark 0.79 1.52 2.19 2.81 3.37 3.89 4.37
Finland 0.82 1.57 2.26 2.89 3.47 4.01 4.50
France 0.80 1.54 2.22 2.84 3.41 3.94 4.42
Greece 0.77 1.47 2.12 2.72 3.26 3.77 4.23
Iceland 0.76 1.47 2.11 2.71 3.26 3.76 4.22
Ireland 0.81 1.55 2.24 2.87 3.45 3.98 4.47
Israel 0.76 1.46 2.11 2.70 3.25 3.75 4.21
Italy 0.80 1.53 2.20 2.82 3.39 3.91 4.40
Japan 0.73 1.40 2.01 2.58 3.10 3.58 4.02
Korea 0.81 1.55 2.23 2.85 3.43 3.96 4.44
Mexico 0.76 1.46 2.10 2.69 3.24 3.74 4.19
Netherlands 0.80 1.54 2.22 2.85 3.43 3.95 4.44
New Zealand 0.76 1.45 2.09 2.68 3.22 3.72 4.17
Norway 0.81 1.56 2.25 2.89 3.47 4.00 4.50
Portugal 0.78 1.49 2.15 2.75 3.30 3.81 4.28
Spain 0.79 1.52 2.19 2.80 3.36 3.88 4.36
Sweden 0.80 1.54 2.22 2.84 3.41 3.94 4.42
Switzerland 0.80 1.53 2.21 2.83 3.40 3.92 4.40
Turkey 0.77 1.48 2.14 2.74 3.29 3.80 4.26
United Kingdom 0.79 1.51 2.18 2.79 3.36 3.87 4.35
United States 0.75 1.44 2.07 2.65 3.19 3.68 4.13
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Table 4: Spill-out Effects

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Australia 0.76 1.45 2.09 2.68 3.22 3.72 4.17
Austria 0.80 1.53 2.21 2.83 3.40 3.92 4.41
Belgium 0.80 1.54 2.22 2.85 3.42 3.95 4.44
Canada 0.75 1.44 2.07 2.65 3.19 3.68 4.13
Chile 0.73 1.41 2.02 2.59 3.12 3.60 4.04
Denmark 0.81 1.56 2.24 2.88 3.46 3.99 4.48
Finland 0.82 1.57 2.25 2.89 3.47 4.01 4.50
France 0.80 1.53 2.21 2.83 3.40 3.92 4.41
Greece 0.79 1.52 2.19 2.80 3.37 3.89 4.37
Iceland 0.75 1.43 2.07 2.65 3.18 3.67 4.12
Ireland 0.76 1.46 2.11 2.70 3.24 3.75 4.21
Israel 0.72 1.38 1.98 2.54 3.05 3.52 3.95
Italy 0.82 1.57 2.26 2.90 3.49 4.02 4.52
Japan 0.81 1.55 2.23 2.85 3.43 3.96 4.44
Korea 0.73 1.40 2.01 2.58 3.10 3.58 4.02
Mexico 0.72 1.38 1.99 2.55 3.06 3.54 3.97
Netherlands 0.76 1.47 2.11 2.70 3.25 3.75 4.21
New Zealand 0.75 1.45 2.09 2.67 3.21 3.71 4.16
Norway 0.78 1.50 2.16 2.77 3.33 3.84 4.31
Portugal 0.79 1.52 2.18 2.80 3.36 3.88 4.36
Spain 0.78 1.49 2.15 2.75 3.30 3.81 4.28
Sweden 0.82 1.57 2.26 2.89 3.48 4.01 4.51
Switzerland 0.80 1.53 2.20 2.82 3.39 3.91 4.39
Turkey 0.76 1.46 2.11 2.70 3.24 3.74 4.20
United Kingdom 0.81 1.56 2.25 2.88 3.46 3.99 4.48
United States 0.76 1.46 2.10 2.69 3.24 3.74 4.19
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A Lemmas

In this section we make extensive use of the following notation: tr(A) denotes the trace of matrix

A, τmax(A) the largest eigenvalue of matrix A, τmin(A) the smallest eigenvalue of matrix A, and

‖A‖m the m−norm of matrix A with m = 1, 2,∞ and F (m = F being the Frobenius norm).

Further, we use the term u.b.r.c.s. to refer to a matrix or sequence of matrices “uniformly

bounded in both row and column sums”.

We also make use of the following representation of the model in 2.3 and 2.4 (obtained by

repeated substitution):

Ynt = ρt0S
−t
0 Yn,0 +

t−1∑
j=0

ρj0S
−(j+1)
0 Xn,t−jφ0 +

t−1∑
j=0

ρj0S
−(j+1)
0 (υnµ +Wnυnα) +

t−1∑
j=0

ρj0S
−(j+1)
0 εn,t−j

where φ0 = (c0, β
′
10, β

′
20, π

′
µ0, π

′
α0)′, Xnt =

(
ln Xnt WnXnt Xn WnXn

)
is an n× (4K + 1)

matrix, and the other elements are defined in Section 2. In full matrix notation:

Y = G0Yn,0 + C0Xφ0 + L0 (υnµ +Wnυnα) + C0ε (A.1)

with L0 = C0(lT ⊗ In).

Lastly, some of the lemmas make use of the following property:

Property 1. Let D−1(σ) be an r × r symmetric matrix, with σ ∈ ∆ being a p × 1 vector of

parameters and ∆ a compact parametric space. Then, there exists a matrix Ak(σ, σ) such that

i) D−1(σ)−D−1(σ) =

p∑
k=1

(σk − σk)Ak(σ, σ) for all σ, σ ∈ ∆

ii) sup
σ∈∆

τmax

(
D−2(σ)

)
≤ cτ <∞

iii) sup
σ,σ∈∆

τmax (Ak(σ, σ)A′k(σ, σ)) ≤ cτ <∞ for k = 1, . . . , p
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Lemma A.1. Let A be a real symmetric n× n matrix and B a random n×m matrix. Then,

τmin (E (B′AB)) ≥ τmin (A) τmin (E (B′B))

Proof. By definition, τmin (E (B′AB)) = min
z∈Rm

{z′E (B′AB) z| z′z = 1}. Let z be such that

τmin (E (B′AB)) = z′E (B′AB) z. Let DA be the diagonal matrix of eigenvalues of A. Since A

is a real symmetric matrix, there exists Q such that A = QDQ′ and QQ′ = In. Then,

τmin (E (B′AB)) = E (z′B′QDAQ
′Bz)

≥ τmin(A)E (z′B′QQ′Bz)

≥ τmin(A) min
z∈Rm

{E (z′B′Bz)| z′z = 1}

≥ τmin(A)τmin (E (B′B))

Lemma A.2. Let A be a real positive semidefinite n× n matrix and B a real symmetric n× n

matrix. Then,

tr (AB) ≤ τmax (B) tr (A) .

Proof. Since B is a real symmetric matrix, it can be diagonalized. Let PB be the orthogonal

matrix with the eigenvectors of B (PBP
′
B = In) and let DB be the diagonal matrix of eigenvalues

of B such that B = PBDBP
′
B. Then,

tr (AB) = tr (APBDBP
′
B) = tr (P ′BAPBDB) = tr (CDB)

where C is a symmetric positive semidefinite matrix (given that A is a positive semidefinite

matrix and y′P ′BAPBy = x′Ax ≥ 0). Using that tr (C) = tr (A) and given that cii ≥ 0 for

i = 1, ..., n (because of the positive definitiveness of C),

tr (AB) = tr (CDB) =
n∑
i=1

ciiτi (B) ≤ τmax (B)
n∑
i=1

|cii| = τmax (B) tr (C) = τmax (B) tr (A)
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Lemma A.3. Under assumptions 1 to 6, E
[
X̃′Ω−1

0 η
]

= 0.

Proof. We start by noting that, given that X̃ =
[
lnT Y−1 X WX X WX

]
, we only

need to prove that E
[
Y′−1Ω

−1
0 η

]
= 0, since E

[
Z′Ω−1

0 η
]

= 0 for Z = lnT ,X,WX,X and WX

by the strict exogeneity of X. Notice also that, by using equation A.1, we have that

Y−1 = G−0 Yn,0 + C−0 X−1φ0 + L−0 (υnµ +Wnυnα) + C−0 ε, (A.2)

with X−1 =
(
0,X′n1, · · · ,X′n,T−1

)′
, G−0 =

(
In, ρ0S

−1
0
′
, . . . , ρT−2

0 S
−(T−1)
0

′)′
, L−0 = C−0 (lT ⊗ In) and

C−0 =



0 0 0 · · · 0

S−1
0 0 0 · · · 0

ρ0S
−2
0 S−1

0 0 · · · 0
...

...
...

. . .
...

ρT−2
0 S

−(T−1)
0 ρT−3

0 S
−(T−2)
0 ρT−4

0 S
−(T−3)
0 · · · 0


Thus,

Y′−1Ω
−1
0 η = Y ′n0G

−
0 Ω−1

0 η + φ′X′−1C
−
0
′
Ω−1

0 η + ε′C−0
′
Ω−1

0 η +
(
υ′nµ + υ′nαW

′
n

)
L−0
′
Ω−1

0 η

First, it is easy to show that E
(
Y ′n0G

−
0 Ω−1

0 η
)

= 0 = E
(
φ′X′−1C

−
0
′
Ω−1

0 η
)

. Second, notice that

we can write E
(
ε′C−0

′
Ω−1

0 η
)

= σ2
εtr
(
Ω−1

0 C−0
′
)

and, given that L−0
′
= (l′T ⊗ In)C−0

′
, JT = lT l

′
T

and E
[
(υµ +Wnυnα) (υµ +Wnυnα)′

]
= σ2

ε0
Σ0,

E
((
υ′nµ + υ′nαW

′
n

)
L−0
′
Ω−1

0 η
)

= σ2
ε0tr

[
Ω−1

0 (JT ⊗ Σ0) C−0
′
]

Also, following Magnus (1982), we can rewrite Ω−1
0 as Ω−1

0 = (IT ⊗ In) − 1

T
JT ⊗[

In − (In + TΣ0)−1], which means that

σ2
ε0
tr
(
Ω−1

0 C−0
′
)

+ σ2
ε0
tr
[
Ω−1

0 (JT ⊗ Σ0) C−0
′
]

= σ2
ε0
tr
[
C−0
′
]

+ σ2
ε0
tr
[
AC−0

′
]

= 0
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since

A = − 1

T

(
JT ⊗

[
In − (In + TΣ0)−1])+

1

T
(JT ⊗ TΣ0)

−
(

1

T
JT ⊗

[
In − (In + TΣ0)−1]) (JT ⊗ Σ0)

=
1

T
JT ⊗

[
−In + (In + TΣ0)−1 (In + TΣ0)

]
= 0

and tr [C′0] = 0 because of the structure of C′0.

Lemma A.4. Let A, B and C be real constant matrices of order (n× r), (r × r) and (r × n)

respectively, with A and C u.b.r.c.s. and B being a symmetric matrix with τmax(B2) < ∞.

Then, for Q = ABC:

i) tr (QQ′) = O(min(r, n))

ii) l′nQQ
′ln = O (n), where ln is a unit vector of dimension n× 1

iii)
n∑
i=1

Q2
ii = O(min(r, n)) and tr (QQ) = O(n).

Proof. Firstly, by the Cauchy-Schwarz inequality and Lemma A.2,

tr (QQ′) = tr (ABCC ′BA′) = tr (BCC ′BA′A)

≤ [tr (BCC ′CC ′B)]
1/2

[tr (BAA′AA′B)]
1/2

≤ τmax(B2) [tr (C ′CC ′C)]
1/2

[tr (A′AA′A)]
1/2

Then, by using the second part of Lemma B.1 in Su and Yang (2015), we can show that

τmax(B2) [tr (C ′CC ′C)]
1/2

[tr (A′AA′A)]
1/2

= O(min(r, n)).

