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A correlated random effects spatial Durbin model”®
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QURE-CREIP Department of Economics, Rovira i Virgili University

Abstract

We consider a correlated random effects specification of the spatial Durbin (dynamic)
panel model with an error-term containing individual effects and their spatial spillovers.
We derive the likelihood function of the model and the asymptotic properties of the quasi-
mazximum likelihood estimator. We also provide illustrative evidence from a growth-initial
level equation and the country dataset analysed by Lee and Yu (2016). While largely
replicating their estimates, our results indicate the existence of spatial contagion in the
individual effects. In particular, estimated spill-in/out effects reveal the existence of groups

of countries with common patterns in their spillovers.
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1 Introduction

The spatial Durbin model is a widely used specification in cross-section studies using
georeferenced data (LeSage and Pace, 2009; LeSage, 2014). However, its use appears to be
more limited with panel data. Although it has a certain appeal as a general framework to
analyse spatial relations, concerns have been raised about its estimation and identification,
particularly in its dynamic version (Elhorst et al., 2010; Elhorst, 2012). Despite these concerns,
the spatial Durbin dynamic panel model (or, simply, dynamic spatial Durbin model) is expected
to gain popularity in applied work, since identification conditions and Monte Carlo evidence for
2-Stage Least Squares (2SLS) and Quasi Maximum Likelihood (QML) estimators have recently
been provided by Lee and Yu (2016). It is also interesting to note that Yu et al. (2008) and
Su and Yang (2015) have analysed the asymptotic properties of QML estimators in restricted
versions of the model specification analysed by Lee and Yu (2016).

In this paper we consider a correlated random effects specification (Mundlak, 1978;
Chamberlain, 1982) of the spatial Durbin (dynamic) panel model and, following Yu et al.
(2008) and Su and Yang (2015), derive the likelihood function of the model and proof that the
QML estimator is consistent and asymptotically normal. To be precise, our model specification
corresponds to a restricted version of the dynamic spatial Durbin model of Lee and Yu (2016),
since we do not include the spatial lag of the lagged dependent variable among the regressors.’
This means that, in terms of spatial dependence, our model specification lies somewhere in
between that of Yu et al. (2008), who only consider the spatial lag of the dependent and lagged-
dependent variables, and that of Su and Yang (2015, p. 231), in which “spatial dependence is
present only in the error term”. A major difference with respect to these papers is that while
they consider a rather general variance-covariance matrix of the error term (which may contain
individual and/or time effects), we consider an error-components structure with individual
effects and their spatial spillovers (time effects can easily be incorporated), which results in a

specific albeit involved variance-covariance matrix (see also Kapoor et al., 2007). Our proofs,

See e.g. Elhorst (2012) for an overview of empirical studies using this model specification. Notice that the
inclusion of the spatial lag of the lagged dependent variable would not make a substantial difference in proving
the asymptotic properties of the QML estimator (other than complicate it).



however, are derived under rather standard assumptions in the spatial econometrics literature.?

Our model specification is inspired by the work of Beer and Riedl (2012), who advocate using
an extension of the spatial Durbin model for panel data that controls for both the individual
effects and the spatially weighted individual effects (see also Miranda et al., 2017). Ultimately,
however, they argue that “it is (...) advisable to remove the spatial lag of the fixed effects
from the equation as the inclusion of both, [the individual effects| and [their spatial spillovers],
leads to perfect multicollinearity” (p. 302). Removing the spatial lag of the fixed effects does
not generally preclude the consistent estimation of the parameters of the model. However, this
practice rules out obtaining an estimate of the individual-specific effects (net of the spatially
weighted effects), which can be critical in certain applications. This is the case, for example,
in growth models, where a measure of the unobserved productivity of the geographical units
under study can be obtained from the estimated individual effects (Islam, 1995). Distinguishing
the individual effects from their spatial spillovers can thus provide interesting insights into how
the unobserved characteristics of the neighbouring territories affect the output of a certain
territory and, conversely, how the unobserved characteristics of a territory affect the output of

the neighbouring territories.

To illustrate this point, we estimate a growth-initial level equation using OECD data from
Lee and Yu (2016). Unlike previous studies (e.g., Yu and Lee, 2012; Ho et al., 2013), however,
our model specification not only accounts for observable “technological interdependences” (&
la Ertur and Koch 2007) but also for unobserved ones (through the spatial spillovers of the
individual effects). Interestingly, our estimated coefficients and standard errors largely replicate
those reported by Lee and Yu (2016). This means that, since the spatial autoregressive
parameter is not statistically significant, “the role played by technological interdependence
on the growth of [OECD] countries” may not be as important as previously thought (Ertur and
Koch 2007, p. 1052; see also Elhorst et al. 2010). In contrast, our results point to the existence of
“unobservable technological interdependences” (i.e., spatial contagion in the — weakly significant
— individual effects). Following Islam (1995), this may be interpreted as evidence that the

growth of some countries is partially explained by the impact that the (unobserved productivity)

2See e.g. Kelejian and Prucha (1998, 2001); Lee (2004); Yu et al. (2008) and Su and Yang (2015).



of the neighbouring countries have on their economies. Lastly, computation of the “spill-in” and
“spill-out” effects of the individual effects indicate that countries that impact less/more on other
countries tend to be those that are less/more affected by the spillovers from their neighbours
(Debarsy et al., 2012; LeSage and Chih, 2016). Further, they tend to have larger/smaller

individual effects.