Secondly,

l′nQQ
′ln = tr (l′nABCC

′BA′ln) = tr (BCC ′BA′lnl
′
nA)

≤ τmax (BCC ′B) tr (A′lnl
′
nA) ≤ τmax (BCC ′B) tr (l′nAA

′ln) = O (n) ,

where the last equality holds because
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• given that C is u.b.r.c.s., ‖C ′‖2
2 ≤ ‖C ′‖2

1 ‖C
′‖2
∞ ≤ c2, with max

i

n∑
j=1

|cij| ≤ c,

max
j

n∑
i=1

|cij| ≤ c and c < ∞, and ‖B‖2
2 = τmax

(
B2
)
; then, since ‖.‖2 is a sub-

multiplicative norm13, τmax (BCC ′B) = ‖C ′B‖2
2 ≤ ‖C

′‖2
2 ‖B‖

2
2 ≤ c2τmax

(
B2
)
,

• given that A is u.b.r.c.s., max
i

n∑
j=1

|aij| ≤ a, max
j

n∑
i=1

|aij| ≤ a and a < ∞; then,

l′nAA
′ln ≤ a2l′nln ≤ a2n.

Thirdly,
n∑
i=1

Q2
ii ≤

n∑
i=1

n∑
j=1

|Qij|2= ‖Q‖2
F ≤ tr (Q′Q), which, because of result i),

is O(min(r, n)). Also using result i), tr(QQ) ≤ tr(QQ′)1/2tr(QQ′)1/2 = tr(QQ′) =

O(min(r, n)).

Lemma A.5. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′. Also, let {(ai, bi)}ni=1 be an i.i.d.

sequence of random vector variables with E(ai) = E(bi) = 0 and finite second moments. Lastly,

let P be an n × n constant matrix and let Ω = E(ab′) = µabIn such that (a′Pb− tr(PΩ)) =

tr (Pba′ − PΩ) =
n∑
i=1

n∑
j=1

Pij(aibj − Ωij). Then,

E
[
(a′Pb− tr(PΩ))

2
]

= (σ2
ab − σ2

aσ
2
b − µ2

ab)
n∑
i=1

P 2
ii + σ2

aσ
2
b tr (PP ′) + σ2

abtr (PP )

where σ2
a = E(a2

i ), σ2
b = E(b2

i ), E(aibi) = µab and E[(aibi − µab)
2] = σ2

ab. Notice that, if a

and b are independent, E
[
(a′Pb− tr(PΩ))

2
]

= σ2
aσ

2
b tr(PP

′). Notice also that if a = b, then

E
[
(a′Pb− tr(PΩ))

2
]

= (σ(4)
a −2σ4

a)
n∑
i=1

P 2
ii+σ

4
atr (PP ′)+σ(4)

a tr (PP ) , with σ(4)
a = E[(a2

i−σ2
a)

2].

Proof. Notice that E
[
(a′Pb− tr(PΩ))

2
]

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

PijPklE [(aibj − Ωij)(akbl − Ωkl)].

Also, given the independence of (ai, bi) and (aj, bj) for i 6= j, E [(aibj − Ωij)(akbl − Ωkl)] 6= 0

13This means that, for any two matrices A and B, ‖AB‖2 ≤ ‖A‖2 ‖B‖2.
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only for i = j = k = l, i = k 6= j = l and i = l 6= j = k. Thus,

E
[
(a′Pb− tr(PΩ))

2
]

=
n∑
i=1

P 2
iiE
[
(aibi − µab)2

]
+

n∑
i=1

n∑
j 6=i

P 2
ijE
[
(aibj)

2
]

+
n∑
i=1

n∑
j 6=i

PijPjiE [(aibi)(ajbj)]

= (σ2
ab − σ2

aσ
2
b − µ2

ab)
n∑
i=1

P 2
ii +

(
σ2
aσ

2
b tr(PP

′) + µ2
abtr(PP )

)

Lemma A.6. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′, with {(ai, bi)}ni=1 i.i.d. sequences of

random vector variables with finite second moments. Let Pn and Qn be n× r constant matrices

u.b.r.c.s.. Lastly, let D(σ) be an r×r constant symmetric matrix that satisfies Property 1, with

σ ∈ ∆ being a p× 1 vector of parameters. Then,

sup
σ∈∆

∣∣E (a′PnD−1(σ)Qnb
)∣∣ = O(n)

Note that the Lemma still holds if a = b and Pn = Qn.

Proof. By the Cauchy-Schwarz inequality and Lemma A.2,

sup
σ∈∆

∣∣E (a′PnD−1(σ)Qnb
)∣∣ ≤ sup

σ∈∆
E
(
tr
(
a′PnD

−2(σ)P ′na
)1/2

tr (b′Q′n(σ)Qnb)
1/2
)

≤
[
sup
σ∈∆

τmax

(
D−2(σ)

)]1/2 [
E
(
tr (P ′naa

′Pn)
1/2
tr (Qnbb

′Q′n)
1/2
)]

≤
[
sup
σ∈∆

τmax

(
D−2(σ)

)]1/2

τ 1/2
max (PnP

′
n) τ 1/2

max (Q′nQn) [E (tr (aa′))E (tr (bb′))]
1/2

≤ C [E (tr (aa′))E (tr (bb′))]
1/2

with C <∞ given that D−1(σ) satisfies Property 1, τ 1/2
max (A′A) = ‖A‖2 ≤ (‖A‖1 ‖A‖∞)1/2, and

Pn and Qn are u.b.r.c.s.. Also, E (tr (aa′)) = E

[
n∑
i=1

a2
i

]
≤ nE(a2

i ). Thus, given that a and b

have finite second moments, the lemma is proved.
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Lemma A.7. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′, with {(ai, bi)}ni=1 i.i.d. sequences of

random vector variables with finite second moments. Let Pn and Qn be n× r constant matrices

u.b.r.c.s.. Lastly, let D(σ) be an r×r constant symmetric matrix that satisfies Property 1, with

σ ∈ ∆ being a p× 1 vector of parameters. Then,

1

max (n, r)

{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]} p−→0 uniformly in σ ∈ ∆

Note that the Lemma still holds if a = b.

Proof. Let us denote E(ai) = µa, E(bj) = µb, E
[
(ai − µa)2

]
= σ2

a, E
[
(bj − µb)2

]
= σ2

b for all i

and j. We start by proving that

1

max (n, r)

[
µal
′
nPnD

−1(σ)Qn (b− µb)
] p−→0 uniformly in σ ∈ ∆

To prove the uniform convergence (see e.g. Theorem 21.9 of Davidson 1994), we prove that

l′nPnD
−1(σ)Qn (b− µb) is stochastically equicontinuous and, for a given σ, satisfies a Law of

Large Numbers (LLN hereafter). First we prove the convergence for a given σ. Given that

E
[
l′nPnD

−1(σ)Qn (b− µb)
]

= 0, to derive a LLN it is enough to prove that

1

max (n, r)2V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]
−→ 0

It is straightforward to prove that V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]

= σ2
b l
′
nPnD

−1(σ)QnQ
′
nD
−1(σ)P ′nln

and, by Lemma A.4, l′nPnD
−1(σ)QnQ

′
nD
−1(σ)Pnln = O(n), so that

1

max (n, r)2V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]
≤ 1

max (n, r)2 l
′
nPnD

−1(σ)QnQ
′
nD
−1(σ)Pnln

≤ O(n)

max (n, r)2 = o(1)

which proves the LLN. To prove the stochastic equicontinuity, note that, by Property 1, the
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Cauchy-Schwarz inequality and Lemma A.2,

∣∣l′nPnD−1(σ)Qn (b− µb)− l′nPnD−1(σ)Qn (b− µb)
∣∣ ≤ ∣∣l′nPn (D−1(σ)−D−1(σ)

)
Qn (b− µb)

∣∣
≤

p∑
k=1

|σk − σk|tr1/2 (l′nPnAk(σ, σ)A′k(σ, σ)P ′nln) tr1/2
(
(b− µb)′Q′nQn (b− µb)

)
≤

p∑
k=1

|σk − σk|τmax (Ak(σ, σ)A′k(σ, σ)) tr1/2 (l′nPnP
′
nln) tr1/2

(
(b− µb)′Q′nQn (b− µb)

)
≤

p∑
k=1

|σk − σk|cτ tr1/2 (l′nPnP
′
nln) |tr1/2

(
(b− µb)′Q′nQn (b− µb)

)
with cτ < ∞. Also, by Lemma A.4, tr (l′nPnP

′
nln) = O(n) and, by Lemma A.6,

tr
(
(b− µb)′Q′nQn (b− µb)

)
= Op(n), so we can apply Theorem 21.10 of Davidson (1994) to

prove the stochastic equicontinuity and Theorem 21.9 of Davidson (1994) to prove the uniform

convergence.

Next we prove the case E(ai) = E(bi) = 0. We first prove the convergence in probability

given σ. To this end, notice that E
{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]}

= 0 and, from

Lemmas A.4 and A.5, E
{(
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
])2
}

= O(n), so that

lim
n→∞

1

max (n, r)2E
{(
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
])2
}

= 0

which proves the convergence given σ. To prove the stochastic equicontinuity, note that, by

Property 1, the Cauchy-Schwarz inequality and Lemma A.2,

∣∣a′PnD−1(σ)Qnb− a′PnD−1(σ)Qnb
∣∣ ≤ ∣∣a′Pn (D−1(σ)−D−1(σ)

)
Qnb

∣∣
≤

p∑
k=1

|σk − σk| |a′PnAk(σ, σ)Qnb|

≤
p∑

k=1

|σk − σk| tr1/2 (a′PnAk(σ, σ)A′k(σ, σ)P ′na) tr1/2 (b′Q′nQnb)

≤ cτ tr
1/2 (a′PnP

′
na) tr1/2 (b′Q′nQnb)

p∑
k=1

|σk − σk|
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Also, by Lemma A.6, E [tr (a′PnP
′
na)] = O(n) and E [tr (b′Q′nQnb)] = O(n). Then,

1

max (n, r)

∣∣a′PnD−1(σ)Qnb− a′PnD−1(σ)Qnb
∣∣ = Op(1)

1

max (n, r)

∣∣E (a′PnD−1(σ)Qnb
)
− E

(
a′PnD

−1(σ)Qnb
)∣∣ = O(1)

and we can apply Theorems 21.9 and 21.10 of Davidson (1994) to prove uniform convergence.

Further, the most general case E(ai) 6= 0 and E(bi) 6= 0 follows straightforward by noting that

{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]}

= a∗′PnD
−1(σ)Qnb

∗ − E
[
a∗′PnD

−1(σ)Qnb
∗]+

a∗′PnD
−1(σ)QnE(b) + E(a)′PnD

−1(σ)Qnb
∗

with a∗ = a− µa and b∗ = b− µb.

Lemma A.8. Let Gnt = ρt0S
−t
0 , Cnt = GntS

−1
0 and Lnt =

t−1∑
j=0

ρj0S
−(j+1)
0 . Under Assumption 5,

WnLnt, WnGnt and WnCnt are all u.b.r.c.s. for t = 1, 2, ..., T and WL0,WG0 and WC0 are

all u.b.r.c.s..

Proof. First note that if A and B are two matrices u.b.r.c.s., A+B and AB are also u.b.r.c.s.

(see Remark A2 in Kapoor et al. 2007). With this result, under Assumption 5 it is easy to

prove that Gnt, Cnt and Lnt are u.b.r.c.s.. Further, given that T <∞, it is easy to prove that

WL0, WG0 and WC0 are all u.b.r.c.s..

Lemma A.9. Let Ω(σ) = (IT ⊗ In) + (JT ⊗ Σ(σ)) and Σ(σ) =
3∑

k=1

σkΣk = σ1In + σ2(Wn +

W ′
n) + σ3WnW

′
n, with Wn u.b.r.c.s. and (σ1, σ2, σ3) ∈ ∆, being ∆ a compact space such

that Σ(σ) is positive semidefinite for any σ ∈ ∆. Then, Ω−1(σ) satisfies Property 1 for

Ak(σ, σ) = Ω−1(σ)(JT ⊗ Σk)Ω
−1(σ) and any σ, σ ∈ ∆. Moreover, ∃ cτ < ∞ such that

sup
σ∈∆

τmax(Ω(σ)) < cτ .

Proof. We start by proving that ∃ cτ <∞ such that sup
σ∈∆

τmax(Ω(σ)) < cτ . To this end, note that

the eigenvalues of the matrix (In+B) are 1+τi(B), with τi(B) being the i = 1, ..., n eigenvalues
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of B. Then, by definition, sup
σ∈∆

τmax(Ω(σ)) = 1 + sup
σ∈∆

τmax((JT ⊗ Σ(σ))) = 1 +T sup
σ∈∆

τmax (Σ(σ)).

Further, using that Σ(σ) is a symmetric positive semidefinite matrix, sup
σ∈∆

τmax (Σ(σ)) =

sup
σ∈∆
‖Σ(σ)‖2. Then,

sup
σ∈∆
‖Σ(σ)‖2 ≤

3∑
k=1

sup
σ∈∆
|σk|‖Σk‖2 ≤ sup

σ∈∆
|σ1|+ sup

σ∈∆
|σ2|‖Wn +W ′

n‖2 + sup
σ∈∆
|σ3|‖WnW

′
n‖2

Given that Wn is u.b.r.c.s., Wn +W ′
n and WnW

′
n are u.b.r.c.s., too (see Remark A2 in Kapoor

et al. 2007). Further, (‖Wn +W ′
n‖1 ‖Wn +W ′

n‖∞) < ∞ and (‖WnW
′
n‖1 ‖WnW

′
n‖∞) < ∞.

Then, ‖WnW
′
n‖2 ≤ (‖WnW

′
n‖1 ‖WnW

′
n‖∞)

1/2
< ∞ and ‖Wn +W ′

n‖2 ≤ ‖Wn‖2 + ‖W ′
n‖2 ≤

2 (‖Wn‖1 ‖Wn‖∞)1/2 < ∞. Finally, given that σ ∈ ∆ and ∆ is compact, sup
k

sup
σ∈∆

σk < ∞.

Then, ∃ c <∞ such that sup
σ∈∆

τmax (Σ(σ)) < c and sup
σ∈∆

τmax(Ω(σ)) < 1 + Tc <∞.

Next we prove that Ω−1(σ) satisfies Property 1 for Ak(σ, σ) = Ω−1(σ)(JT ⊗ Σk)Ω(σ) and

any σ, σ ∈ ∆. To this end, we need to prove that: i) Ω−1(σ)−Ω−1(σ) =
3∑

k=1

(σk − σk)Ak(σ, σ);

ii) sup
σ∈∆

τmax(Ω−2(σ)) < cτ <∞ and iii) sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) < cτ <∞ for k = 1, 2, 3.

To prove i), note that

Ω−1(σ)−Ω−1(σ) = Ω−1(σ) [Ω(σ)−Ω(σ)] Ω−1(σ)

= Ω−1(σ) [JT ⊗ (Σ(σ)− Σ(σ))] Ω−1(σ)

=
3∑

k=1

(σk − σk)Ω−1(σ) [JT ⊗ Σk] Ω
−1(σ) =

3∑
k=1

(σk − σk)Ak(σ, σ).

To prove ii), note that, given that Σ(σ) is a positive semidefinite matrix for all σ ∈ ∆,

inf
σ∈∆

τmin (Σ(σ)) ≥ 0. Then, using that Ω−1(σ) is positive semidefinite for all σ ∈ ∆ (since

all the eigenvalues of JT and Σ(σ) are equal to or bigger than zero for all σ ∈ ∆, all the

eigenvalues of Ω(σ) are bigger or equal than 1), sup
σ∈∆

τmax

(
Ω−2(σ)

)
= sup

σ∈∆

[
τmax

(
Ω−1(σ)

)]2
=[

inf
σ∈∆

τmin (Ω(σ))

]−2

≤
[
1 + T inf

σ∈∆
τmin (Σ(σ))

]−2

≤ 1.
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To prove iii), note that ‖.‖2 is a sub-multiplicative norm (see footnote 13). Thus,

sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) = sup
σ,σ∈∆

∥∥Ω−1(σ) (JT ⊗ Σk) Ω−1(σ)
∥∥2

2

≤ sup
σ∈∆

∥∥Ω−1(σ)
∥∥4

2
‖(JT ⊗ Σk)‖2

2

≤ sup
σ∈∆

[
τmax

(
Ω−1(σ)

)]4
τmax (JT ⊗ Σk)

≤ sup
σ∈∆

[
τmax

(
Ω−1(σ)

)]4
Tτmax (Σk) < cτ <∞

using ii) and sup
k
τmax (Σk) < cτ <∞ (from the first part of the proof).

Lemma A.10. Let B−1
n (σ) = In − (In + TΣ(σ))−1 and Σ(σ) =

3∑
k=1

σkΣk = σ1In + σ2(Wn +

W ′
n) + σ2WnW

′
n, with Wn u.b.r.c.s. and (σ1, σ2, σ3) ∈ ∆, being ∆ a compact space such

that Σ(σ) is positive semidefinite for any σ ∈ ∆. Then, B−1
n (σ) satisfies Property 1 for

Ak(σ, σ) = TB∗n(σ) (JT ⊗ Σk)B
∗
n(σ) and any σ, σ ∈ ∆ with B∗n(σ) = (In + TΣ(σ))−1.

Proof. To prove that B−1
n (σ) satisfies Property 1 for Ak(σ, σ) = TB∗n(σ) (JT ⊗ Σk)B

∗
n(σ), we

need to prove that: i) Bn(σ)− Bn(σ) =
3∑

k=1

(σk − σk)Ak(σ, σ); ii) sup
σ∈∆

τmax(B−2
n (σ)) < cτ <∞

and iii) sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) < cτ <∞ for k = 1, 2, 3.

To prove i), note that

B−1
n (σ)−B−1

n (σ) = (In + TΣ(σ))−1 − (In + TΣ(σ))−1

= T (In + TΣ(σ))−1 (Σ(σ)− Σ(σ)) (In + TΣ(σ))−1

= T

3∑
k=1

(σk − σ) (In + TΣ(σ))−1 Σk (In + TΣ(σ))−1

= T
3∑

k=1

(σk − σ)B∗n(σ)−1ΣkB
∗
n(σ)

To prove ii), note first that B−1
n (σ) is a positive semidefinite matrix for all σ ∈ ∆,

since inf
σ∈∆

τmin (In + TΣ(σ)) ≥ 1, sup
σ∈∆

τmax (In + TΣ(σ))−1 ≤ 1, and inf
σ∈∆

τmin

(
B−1
n (σ)

)
≥ 0.
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Note also that sup
σ∈∆

τmax(B−2
n (σ)) =

[
sup
σ∈∆

τmax(B−1
n (σ))

]2

, and, since (In + TΣ(σ))−1 is a

positive semidefinite matrix and inf
σ∈∆

τmin

[
(In + TΣ(σ))−1] ≥ 0, then sup

σ∈∆
τmax(B−1

n (σ)) ≤

1− inf
σ∈∆

τmin

[
(In + TΣ(σ))−1] ≤ 1.

To prove iii), note that, given that τmax (Σk) ≤ cτ < ∞ (proved in Lemma A.9) and

sup
σ∈∆
‖B∗n(σ)‖2 = sup

σ∈∆

∥∥(In + TΣ(σ))−1
∥∥

2
≤
[

inf
σ∈∆

τmin (In + TΣ(σ))

]−1

≤ 1, then

sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) = sup
σ,σ∈∆

‖A′k(σ, σ)‖2
2 ≤ sup

σ∈∆
‖B∗n(σ)‖4

2 sup
σ,σ∈∆

‖Σk‖2
2 ≤ cτ <∞

Lemma A.11. Let Πa,b(σ) =
1

nT

{
a′Ω−1(σ)b− E

[
a′Ω−1(σ)b

]}
, with a, b = η,WY. Under

Assumptions 1 to 6,

Πa,b(σ)
p−→0 uniformly in σ

Proof. We provide the proof for the most involved case, a, b = WY. The proof of the other

cases is similar. From expression A.1 we have that

Y′W′Ω−1(σ)WY = Y ′n,0G
′
0W

′Ω−1(σ)WG0Yn,0 + 2Y ′n,0G
′
0W

′Ω−1(σ)WC0Xφ0

+ 2Y ′n,0G
′
0W

′Ω−1(σ)WL0 (υnµ +Wnυnα) + 2Y ′n,0G
′
0W

′Ω−1(σ)WC0ε

+ φ′0X′C′0W′Ω−1(σ)WC0Xφ0 + 2φ′0X′C′0W′Ω−1(σ)WL0 (υnµ +Wnυnα)

+ 2φ′0X′C′0W′Ω−1(σ)WC0ε+
(
υ′nµ + υ′nαW

′
n

)
L′0W

′Ω−1(σ)WL0 (υµ +Wnυnα)

2
(
υ′nµ + υ′nαW

′
n

)
L′0W

′Ω−1(σ)WC0ε+ ε′C′0W
′Ω−1(σ)W′C0ε

The proof of the Lemma follows from proving that each of the previous summands, minus

its expected value, converge in probability to 0 uniformly in σ. Following Magnus (1982), we

have that Ω−1(σ) = IT ⊗ In −
1

T
JT ⊗ B−1

n (σ) with B−1
n (σ) = In − (In + TΣ(σ))−1. Also, let

Gnt = ρt0S
−t
0 , Cnt = GntS

−1
0 and Lnt =

t−1∑
j=0

ρj0S
−(j+1)
0 (see also Lemma A.8). Thus, we may
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rewrite the summands in the previous expression as follows:

Y ′n,0G
′
0W

′Ω−1(σ)WC0Xφ0 =
T∑
t=1

t∑
j=1

Y ′n,0G
′
ntW

′
nWnCnt−jXn,jφ0

− 1

T

T∑
s=1

T∑
t=1

t∑
j=1

Y ′n,0G
′
nsW

′
nB
−1
n (σ)WnCn,t−jXn,jφ0

Y ′n,0G
′
0W

′Ω−1(σ)WC0ε =
T∑
t=1

t∑
j=1

Y ′n,0G
′
ntW

′
nWnCn,t−jεn,j

− 1

T

T∑
s=1

T∑
t=1

t∑
j=1

Y ′n,0G
′
nsW

′
nB
−1
n (σ)WnCn,t−jεn,j

φ′0X′C′0W′Ω−1(σ)WC0Xφ0 =
T∑
t=1

t∑
j=1

t∑
l=1

φ′0X′njC ′n,t−jW ′
nWnCn,t−lXn,lφ0

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

s∑
l=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnCn,s−lXn,lφ0

φ′0X′C′0W′Ω−1(σ)WC0ε =
T∑
t=1

t∑
j=1

t∑
l=1

φ′0X′n,jC ′n,t−jW ′
nWnCn,t−lεn,l

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

s∑
l=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnCn,s−lεn,s−l
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φ′0X′C′0W′Ω−1(σ)WL0 (υnµ +Wnυnα) =
T∑
t=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nWnLntυnµ