The rest of the paper is organised as follows. In Section 2 we present the model. In Section 3
we discuss its estimation by QML and derive the asymptotic properties of the QML estimator.

In Section 4 we provide illustrative evidence. Section 5 concludes.

2 Model specification

In this paper we are interested in the following dynamic spatial autoregressive model with

spatially weighted regressors and spatially weighted fixed effects:
Ynt = pOYn,t—l + )\OWnYnt + XntﬁlO + Wantﬂﬂ) + Hn + Wnan + Ent (21)

where the subindex 0 denotes the “true” parameters of the model (e.g, po, Ao, S10 and [a),
Yoo = (Y16, Y2t, -+, Ynt) is an n—dimensional vector of dependent variables at time ¢, W, is
the exogenous spatial weight matrix that describes the spatial arrangement of the units in the
sample, X,,; = (2}, 29, -, 2,,)" is a n x K matrix of regressors (i.e., z;; is a row vector of
1 x K), and &, is the n—dimensional vector of disturbances at time ¢, with &,,; ~ (0, 0?), whose

stochastic properties are discussed below. We assume, without loss of generality, that data is

available for i = 1,...,n spatial units and ¢t = 1, ..., 7 time periods.?

Notice that this model specification critically differs from alternative specifications of the
spatial Durbin dynamic panel data model (see e.g. Elhorst 2012) in that it includes both
the individual effects (u,) and their spatial counterparts (o). Although the inclusion of

3Dealing with a “complete panel” is just meant to simplify notation and the burden of some proofs. Our
results can easily be extended to incomplete panels. Notice similarly that the model does not contain time effects
but these can easily be incorporated into the model (by e.g. including time dummies among the regressors, as
we illustrate in the empirical application of Section 4).



W, Y, in the right-hand side of 2.1 produces “global” spatial contagion (Anselin, 2003) in
the individual effects, our interest here lies in the existence of “local” spatial contagion. In
particular, the individual-specific effects and their spatially weighted counterparts need to be
estimated in order to determine which units are “locally” affecting and which units are “locally”
affected, respectively, by the spatial spillover of the individual effect, and how intense such a
“local” spillover is with respect to the total effect (i.e., the partial derivative of the conditional
expectation of the dependent variable with respect to the individual effect). We discuss this
issue in detail below, but first it is important to notice that this is generally not possible

because 2.1 is observationally equivalent to a model that only includes individual effects (Beer

and Riedl, 2012).

In this paper we follow Miranda et al. (2017) in using a correlated random effects
specification to identify the local spatial contagion in the individual effects. This means making

use of the following correlation functions (Mundlak, 1978):

Hn = lnCD + Yn/f( + v
Ko o (2.2)

ap = Xnﬂ-ozo + Unas

where X, = (7’1_,7;,, e ,7;,)’ are composed of the period-means of the regressors, X, =

T
1 : : : :
T E Tit, Ty, and m,, are K x 1 (“true”) parameter vectors, [, is the unit vector of dimension

t=1
nx 1, and ¢y is the constant term to be estimated. The error terms, vy, and vy, are assumed to

be random vectors of dimension n, with v,, ~ (0, O'z In) and vy ~ (0, o2 ,In), uncorrelated with
€nt- Notice, however, that v,, and v,, are not assumed to be independent, the covariance, 7 q,,
being such that E(v,,v;,,) = Ouaels with E denoting the mathematical expectation. Notice
also that although we assume that the correlation functions are linear and have the means
of the regressors as their main component, this does not always need to be the case. Non-
linear functions, different moments and/or other variables may be employed to construct the
correlation functions (Chamberlain, 1984). For the sake of simplicity, however, in this paper

we restrict the analysis to the linear-means case.



Plugging equations 2.2 into model 2.1 we obtain
Ynt - lnCO + pOYn,t—l + /\OWnYnt + Xntﬁlo + Wnthﬂﬂ) + Y'rL7T;LO + Wnynﬂ-ao + Nnt (23)

where 7t = Upy + Wotna + e = Vi + ent (see also Kapoor et al., 2007). Notice that
the variance-covariance matrix of this error term is given by FE [n,m.,] = E[V,V)] + Ufoln,
where E [V, V)] = 05, I, + 0uay(Wn + W),) + 02 W, W, is the variance-covariance matrix of the
composed error term of the individual effects and their spatial spillovers, V,,. Thus, if we define

1
Yo = — (crfm]n + Opae (Wn + W) + anOWnW[Z), then the variance-covariance matrix of the
oz

error term can be rewritten as E [1,.1,,] = 02, (30 + I,).