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnLnsυnµ

+
T∑
t=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nWnLntWnυnα

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnLnsWnυnα

And, finally,

ε′C′0W
′Ω−1(σ)WL0 (υnµ +Wnυnα) =

T∑
t=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nWnLntυnµ

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nB
−1
n (σ)WnLnsυnµ

+
T∑
t=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nWnLntWnυnα

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nB
−1
n (σ)WnLnsWnυnα

Notice that each of the summands in the previous expressions, minus its ex-

pected value, can be written as
1

nT

[
a′PnD

−1(σ)Qnb− E
(
a′PnD

−1(σ)Qnb
)]

with a, b =

Yn,0, Xn,jβ10, Xn,jβ20, Xnπµ0, Xnπα0, εnt, υnµ, υnα; Pn, Qn = WnLnt,WnGnt,WnCnt,WnCntWn,

WL0,WG0,WC0; and D−1(σ) = InT ,Ω
−1(σ), B−1

n (σ). This means that, if we can apply

Lemma A.7, the Lemma is proved. To apply these lemmas, Pn and Qn must be u.b.r.c.s. which

is proved for all the cases in Lemma A.8. Also, D(σ)−1 must satisfy Property 1, which is proved

in Lemma A.9 for Ω−1(σ) and in Lemma A.10 for B−1
n (σ). Lastly, a and b must be an i.i.d.

sequence with finite second moments, which is guaranteed by Assumptions 1 and 2.
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Lemma A.12. Let

Υa,b(σ) = Q′
X̃,a

(σ)Q−1

X̃,X̃
(σ)QX̃,b(σ)− E

[
Q′

X̃,a
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,b(σ)

]
with a,b = η,WY and QA,B(δ) =

1

nT
A′Ω−1(σ)B. Under Assumptions 1 to 6,

Υa,b(σ)
p−→0 uniformly in σ

Proof. The proof of this Lemma is similar to the proof of Lemma A.11. Thus, we only provide

the proof for the case a = b = WY (the others are similar). We start by decomposing

ΥWY,WY(σ):

ΥWY,WY(σ) = Q′
X̃,WY

(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)− E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
=
{

Q′
X̃,WY

(σ)− E
[
Q′

X̃,WY
(σ)
]}

Q−1

X̃,X̃
(σ)QX̃,WY(σ)+

E
[
Q′

X̃,WY
(σ)
]

Q−1

X̃,X̃
(σ)
{[
E
(
QX̃,X̃(σ)

)]
−QX̃,X̃(σ)

} [
E
(
QX̃,X̃(σ)

)]−1
QX̃,WY(σ)+

E
[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1 {
QX̃,WY(σ)− E

[
QX̃,WY(σ)

]}
First we need to prove that QX̃,WY(σ) − E

[
QX̃,WY(σ)

]
and QX̃,X̃(σ) −

[
E
(
QX̃,X̃(σ)

)]
converges elementwise to 0 uniformly in σ. The proof follows the same steps as that

of Lemma A.11 (note that all the elements of X̃ are in WY, including, as shown in

3.1 and A.1, Y−1), so it is not reproduced here. The elementwise convergence implies,

by the Slutsky theorem, that
∥∥QX̃,X̃(σ)−

[
E
(
QX̃,X̃(σ)

)]∥∥
F

= op(1) uniformly in σ and∥∥QX̃,WY(σ)−
[
E
(
QX̃,WY(σ)

)]∥∥
F

= op(1) uniformly in σ. Then, by using the properties

of the matrix norm,
∥∥QX̃,X̃(σ)−

[
E
(
QX̃,X̃(σ)

)]∥∥
2
≤
∥∥QX̃,X̃(σ)−

[
E
(
QX̃,X̃(σ)

)]∥∥
F

= op(1)

uniformly in σ and
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
2
≤
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
F

=

op(1) uniformly in σ.

Next we prove that sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

= O(1) and sup
σ

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
= O(1).
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Let us first consider

sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

= sup
σ
τmax

{
E

(
1

nT
X̃′Ω−1(σ)X̃

)−1
}

=

(
inf
σ
τmin

{
1

nT
E
(
X̃′Ω−1(σ)X̃

)})−1

Note that, since Ω−1(σ) is a symmetric definite positive matrix, we can apply Lemma A.1 to

obtain

inf
σ
τmin

{
1

nT
E
(
X̃′Ω−1(σ)X̃

)}
≥ inf

σ
τmin

{
Ω−1(σ)

}
τmin

{
1

nT
E
(
X̃′X̃

)}
≥
[
sup
σ
τmax (Ω(σ))

]−1

τmin

{
1

nT
E
(
X̃′X̃

)}

From Lemma A.9, sup
σ
τmax (Ω(σ)) < cτ <∞ and, from Assumption 6, τmin

{
1

nT
E
(
X̃′X̃

)}
>

0 for sufficiently large n. Then, sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2
< C <∞⇒ sup

σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

=

O(1).

As for sup
σ

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
, notice that

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
≤
∥∥∥E [Q′X̃,WY

(σ)
]∥∥∥

F
and

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

F
= tr

[
E

(
1

nT
Y′W′Ω−1(σ)X̃

)
E

(
1

nT
X̃Ω−1(σ)WY

)]1/2

=

(
K∑
k=1

[
E

(
1

nT
X̃′kΩ

−1(σ)WY

)]2
)1/2

,

where the last expression is O(1) uniformly in σ if sup
σ

∣∣∣E (X̃′kΩ
−1(σ)WY

)∣∣∣ = O(n).

To prove that sup
σ

∣∣∣E (X̃′kΩ
−1(σ)WY

)∣∣∣ = O(n), we follow the same steps as in Lemma

A.11. Thus, we decompose the term X̃′kΩ
−1(σ)WY in a finite sum of terms that can

be written as a′PnD
−1(σ)Qnb, with a, b, Pn, Qn and D−1(σ) satisfying the conditions of

Lemma A.6. This provides the proof that sup
σ

∣∣E (a′PnD−1(σ)Qnb
)∣∣ = O (n) and so that of

sup
σ

∣∣∣E (X̃′kΩ(σ)−1WY
)∣∣∣ = O(n).

Moreover, given that
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
2

= op(1) uniformly in σ and
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sup
σ

∥∥E (QX̃,WY(σ)
)∥∥

2
= O(1), then sup

σ

∥∥QX̃,WY(σ)
∥∥

2
= Op(1).

Finally, we need to prove that sup
σ

∥∥∥Q−1

X̃,X̃
(σ)
∥∥∥

2
= Op(1). To this end, notice that

sup
σ

∥∥∥Q−1

X̃,X̃
(σ)
∥∥∥

2
= sup

σ
τmax

(
Q−1

X̃,X̃
(σ)
)

= sup
σ
τmax

([
1

nT
X̃′Ω−1(σ)X̃

]−1
)

=

[
inf
σ
τmin

(
1

nT
X̃′Ω−1(σ)X̃

)]−1

≤
[
inf
σ
τmin(Ω−1(σ))τmin

(
1

nT
X̃′X̃

)]−1

≤ sup
σ
τmax(Ω(σ))

[
τmin

(
1

nT
X̃′X̃

)]−1

,

which is Op(1) given that, by Lemma A.9, sup
σ
τmax(Ω(σ)) < cτ < ∞, and, by Assumption 6,

τmin

(
1

nT
X̃ ′X̃

)
> 0 almost surely for sufficiently large n.

Then,

{
Q′

X̃,WY
(σ)− E

[
Q′

X̃,WY
(σ)
]}

Q−1

X̃,X̃
(σ)QX̃,WY(σ) = op(1)Op(1)Op(1)

E
[
Q′

X̃,WY
(σ)
]

Q−1

X̃,X̃
(σ)
{[
E
(
QX̃,X̃(σ)

)]
−QX̃,X̃(σ)

} [
E
(
QX̃,X̃(σ)

)]−1
QX̃,WY(σ) = Op(1)op(1)Op(1)

and

E
[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1 {
QX̃,WY(σ)− E

[
QX̃,WY(σ)

]}
= O(1)O(1)op(1),

all the cases uniformly in σ. This proves that ΥWY,WY(σ) = op(1) uniformly in σ (and the

proof is analogous for the rest of cases).

Lemma A.13. Under Assumptions 1 to 7,

1

nT

[
∂2L (ψ0)

∂ψ∂ψ′
− E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)]
= op (1)

Proof. It can be proved, following the proof of Lemmas A.11 and A.12, that each

element of the matrix
∂2L (ψ0)

∂ψ∂ψ′
− E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)
can be written as the finite sum of

1

nT

[
a′PnD

−1 (σ0)Qnb− E
(
a′PnD

−1 (σ0)Qnb
)]

, with a, b = Yn,0, Xn,j, εnt, υnµ and υnα;
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Pn, Qn = WnLnt, WnGnt, WnCnt; and D−1 (σ0) = Ai [BκAjB% +B%AjBκ]Ai,A1BκAjB% +

B%AjBκA1 for i, j = 0, 1 and κ, % = 0, 1, 2, 3 with A0 = B0 = In, A1 = B−1
n (σ0), Bκ = Σκ for

κ = 1, 2, 3 and B−1
n (σ0) and Σκ defined in Lemmas A.9 and A.10 (see Appendix C for details on

the elements of
∂2L (ψ0)

∂ψ∂ψ′
). This means that if a, b, Pn, Qn and D−1 (σ0) satisfy the conditions

of Lemma A.7 in all the cases, then
1

nT
[a′PnD (σ0)Qmb− E (a′PnD (σ0)Qmb)] = op (1) in all

the cases, which proves the Lemma. Notice also that we do not need to prove the uniform

convergence because these second derivatives and their expectations are evaluated at the true

parameters of the model. It is therefore enough to prove that D−1 (σ0) is a symmetric matrix

with τmax

(
D−2 (σ0)

)
<∞.

Firstly, Lemmas A.11 and A.12 show that all the possible cases of a, b, Pn and Qn satisfy

the conditions of Lemma A.7. Secondly, given that D−1 (σ0) is by definition symmetric,

‖In‖2 = 1, max
κ
‖Σκ‖2 < cτ < ∞ (the bound is provided by Lemma A.9) and

∥∥B−1
n (σ0)

∥∥
2

=

τmax

(
B−1
n (σ0)

)
< cτ <∞ (the bound is provided by Lemma A.10),

τmax

(
D−2 (σ0)

)
=
∥∥D−1 (σ0)

∥∥2

2
≤ 2 max

i
‖Ai‖6

2 max
κ
‖Bκ‖4

2 ≤ cτ <∞.

Lemma A.14. Let at = {ai,t}ni=1, bt = {bi,t}ni=1 be n×1 zero-mean random vectors independent

in i. Let us also define Qn =
T∑
t=1

a′tPt,nbt with Pt,n n× n real matrices and T <∞. Lastly, let

us denote µQn = E (Qn) and s2
Qn = E[(Qn − µQn)2]. If Pt,n for t = 1, ..., T are u.b.r.c.s. and

{(at, bt)}Tt=1 has 4 + ε1 finite moments for some ε1 > 0 and n−1s2
Qn ≥ c > 0, then

Qn − µQn
sQn

d−→N(0, 1)

Proof. The proof of this Lemma follows the proof of Theorem 1 in Kelejian and Prucha (2001, p.

243). First note that, given the independence in i of at and bt, µQn =
T∑
t=1

n∑
i=1

Pt,n[i, i]E(ai,tbi,t),

where we use the somewhat abusive notation Pt,n[i, j] to refer to the row i and column j element
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of the matrix Pt,n. Notice also that Qn − µQn =
T∑
t=1

n∑
i=1

Yi,t with

Yi,t = Pt,n[i, i] (ai,tbi,t − E(ai,tbi,t)) + ai,t

i−1∑
j=1

Pt,n[j, i]bj,t + bi,t

i−1∑
j=1

Pt,n[i, j]aj,t

for i = 1, 2, ..., n.

Let us now consider the σ−fields z0,n = {∅,Ω} and zi,n = σ (ai, bi, ai−1, bi−1, ..., a1, b1, ),

with ai = {ai,t}Tt=1, bi = {bi,t}Tt=1 and 1 ≤ i ≤ n. By construction, zi−1,n ⊂

zi,n and Yi,t is zi,n−measurable. It can also be shown that E (Yi,t|zi−1,n) = 0.

Therefore, {Yi,t,zi,n, 1 ≤ i ≤ n, n ≥ 1} forms a martingale difference array and so s2
Qn =

n∑
i=1

(
T∑
t=1

E
(
Y 2
i,t

)
+ 2

T∑
t=2

t−1∑
s=1

E (Yi,tYi,s)

)
. Thus, the expression for the variance of Qn follows

from

E (Yi,tYi,s) = Pt,n[i, i]Ps,n[i, i]σ
(2)
c,t,s + σ2

a,t,sσ
2
b,t,s

i−1∑
j=1

(Pt,n[i, j]Ps,n[i, j] + Pt,n[j, i]Ps,n[j, i])

+ σc,t,sσc,s,t

i−1∑
j=1

(Pt,n[i, j]Ps,n[j, i] + Ps,n[i, j]Pt,n[j, i]) (A.3)

with σc,t,s = E (ai,tbi,s), σ
(2)
c,t,s = E [(ai,tbi,t − σc,t,t)(ai,sbi,s − σc,s,s)], σ2

a,t,s = E [ai,tai,s] and

σ2
b,t,s = E [bi,tbi,s]. Also, if we define Xi,t = Yi,t/sQn , then {Xi,t,zi,n, 1 ≤ i ≤ n, n ≥ 1} forms a

martingale difference array.

In what follows we prove that

Qn − µQn
sQn

=
n∑
i=1

T∑
t=1

Xi,t
d−→N(0, 1)

by showing that Xi,n =
T∑
t=1

Xi,t satisfies the remaining conditions of the Central Limit Theorem

of Gänsler and Stute (1977, p. 365). In particular, we demonstrate that Xi,n satisfies the
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condition:
kn∑
i=1

E
{
E
[
|Xi,n|2+δ

∣∣∣zi−1,n

]}
−→ 0 (A.4)

for some δ > 0, which in turn is sufficient for

kn∑
i=1

E
[
|Xi,n|2 1 (|Xi,n > ε|)

∣∣zi−1,n

] p−→0

for all ε > 0 and with 1(·) being an indicator function. Then we prove that Xi,n satisfies

kn∑
i=1

E
[
X2
i,n

∣∣zi−1,n

] p−→1 (A.5)

Let us take 0 < δ ≤ ε1/2. We note that, under the maintained moment assumptions

on {(at, bt)}Tt=1, there exists a finite constant, Ce ≥ 1, such that E
(∣∣ar1i,tbr2i,tar3i,sbr4i,s∣∣) ≤ Ce for

4∑
l=1

rl ≤ 4 + 2δ, rl ≥ 0, t = 1, 2, ..., T and i = 1, 2, ..., n. We further note that, under the

maintained assumptions on the matrices Pt,n, there exists a finite constant, Cm ≥ 1, such

that
n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|) < Cm for t = 1, 2, ..., T and i = 1, ..., n. Lastly, note that

n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|)r ≤ Cr
m for r ≥ 1 and

n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|) (|Ps,n[k, j]|+ |Ps,n[j, k]|) ≤

n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|)
n∑
j=1

(|Ps,n[k, j]|+ |Ps,n[j, k]|) ≤ C2
m

for t, s = 1, 2, ..., T .

Let us now take q = 2 + δ and let 1/q + 1/p = 1. We note that

∣∣∣∣∣
T∑
t=1

Yi,t

∣∣∣∣∣
q

≤ T q
T∑
t=1

|Yi,t|q.
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Also, using the triangle and Hölder’s inequalities, we have that

|Yi,t|q =

∣∣∣∣∣Pt,n[i, i] (ai,tbi,t − σc,t,t)) + ai,t

i−1∑
j=1

Pt,n[j, i]bj,t + bi,t

i−1∑
j=1

Pt,n[i, j]aj,t

∣∣∣∣∣
q

≤ 2q

∣∣∣∣∣1/2Pt,n[i, i]1/pPt,n[i, i]1/q (ai,tbi,t − σc,t,t) + ai,t

i−1∑
j=1

Pt,n[j, i]1/pPt,n[j, i]1/qbj,t

∣∣∣∣∣
q

+

2q

∣∣∣∣∣1/2Pt,n[i, i]1/pPt,n[i, i]1/q (ai,tbi,t − σc,t,t) + bi,t

i−1∑
j=1

Pt,n[i, j]1/pPt,n[i, j]1/qaj,t

∣∣∣∣∣
q

≤ 2q

[
i∑

j=1

|Pt,n[j, i]|

]q/p ∣∣∣∣∣2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |ai,t|q
i−1∑
j=1

|Pt,n[j, i]| |bj,t|q
∣∣∣∣∣
q/q

+

2q

[
i∑

j=1

|Pt,n[j, i]|

]q/p ∣∣∣∣∣2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |bi,t|q
i−1∑
j=1

|Pt,n[i, j]| |aj,t|q
∣∣∣∣∣
q/q

≤ 2qCq/p
m

(
2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |ai,t|q

i−1∑
j=1

|Pt,n[j, i]| |bj,t|q
)

+

2qCq/p
m

(
2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |bi,t|q

i−1∑
j=1

|Pt,n[i, j]| |aj,t|q
)
.

Consequently,

n∑
i=1

E {E [ |Y 1i,t|q|zi−1,n]} ≤

n∑
i=1

2qCq/p
m

(
|Pt,n[i, i]|E [|ai,tbi,t − σc,t,t|q] + E [|ai,t|q]

i−1∑
j=1

|Pt,n[j, i]|E [|bj,t|q]

)

+
n∑
i=1

2qCq/p
m

(
|Pt,n[i, i]|E [|ai,tbi,t − σc,t,t|q] + E [|bi,t|q]

i−1∑
j=1

|Pt,n[i, j]|E [|aj,t|q]

)

≤
n∑
i=1

2qCq/p
m Ce

(
2 |Pt,n[i, i]|+

i−1∑
j=1

|Pt,n[j, i]|+
i−1∑
j=1

|Pt,n[i, j]|

)
≤ n2q+1Cq/p+1

m Ce
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Thus,

n∑
i=1

E {E [ |Xi,n|q|zi−1,n]} =
1

sqQn

n∑
i=1

T∑
t=1

E {E [ |Yi,t|q|zi−1,n]}

=
1[

n−1s2
Qn

]1+δ/2

1

n1+δ/2

n∑
i=1

T∑
t=1

E {E [ |Yi,t|q|zi−1,n]}

≤ 1[
n−1s2

Qn

]1+δ/2

{
1

nδ/2
2q+1Cq/p+1

m Ce

}

Since n−1s2
Qn ≥ c > 0, the right-hand side of the last inequality goes to zero as n → ∞,

which proves that condition A.4 holds.

Now, using s2
Qn =

n∑
i=1

(
T∑
t=1

E
(
Y 2
i,t

)
+ 2

T∑
t=2

t−1∑
s=1

E (Yi,tYi,s)

)
and the definition of Xi,n we

obtain that

n∑
i=1

E
[
X2
i,n

∣∣zi−1,n

]
− 1 =

1

n−1s2
Qn

1

n

n∑
i=1

T∑
t=1

[
E
(
Y 2
i,t

∣∣zi−1,n

)
− E

(
Y 2
i,t

)]
+

2

n−1s2
Qn

1

n

n∑
i=1

T∑
t=2

t−1∑
s=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]

This means that, since n−1s2
Qn ≥ c > 0, we can prove condition A.5 by proving that

1

n

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]
p−→0

for t, s = 1, 2, ..., T . We start the proof by noting that, since (ai,t, bi,t) are independent with
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zero mean, it follows that

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)] =σc,a,t,sPt,n[i, i]
i−1∑
j=1

Ps,n[j, i]bj,s + σc,b,t,sPt,n[i, i]
i−1∑
j=1

Ps,n[i, j]aj,s+

σc,a,s,tPs,n[i, i]
i−1∑
j=1

Pt,n[j, i]bj,t + σc,b,s,tPs,n[i, i]
i−1∑
j=1

Pt,n[i, j]aj,t+

σa,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[l, i] [bj,tbl,s − 1(j = l)σb,t,s] +

σc,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[i, l] [bj,tal,s − 1(j = l)σc,s,t] +

σc,s,t

i−1∑
j=1

i−1∑
l=1

Ps,n[j, i]Pt,n[i, l] [bj,sal,t − 1(j = l)σc,t,s] +

σb,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[i, j]Ps,n[i, l] [aj,tal,s − 1(j = l)σa,t,s]

with σc,a,t,s = E(ai,tbi,tai,s) and σc,b,t,s = E(ai,tbi,tbi,s), and so

1

n

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)] =
8∑

k=1

Hk,n

where the subindex 1, . . . , 8 indicates, in order of appearance, a summand in the expression

above. Thus, to prove that
1

s2
Qn

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]
p−→0, next we prove that

Hk,n
p−→0 for k = 1, ..., 8.

To prove that H1,n =
n−1∑
i=1

ϕi,nbi,s with ϕi,n = n−1σc,a,t,sPt,n[i, i]
n∑

j=i+1

Ps,n[j, i], notice that,

given that the bi,s are independent with mean zero, E |bi,s|1+δ ≤ Ce for δ > 0, lim sup
n→∞

n−1∑
i=1

ϕi,n =
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lim sup
n→∞

n−1σc,a,t,sPt,n[i, i]
n∑

j=i+1

Ps,n[j, i] ≤ CeC
2
m <∞, and

lim sup
n→∞

n−1∑
i=1

ϕ2
i,n = lim sup

n→∞
n−2σ2

c,a,t,s

n−1∑
i=1

Pt,n[i, i]2

[
n∑

j=i+1

Ps,n[j, i]

]2

≤ n−1C2
eC

2
mn
−1

n−1∑
i=1

C2
m ≤ n−1C2

eC
4
m → 0

Then, H1,n
p−→0 by Davidson (1994, p. 299). Further, the cases Hk,n for k = 2, 3, 4 can be

proved in the same way.

For H5,n, notice that

H5,n =σa,t,sn
−1

n∑
i=1

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[l, i] [bj,tbl,s − 1(j = l)σb,t,s]

=σa,t,sn
−1

n∑
i=1

i−1∑
j=1

Pt,n[j, i]Ps,n[j, i] [bj,tbj,s − σb,t,s] + σa,t,sn
−1

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[j, i]Ps,n[l, i]bj,tbl,s+

σa,t,sn
−1

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[l, i]Ps,n[j, i]bl,tbj,s

=H15,n +H25,n +H35,n.

To prove that H15,n
p−→0, we follow the same steps as in H1,n. Notice that

H15,n =
n−1∑
i=1

φi,n (bi,tbi,s − σb,t,s) with φi,n = n−1σa,t,s

n∑
j=i+1

Pt,n[j, i]Ps,n[j, i]. Then, given

that (bi,tbi,s − σb,t,s) are independent with mean zero, E |bi,tbi,s − σb,t,s|1+δ ≤ Ce for δ > 0,

lim sup
n→∞

n−1∑
i=1

φi,n = lim sup
n→∞

n−1σa,t,s

n−1∑
i=1

n∑
j=i+1

Pt,n[j, i]Ps,n[j, i] ≤ σa,t,sC
2
m and lim sup

n→∞

n−1∑
i=1

φ2
i,n =

lim sup
n→∞

n−2σ2
a,t,s

n−1∑
i=1

[
n∑

j=i+1

Pt,n[j, i]Ps,n[j, i]

]2

≤ lim sup
n→∞

n−1σ2
a,t,sC

4
m = 0. Thus, H15,n

p−→0 by

Davidson (1994, p. 299).

Similarly, for H25,n, given that the bi,tbj,s are independent with zero mean, it is not difficult
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to see that

E
(
H22

5,n

)
≤n−2Ce

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[j, i]2Ps,n[l, i]2 + 4n−2Ce

n∑
i=1

i−1∑
j=1

j−1∑
r=1

Pt,n[j, i]Pt,n[r, i]Ps,n[j, i]Ps,n[r, i]

+ 2n−2Ce

n∑
i=1

i−1∑
k=1

k−1∑
j=1

k−1∑
r=1

Pt,n[j, i]Ps,n[r, i]Pt,n[j, k]Ps,n[r, k]

≤n−2Ce

n∑
i=1

C4
m + 4n−2Ce

n∑
i=1

C4
m + 2n−2Ce

n∑
i=1

k−1∑
j=1

Pt,n[j, i]
i−1∑
k=1

Pt,n[j, k]
k−1∑
r=1

Ps,n[r, i]Ps,n[r, k]

≤7n−1CeC
4
m −→ 0

Then, given that E (H25,n) = 0, H25,n
p−→0. Also, the proof of H35,n

p−→0 follows the same

steps. This proves that H5,n
p−→0. Lastly, the cases Hk,n for k = 6, 7, 8 can be proved in the

same way. This concludes our proof of A.5, and hence that of the Lemma.

Lemma A.15. Under Assumptions 1 to 8,

1√
nT

∂L (ψ0)

∂ψ

d−→N
(

0, E

(
1

nT

∂L (ψ0)

∂ψ

∂L (ψ0)

∂ψ

′))

Proof. The key to the proof is to show that
1√
nT

X̃′Ω−1
0 η

d−→N (0,G11), with G11 =

lim
n→∞

1

nT
E
[
X̃′Ω−1

0 ηη
′Ω−1

0 X̃
]
. In particular, by the Cramér-Wold device, it suffices to show

that for any c = (c′1, c
′
2, c3)

′ ∈ R4K+2 × R with ‖c‖ = 1,
1√
nT

c′X̃′Ω−1
0 η

d−→N (0, c′G11c).

Let us define X1 =
[
lnT X X

]
, X2 =

[
X X

]
, φ10 = (c0, β

′
10, π

′
µ0)′ and φ20 =

(β′20, π
′
α0)′. From A.2 we have that:

c′X̃′Ω−1
0 η =c′1X1′Ω−1

0 η + c′2X2′W′Ω−1
0 η + c3Y

′
−1Ω

−1
0 η

=c′1X1′Ω−1
0 η + c′2X2′W′Ω−1

0 η + c3Y
′
n0G

−
0

′
Ω−1

0 η+

c3φ
′
10X1′C−

0

′
Ω−1

0 η + c3φ
′
20X2′C−

0

′
Ω−1

0 η + c3η
′C−

0

′
Ω−1

0 η.

Following the steps of Lemma A.11, we can write the summands of the previous expression as
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sums of quadratic forms:

c′1X1′Ω−1
0 η =

T∑
t=1

c′1X1′ntξnt −
1

T

T∑
t=1

T∑
s=1

c′1X1′ntB
−1
n0 ξns+

T∑
t=1

c′1X1′ntWnυnα −
T∑
t=1

c′1X1′ntB
−1
n0 Wnυnα

c′2X2′W′Ω−1
0 η =

T∑
t=1

c′2X2′ntW
′
nξnt −

1

T

T∑
t=1

T∑
s=1

c′2X2′ntW
′
nB
−1
n0 ξns+

T∑
t=1

c′2X2′ntW
′
nWnυnα −

T∑
t=1

c′2X2′ntW
′
nB
−1
n0 Wnυnα

Y′n0G
−
0

′
Ω−1

0 η =
T∑
t=1

Y′n0G
′
nt−1ξnt −

1

T

T∑
t=1

T∑
s=1

Y′n0G
′
nt−1B

−1
n0 ξns+

T∑
t=1

Y′n0G
′
nt−1Wnυnα −

T∑
t=1

Y′n0G
′
nt−1B

−1
n0 Wnυnα

φ′10X1′C−
0

′
Ω−1

0 η =
T∑
t=1

t∑
j=1

φ′10X1′njC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

φ′10X1′njC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

φ′10X1′njC
′
n,t−j−1Wnυnα −

T∑
t=1

T∑
j=1

φ′10X1′njC
′
n,t−j−1B

−1
n0 Wnυnα

φ′20X2′W ′
nC

−
0

′
Ω−1

0 η =
T∑
t=1

t∑
j=1

φ20X2′njW
′
nC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

φ′20X2′njW
′
nC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

φ′20X2′njW
′
nC
′
n,t−j−1Wnυnα −

T∑
t=1

T∑
j=1

φ′20X2′njW
′
nC
′
n,t−j−1B

−1
n0 Wnυnα

η′C−
0

′
Ω−1

0 η =
T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

ξ′njC
′
n,t−j−1B

−1
n0 ξns

+
T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

υ′nαW
′
nC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1Wnυnα −

T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1B

−1
n0 Wnυnα+

T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1Wnυnα −

T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1B

−1
n0 Wnυnα
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with ξnt = (εnt + υnµ), Cn,−1 = 0n×n and B−1
n0 = Bn(σ0)−1 (see Lemma A.10 for the definition

of Bn(σ)−1).

We can thus write c′X̃′Ω−1
0 η =

L∑
l=1

a′lPn,lbl with L <∞. Then, it is easy to verify that al, bl

and Pn,l for l = 1, 2, ..., L satisfy the conditions of Lemma A.14 and, by Assumption 7, that

n−1V ar(c′X̃′Ω−1
0 η) ≥ c > 0, so that

c′X̃′Ω−1
0 η[

V ar(c′X̃′Ω−1
0 η)

]1/2

d−→N (0, 1), which in turn implies

that
1√
nT

c′X̃′Ω−1
0 η

d−→N (0, c′G11c) for any c ∈ R4K+2 × R with ‖c‖ = 1. This proves the

convergence for the first term of the gradient.

To conclude the proof, we note that each component of
∂L (ψ0)

∂ψ
(see Appendix C for details)

can be written as a finite sum of quadratic forms, so that the proof for these cases proceeds by

closely following the previous steps. We consequently omit the details of these proofs.

B Proof of Theorems.

We start by proving the consistence of the QML estimator (Theorem 1). The proof of normality

comes next (Theorem 2).

B.1 Consistency

Proof of Theorem 1. The consistency proof closely follows the proof of Theorem 4.1 of Su and

Yang (2015). In particular, by Theorem 3.4 of White (1994), it suffices to show that:

(1.)
1

nT
[L∗c(δ)− Lc(δ)]

p−→0 uniformly in δ ∈ ∆ = ∆σ ×∆λ

and

(2.) lim sup
n→∞

max
δ∈Nc

ε (δ0)

1

nT
[L∗c(δ)− L∗c(δ0)] < 0 for any ε > 0, where N c

ε (δ0) is the complement

of an open neighbourhood of δ0 on ∆ of radius ε.

To show that (1.) holds, it is sufficient to show that the following conditions hold: (1.a)

σ̂2
ε(δ)− σ̃2

ε(δ)
p−→0 uniformly in δ ∈ ∆ and (1.b) σ̃2

ε(δ) is uniformly bounded away from zero on
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∆. Since (1b) will be checked in the proof of (2.), next we concentrate on the proof of (1.a).

By definition of our model, η̂(δ) = S(λ)Y − X̃θ̂(δ) = Ω1/2(σ)M(σ)Ω−1/2(σ)S(λ)Y, where

M(σ) = InT −Ω−1/2(σ)X̃
(
X̃′Ω−1(σ)X̃

)−1

X̃′Ω−1/2(σ). This means that

σ̂2
ε(δ) =

1

nT

(
Y′S′(λ)Ω−1/2(σ)M(σ)Ω1/2(σ)

)
Ω−1(σ)

(
Ω1/2(σ)M(σ)Ω−1/2(σ)S(λ)Y

)
=

1

nT
η′Ω−1(σ)η − 1

nT
Q′

X̃,η
(σ)Q−1

X̃,X̃
(σ)QX̃,η(σ)

− (λ− λ0)
1

nT
η′Ω−1(σ)WY + (λ− λ0)

1

nT
Q′

X̃,η
(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)

− (λ− λ0)
1

nT
Y′W′Ω−1(σ)η + (λ− λ0)

1

nT
Q′

X̃,WY
(σ)Q−1

X̃,X̃
(σ)QX̃,η(σ)

+ (λ− λ0)2 1

nT
Y′W′Ω−1(σ)WY − (λ− λ0)2 1

nT
Q′

X̃,WY
(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)

with QA,B(δ) = A′Ω−1(σ)B.

From max
θ,σ2

ε

E [L(ψ)],

θ̃(δ) =
[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)S(λ)Y

]
= θ0 +

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)η

]
− (λ− λ0)

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)WY

]
Then,

η(θ̃(δ)) ≡ η̃(δ) = S(λ)Y − X̃θ̃(δ)

= η − (λ− λ0) WY − X̃
[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)η

]
+ (λ− λ0) X̃

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)WY

]
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and, consequently,

σ̃ε(δ) =
1

nT
E
[
η′Ω−1(σ)η

]
− 1

nT
(λ− λ0)E

[
η′Ω−1(σ)WY

]
− 1

nT
E
[
Q′

X̃,η
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,η(σ)

]
+

1

nT
(λ− λ0)E

[
Q′

X̃,η
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
− 1

nT
(λ− λ0)E

[
Y′W′Ω−1(σ)η

]
+

1

nT
(λ− λ0)2E

[
Y′W′Ω−1(σ)WY

]
+

1

nT
(λ− λ0)E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,η(σ)

]
− 1

nT
(λ− λ0)2E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
Let us also define

Πa,b(σ) =
1

nT

{
a′Ω−1(σ)b− E

[
a′Ω−1(σ)b′

]}
Υa,b(σ) =

1

nT

{
Q′

X̃,a
(σ)Q−1

X̃,X̃
(σ)QX̃,b(σ)− E

[
Q′

X̃,a
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,b(σ)

]}
,

where a,b = η,WY. By using these when calculating the difference between σ̃ε(δ) and σ̂ε(δ)

we obtain:

σ̂ε(δ)− σ̃ε(δ) = Πη,η(σ)− (λ− λ0)Πη,WY(σ)− (λ− λ0)Π′η,WY(σ) + (λ− λ0)2ΠWY,WY(σ)

−Υη,η(σ) + (λ− λ0)Υη,WY(σ) + (λ− λ0)Υ′η,WY(σ)− (λ− λ0)2ΥWY,WY(σ)

and, therefore, condition (1.a) follows by using Lemmas A.11 and A.12.

To show that condition (2.) holds, we closely follow the literature (Lee, 2004; Yu et al.,

2008; Su and Yang, 2015) and use an auxiliary process to show, using Jensen inequality and

σ̃2
ε(δ0) =

σ2
ε0

nT
tr(Ω−1

0 Ω0) = σ2
ε0 (which follows from the definition of σ̃2

ε(δ) and Lemma A.3), that

L∗c(δ) ≤ L∗c(δ0) (B.1)

Next we prove that
1

nT
L∗c(δ) is uniformly equicontinuous on δ ∈ ∆ by showing the uniform
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equicontinuity of
1

nT
ln|S(λ)|, then that of

1

nT
ln|Ω(σ)| and finally that of ln(σ̃2

ε(δ)) on δ ∈ ∆.

Firstly, by the mean value theorem, ln|S(λ∗)|− ln|S(λ∗∗)|=
(
∂

∂λ
ln|S(λ)|

)
(λ∗ − λ∗∗) with

λ ∈ (λ∗, λ∗∗). Also,
1

nT

∂

∂λ
ln|S(λ)|= 1

nT
tr
[
S−1(λ)W

]
= O(1),

since S−1(λ)W is u.b.r.c.s. uniformly in λ and hence tr
[
S−1(λ)W

]
= O(nT ). Thus, ln|S(λ)|

is uniformly equicontinuous in λ on ∆λ.

Secondly, by the mean value theorem, ln|Ω(σ∗)|− ln|Ω(σ∗∗)|=
3∑

k=1

(
∂

∂σk
ln|Ω(σ)|

)
(σ∗k −

σ∗∗k ), with σ lying elementwise between σ∗ and σ∗∗. Also,

1

nT

∂

∂σ1

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ)(JT ⊗ In)

]
1

nT

∂

∂σ2

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ) (JT ⊗ (Wn +W ′

n))
]

1

nT

∂

∂σ3

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ)(JT ⊗WnW

′
n)
]

Notice that, by Lemma A.2, and, given that tr(Wn + W ′
n) = O(n) (see Remark A2 in

Kapoor et al. 2007) and sup
σ
τmax(Ω−1(σ)) < cτ < ∞ (by Lemma A.9), we can show

that
1

nT
tr
[
Ω−1(σ) (JT ⊗ (Wn +W ′

n))
]
≤ 1

nT

[
sup
σ
τmax(Ω−1(σ))

]−1

tr (JT ⊗ (Wn +W ′
n)) ≤

1

nT
cτ tr(JT )tr(Wn + W ′

n) = O(1) uniformly on ∆, and similarly for the other two cases (since,

by Remark A2 in Kapoor et al. 2007, tr(WnW
′
n) = O(n)). Thus, ln|Ω(σ)| s uniformly

equicontinuous in σ on ∆λ.

Thirdly, to show that ln[σ̃2
ε(δ)] is uniformly equicontinuous on ∆ it suffices to show that

σ̃2
ε(δ) is uniformly equicontinuous and uniformly bounded away from zero on ∆. Thus, we start

by noting from the definition of σ̃2
ε(δ) used in the proof of (1.a) that all its elements appear in

Πa,b(σ) and Υa,b(σ), which, using the same arguments as in Lemmas A.11 and A.12, and the

results in Lemma A.7, proves the uniform equicontinuity of σ̃ε(δ). Next, to show that σ̃2
ε(δ) is

uniformly bounded away from zero, we follow Su and Yang (2015) and establish the claim by

a counter argument based on making its dependence on n explicit. To this end, we include the
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subindex n in σ̃2
ε(δ), so that it then becomes σ̃2

ε,n(δ).

If σ̃2
ε,n(δ) is not uniformly bounded away from zero on ∆, then there exists a sequence {δn}

in ∆ such that lim
n→∞

σ̃2
ε,n(δ) = 0. Now, by B.1 we have that, for all δ,

− ln
[
σ̃2
ε(δ)

]
≤ − ln

[
σ̃2
ε(δ0)

]
+

1

nT
[ln |S0| − ln |S(λ)|] +

2

nT
[ln |Ω(σ)| − ln |Ω0|]

Using the mean value theorem, as we previously did, it can be proved that
1

nT
[ln |S0| − ln |S(λ)|] =

O(1) and
2

nT
[ln |Ω(σ)| − ln |Ω0|] = O(1) uniformly in ∆. This implies that − ln

[
σ̃2
ε(δ)

]
is

bounded above, which is a contradiction, so we conclude that σ̃2
ε,n(δ) is uniformly bounded

away from zero on ∆.

Finally, the identification uniqueness also follows by contradiction. Using σ̃2
ε(δ0) = σ2

ε0 (see

Lemma A.3) we have that

1

nT
[L∗c(δ)− L∗c(δ0)] =

1

2nT
{ln |Ω0| − ln |Ω(σ)|}+

1

2

{
ln
[
σ2
ε0

]
− ln

[
σ̃2
ε(δ)

]}
+

1

nT
{ln |S(λ)| − ln |S0|}

=
1

2nT

{
ln
∣∣σ2
ε0S
−2
0 Ω0

]
− ln

∣∣σ̃2
ε(δ)S

−2(λ)Ω(σ)
∣∣}

If the identification uniqueness condition does not hold, then there exists an ε > 0 and a

sequence {δn} in N c
ε (δ0) such that

lim
n→∞

1

nT

[
L∗c,n(δ)− L∗c,n(δ0)

]
= 0,

where we have written L∗c,n(.) for L∗c(.) to stress its dependence on n. However, by the

compactness of N c
ε (δ0), there exists a convergent subsequence {δnk} of {δn} with the limit δ+

of δnk being in N c
ε (δ0). This implies that δ+ 6= δ0. Furthermore, by the uniform equicontinuity

of
1

nT
L∗c,n(δ), lim

n→∞

1

nkT

[
L∗c,n(δ+)− L∗c,n(δ0)

]
= 0. Yet this contradicts Assumption 6, since it

amounts to lim
n→∞

1

nT

[
L∗c,n(δ)− L∗c,n(δ0)

]
6= 0 for any δ 6= δ0. This completes the proof of the

theorem.
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B.2 Asymptotic normality

Proof of Theorem 2. By Taylor series expansion,

0 =
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ̂

=
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ0

+
1

nT

∂2L (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ

√
nT
(
ψ̂ − ψ0

)

where the elements of ψ =
(
θ
′
, σ2

ε, λ, σ
′
)′

lie in the segment joining the corresponding elements

of ψ̂ and ψ0. Thus,

√
nT
(
ψ̂ − ψ0

)
=

[
− 1

nT

∂2L (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ

]−1
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ0

=

[
− 1

nT

∂2L
(
ψ
)

∂ψ∂ψ′

]−1
1√
nT

∂L (ψ0)

∂ψ

By Theorem 1, ψ̂
p−→ψ0, and so ψ

p−→ψ0. Therefore, it suffices to show that:

(i)
1

nT

∂2L
(
ψ
)

∂ψ∂ψ′
− 1

nT

∂2L (ψ0)

∂ψ∂ψ′
= op (1),

(ii)
1

nT

∂2L (ψ0)

∂ψ∂ψ′
p−→E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)
, and

(iii)
1√
nT

∂L (ψ0)

∂ψ

d−→N
(

0, E

(
1

nT

∂L (ψ0)

∂ψ

∂L (ψ0)

∂ψ

′))
.

Since ii) and (iii) follow from Lemmas A.13 and A.15, respectively, only (i) is left to be

shown. In particular, given the expression of
∂2L (ψ)

∂ψ∂ψ′
provided in Appendix C, it suffices to

show that
1

nT

∂2L
(
ψ
)

∂ω∂$′
− 1

nT

∂2L (ψ0)

∂ω∂$′
= op (1) for ω,$ = θ, σ2

ε , λ and σ. However, we only

show this for (ω,$) = (θ, θ) ,
(
θ, σ2

ε

)
, (λ, λ) and (σκ, σ%), with κ, % = 1, 2, 3, for the other cases

can be shown in an analogous way.

For the (θ, θ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂θ∂θ′
− ∂2L (ψ0)

∂θ∂θ′

]
= − 1

nT

1

σ2
ε

X̃′Ω−1 (σ) X̃ +
1

nT

1

σ2
ε0

X̃′Ω−1
0 X̃

=

(
σ2
ε − σ2

ε0

σ2
ε0σ

2
ε

)
1

nT
X̃′Ω−1

0 X̃ +
1

σ2
ε

1

nT

[
X̃′Ω−1

0 (Ω (σ)−Ω0) Ω−1 (σ) X̃
]

(B.2)
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Given that σ2
ε0 > 0 and σ2

ε

p−→σ2
ε0,

(
σ2
ε − σ2

ε0

σ2
ε0σ

2
ε

)
= op (1), from the proof of Lemma

A.12 we can show that
1

nT
X̃′Ω−1

0 X̃ = Op (1). As for the second term in the r.h.s. of

B.2, note that τ 1/2
max

(
(Ω (σ)−Ω0)2) = Op (‖σ − σ‖) = op (1). To prove this, notice that,

since τmax (A⊗B) ≤ τmax (A) τmax (B), then τ 1/2
max

(
(Ω (σ)−Ω0)2) = Tτ 1/2

max

(
(Σ (σ)−Σ0)2).

Further,

τ 1/2
max

(
(Σ (σ)−Σ0)2) = ‖(Σ (σ)−Σ0)‖2

= ‖(σ1 − σ10) In + (σ2 − σ20) (Wn +W ′
n) + (σ3 − σ30)WnW

′
n‖2

≤ |σ1 − σ10| ‖In‖2 + |σ2 − σ20) |‖(Wn +W ′
n)‖2 + |σ3 − σ30| ‖WnW

′
n‖2

Then, given that Wn is u.b.r.c.s., ‖Wn +W ′
n‖2 ≤ (‖Wn +W ′

n‖1 ‖Wn +W ′
n‖∞)

1/2
<

∞ and ‖WnW
′
n‖2 ≤ (‖WnW

′
n‖1 ‖WnW

′
n‖∞)

1/2
< ∞. Thus, τ 1/2

max

(
(Ω (σ)−Ω0)2) ≤

[|σ1 − σ10|+ |σ2 − σ20|+ |σ2 − σ20|]Tcτ with cτ <∞.

Let c be an arbitrary column vector in R4K+2. Then, by the Cauchy-Schwarz inequality,

Lemmas A.9 and A.2, and
1

nT

∣∣∣c′X̃′X̃c∣∣∣ = Op (1) (which can be proved following the same steps

as in Lemma A.12), we have that

1

nT

∣∣∣c′X̃′Ω−1
0 (Ω (σ)−Ω0) Ω−1 (σ) X̃c

∣∣∣
≤ 1

nT

∣∣∣c′X̃′Ω−1
0 Ω−1

0 X̃c
∣∣∣1/2 ∣∣∣c′X̃′Ω−1 (σ) (Ω (σ)−Ω0) (Ω (σ)−Ω0) Ω−1 (σ) X̃c

∣∣∣1/2
≤ τmax

(
Ω−1

0

)
τmax

(
Ω−1 (σ)

)
τ 1/2

max

(
(Ω (σ)−Ω0)2) 1

nT

∣∣∣c′X̃′X̃c∣∣∣
≤ Op (‖σ − σ‖)Op (1) = op (1)

Since
1

σ2
ε

= Op (1), it follows that the second term in the r.h.s. of B.2 is op (1).
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For the
(
θ, σ2

ε

)
case, notice that

1

nT

[
∂2L

(
ψ
)

∂θ∂σ2
ε

− ∂2L (ψ0)

∂θ∂σ2
ε

]
=

1

nT

[
1

σ4
ε

X̃′Ω−1 (σ)η
(
θ, λ
)
− 1

σ4
ε

X̃′Ω−1
0 η

]
=

(
1

σ4
ε

− 1

σ4
ε

)
1

nT
X̃′Ω−1

0 η +
1

σ4
ε

1

nT

[
X̃′
(
Ω−1 (σ)− Ω−1

0

)
η
(
θ, λ
)]

+
1

σ4
ε

1

nT

[
X̃′Ω−1

0

(
η
(
θ, λ
)
− η

)]

Following the same steps as in Lemmas A.12 and A.13, it can be proved that
1

nT
X̃′Ω−1

0 η =

op (1),
1

nT
X̃′Ω−1

0 Y = Op (1) and
1

nT
X̃′Ω−1

0 X̃ = Op (1). Thus, by using η
(
θ, λ
)

=
(
λ0 − λ

)
Y+

η+ X̃
(
θ − θ0

)
, it can be proved that the three summands in the previous expression are op (1).

For the (λ, λ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂λ∂λ
− ∂2L (ψ0)

∂λ∂λ

]
=

1

nT

[
tr
((

S−1
0 W

)2
)
− tr

((
S−1

(
λ
)
W
)2
)

+ Y′W′Ω−1
0 WY −Y′W′Ω−1 (σ) WY

]
=

1

nT

[
tr
((

S−1
0 W

)2 −
(
S−1

(
λ
)

W
)2
)]

+
1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

Let us now consider the first term of the previous expression. Given that S−1 (λ) and W

are u.b.r.c.s. uniformly in λ, then

1

nT
tr
((

S−1
0 W

)2 −
(
S−1

(
λ
)
W
)2
)
≤
∣∣λ− λ0

∣∣ 1

nT
tr
(
S−1

0 WS−1
(
λ
)
WS−1

(
λ
)
W
)

+
∣∣λ− λ0

∣∣ 1

nT
tr
(
S−1

0 WS−1
0 WS−1

(
λ
)

W
)

≤ op (1)O (1) ,

where the second inequality holds because tr
(
S−1

0 WS−1
(
λ
)

WS−1
(
λ
)
W
)

= O (nT ) and

tr
(
S−1

0 WS−1
0 WS−1

(
λ
)
W
)

= O (nT ). As for the second term,
1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

=

1

nT

[
θ′0X̃

′Ω−1
0 (Ω (σ)−Ω0) X̃θ0

]
+

1

nT

[
η′Ω−1

0 (Ω (σ)−Ω0)η
]
+2

1

nT

[
θ′0X̃

′Ω−1
0 (Ω (σ)−Ω0)η

]
,

so that, using arguments analogous to the ones used in previous cases, it can be proved that
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1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

= op (1).

For the (σκ, σκ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂σκ∂σκ
− ∂2L (ψ0)

∂σκ∂σκ

]
=

1

nT

[
1

σ2
ε

X̃′Ω−1 (σ) ΣκΩ
−1 (σ)η

(
θ
)
− 1

σ2
ε

X̃′Ω−1
0 ΣκΩ

−1
0 η

]
=

(
1

σ2
ε

− 1

σ2
ε

)
1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 η

]
+

1

σ2
ε

1

nT

[
X̃′Ω−1 (σ) ΣκΩ

−1 (σ)η
(
θ, λ
)
− X̃′Ω−1

0 ΣκΩ
−1
0 η

]
=

(
1

σ2
ε

− 1

σ2
ε

)
1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 η

]
+

1

σ2
ε

1

nT

[
X̃′
(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

+
1

σ2
ε

1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 X̃

(
θ − θ0

)]

The first and third summands can be proved to be op (1) using arguments analogous to the

ones used in previous cases. For the second one, note that

τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

= T 3/2τ 1/2
max

((
Σ−1 (σ) ΣκΣ

−1 (σ)− Σ−1
0 ΣκΣ

−1
0

)2
)

Also, since
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2

= op (1) and previous results show that ∃cτ < ∞ such that

τmax

(
Σ−1

0

)
≤ cτ , τmax

(
Σ−1 (σ)

)
≤ cτ and τmax (Σκ) ≤ cτ for κ = 1, 2, 3,

τ 1/2
max

((
Σ−1 (σ) ΣκΣ

−1 (σ)− Σ−1
0 ΣκΣ

−1
0

)2
)

=
∥∥(Σ−1 (σ) ΣκΣ

−1 (σ)− Σ−1
0 ΣκΣ

−1
0

)∥∥
2

≤
∥∥(Σ−1 (σ)− Σ−1

0

)
ΣκΣ

−1 (σ)
∥∥

2
+∥∥Σ−1

0 Σκ

(
Σ−1 (σ)− Σ−1

0

)∥∥
2

≤
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2
‖Σκ‖2

(∥∥Σ−1 (σ)
∥∥

2
+
∥∥Σ−1

0

∥∥
2

)
≤
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2
cτ = op(1)

Thus, τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

= op (1).

Further, let c be an arbitrary column vector in R4K+2. Then, by the Cauchy-Schwarz
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inequality, Lemma A.2, the fact that
1

nT

∣∣∣c′X̃′X̃c∣∣∣ = Op (1) and
1

nT
η
(
θ, λ
)′
η
(
θ, λ
)

= Op (1)

(which can be proved following the same steps as in Lemmas A.12 and A.13),

1

nT

[
c′X̃′

(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

≤
[

1

nT
c′X̃′X̃c

]1/2 [
1

nT
η
(
θ, λ
)′ (

Ω−1 (σ) ΣκΩ
−1 (σ)−Ω−1

0 ΣκΩ
−1
0

)
(
Ω−1 (σ) ΣκΩ

−1 (σ)− Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
) ]1/2

≤ τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)[ 1

nT
c′X̃′X̃c

]1/2 [
1

nT
η
(
θ, λ
)′
η
(
θ, λ
)]1/2

,

so that, given the previous result showing that τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

=

op (1),
1

σ2
ε

1

nT

[
1

σ2
ε

X̃′
(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

= op (1).

Finally, to prove the (σκ, σ%) case notice that
1

nT

[
∂2L

(
ψ
)

∂σκ∂σ%
− ∂2L (ψ0)

∂σκ∂σ%

]
can be expressed

as

1

2

1

nT
tr
[
Ω−1 (σ) ΣκΩ

−1 (σ) Σ% −Ω−1
0 ΣκΩ

−1
0 Σ%

]
+

1

nT

[
1

σ2
ε0

η′Ω−1
0 ΣκΩ

−1
0 Σ%Ω

−1
0 η −

1

σ2
ε

η
(
λ, θ
)′

Ω−1 (σ) ΣκΩ
−1 (σ) Σ%Ω

−1 (σ)η
(
λ, θ
)]

Note also that τ 1/2
max

(([
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

])2
)

= op (1) and, given that Σκ

is u.b.r.c.s., tr
(
Σ2
κ

)
= O (nT ). Then,

1

nT
tr
[
Ω−1 (σ) ΣκΩ

−1 (σ) Σ% −Ω−1
0 ΣκΩ

−1
0 Σ%

]
≤

1

nT
τ 1/2

max

(([
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

])2
)

(nT )1/2tr1/2
(
Σ2
%

)
= op (1)O (1) = op (1) and

τ 1/2
max

((
Ω−1

0 ΣκΩ
−1
0 Σ%Ω

−1
0 −Ω−1 (σ) ΣκΩ

−1 (σ) Σ%Ω
−1 (σ)

)2
)

≤
∥∥Ω−1

0 ΣκΩ
−1
0 − Ω−1 (σ) ΣκΩ

−1 (σ)
∥∥

2
τmax (Σ%) τmax

(
Ω−1 (σ)

)
+∥∥Ω−1

0 −Ω−1 (σ)
∥∥

2
τmax

(
Ω−1

0

)2
τmax (Σκ) τmax (Σ%) = op (1)O(1).

Therefore, using arguments analogous to the ones used in previous cases,
1

nT

[
∂2L

(
ψ
)

∂σκ∂σ%
− ∂2L (ψ0)

∂σκ∂σ%

]
=

op(1).
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We conclude the proof by noting that the op (1) of the other components of
1

nT

[
∂2L (ψ)

∂ψ∂ψ′
− ∂2L (ψ)

∂ψ∂ψ′

]
can be proved using previous results and arguments analogous to

the ones used in the cases considered here. We consequently omit the details of these proofs.

C Gradient and Hessian of the QML function

C.1 Gradient

The gradient function 5L(ψ0) =
∂L(ψ0)

∂ψ
has the following elements:

∂L(ψ0)

∂θ
=

1

σ2
ε0

X̃′Ω−1
0 η

∂L(ψ0)

∂σ2
ε0

= − nT

2σ2
ε0

+
1

2σ4
ε0

η′Ω−1
0 η

∂L(ψ0)

∂σκ
= −1

2
tr
(
Ω−1

0 Σκ

)
+

1

2σ2
ε0

η′Ω−1
0 ΣκΩ

−1
0 η

∂L(ψ0)

∂λ
= −tr

(
S−1W

)
+

1

σ2
ε

Y′W′Ω−1
0 η

where κ = 1, 2, 3 and Σκ =
∂Ω(σ)

∂σκ
. Also, Σ1 = JT ⊗ Σ1 = JT ⊗ In, Σ2 = JT ⊗ Σ2 =

JT ⊗ (Wn +W ′
n) and Σ3 = JT ⊗ Σ3 = JT ⊗WnW

′
n.

C.2 Hessian matrix

The Hessian of the likelihood function in 3.2 is:

Hn(ψ0) =



∂2L(ψ0)

∂θ∂θ′
∂2L(ψ0)

∂θ∂σ2
ε

∂2L(ψ0)

∂θ∂δ′

∂2L(ψ0)

∂σ2
ε∂σ

2
ε

∂2L(ψ0)

∂σ2
ε∂δ

′

∂2L(ψ0)

∂δ∂δ′


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Next we provide detailed results for each row of the Hessian matrix. Thus, the first row of the

Hessian matrix is

∂2L(ψ0)

∂θ∂θ′
= − 1

σ2
ε

X̃′Ω−1
0 X̃

∂2L(ψ0)

∂θ∂σ2
ε
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ε
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0 η
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= − 1

σ2
ε
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0 ΣκΩ

−1
0 η

∂2L(ψ0)

∂θ∂λ
= − 1

σ2
ε

X̃′Ω−1
0 WY,

while the second row of the Hessian matrix is

∂2L(ψ0)

∂σ2
ε∂σ

2
ε

=
nT

2σ4
ε

− 1

σ6
ε

η′Ω−1
0 η

∂2L(ψ0)

∂σ2
ε∂λ
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σ4
ε
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0 η

∂2L(ψ0)

∂σ2
ε∂σκ
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2σ4
ε
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0 ΣκΩ
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0 η

and the third row of the Hessian matrix is

∂2L(ψ0)

∂λ∂λ
= −tr

((
S−1

0 W
)2
)
−Y′W′Ω−1

0 WY

∂2L(ψ0)
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= − 1

σ2
ε
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0 η
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=

1

2
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0 Σκ
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]
− 1

σ2
ε

η′
(
Ω−1

0 Σκ

)2
Ω−1

0 η

∂2L(ψ0)
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=

1

2
tr
(
Ω−1

0 ΣκΩ
−1
0 Σ%

)
− 1

2σ2
ε

η′Ω−1
0

[
ΣκΩ

−1
0 Σ% + Σ%Ω

−1
0 Σκ

]
Ω−1

0 η,

with κ 6= % and % = 1, 2, 3.
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