It is also worth noting the alternative specifications that are nested in our error term
structure. The most obvious, perhaps, is the standard “random effects” (without spatial
contagion), which is derived from our model by imposing the constraints 7,, = 7., = 0,
o2, = 0and o2y # 0 (see e.g. Mundlak 1978 and Chamberlain 1982). Notice, however, that we
may alternatively consider a “random effects” specification with spatial contagion by imposing
the constraints m,, = m, = 0, 02, # 0 and O’io # 0 and 0,,, 7# 0 and, as a particular case, a
“random effects” specification with proportional spatial contagion by imposing the constraints
Ty = Tag = 0, 050 #0, 00 = a2030 and 0,4, = aaio (or simply 7, = Ta, = 0 and a,, = apy,),
with a # 0 constant. These, in turn, can be seen as a simplified version of the error structure
proposed by Kapoor et al. (2007). Interestingly, however, our model also covers “fixed effects”
versions of the previously discussed structures (“fixed” in the sense of being correlated with
— some of — the regressors). That is, by imposing alternative constraints we may derive: i) a
“fixed effects” error term (m,, # 0, 7o, = 0, 02, = 0 and 030 # 0) analogous to that discussed
by Mundlak (1978) and Chamberlain (1982), X, 7., + Un,; i) a “fixed effects” error term with
spatial contagion (m,, # 0, Ta, # 0, 05, # 0 and aio # 0) and, if we impose that o2 = 0, a
fixed effect error term analogous to that discussed by Debarsy (2012), anuo + W, X a0 +Unps

in which we cannot guarantee the existence of spatial contagion in the individual effects?; and

iii) a “fixed effects” error term with proportional spatial contagion (m,, = am,, # 0, O'io £ 0,

YExcept if we impose, as we do, that the direct effect of the individual effects of a unit (see below) only
depends on the characteristics of that unit and not on those of the other units.



2 _ 22 _ 2
o, = a0, and 0,,, = ao

o o 100 With a # 0 constant; or, simply, 7, # 0 and a,, = ap,,).

2.1 Marginal effects: spatial spillovers and diffusion effects

Thus, providing that an estimate of p, and «,, is available, our model specification allows us
to consider the existence of both “local” and “global” (through A¢) spatial contagion in the
individual effects (Anselin, 2003). However, because of the presence of the dynamic term Y,, ;4
in the model, we may also consider the existence of “diffusion effects” in the partial derivative
of the (conditional expectation of the) dependent variable with respect to the individual effects
(Debarsy et al., 2012). To see this, let us rewrite the model in 2.1 as (by repeated substitution):

t—1

Ynt = pf)S(;tYn,o + Z pSS[;(s+1) [Xn,tfsﬁlo + Wan,tfk@BQO + Hn + Wn@n + €n,tfs]
s=0

where Sy = I, — A\oW,, = S,(A\o).” In full matrix form:
Y = GoYo o+ CoXBig+ CoWXSBo + Co(lr @ 1) i + CoW (I @ I,) v, + Coe (2.4)

/
Y o,.

with Y = (V)

nl»

GO = (pO(SO_I)/? pg(so_z),a s 7pg<SET)/), and

LY X = (X!

nly -

LX) e = (Ey . ey), W = Ip @ W,

Syt 0 0 e 0

po Sy Syt 0 0

Co = peSy° P0Sy > Syt 0
prSeT i S, Y pE s Y 5yt

®We denote matrices and vectors depending on parameters of the model with the name of the matrix and
vector, respectively, followed by the parameter(s) in brackets. For example, S(\) = S,(\). In particular,
in the case of the “true” parameters we simply add the subindex zero to the name of the matrix. Thus,
So = Sn(No). Notice also that we use bold letters to denote n x T' matrices (and similarly for nT" x 1 vectors),
i.e., matrices resulting from stacking n—dimensional matrices. For example, Y = (Y,;l,YTQQ, .. .,YéT)I and
X = (X',,....,X' ), but also S(\) = I,y — A(Ip @ W,,) and Sg = Iy ® Sp.



Lastly, let e; be the j-th column of Iy ® I, with j = 1,...,n. The marginal effects of the

individual-specific effects are:

5 (XIX) = Co 1.6 (s + W) (2.5
where the diagonal elements of this matrix represent the direct marginal effects of unit j and
the off-diagonal elements of this matrix represent the spillovers or indirect marginal effects
of unit j (LeSage and Pace, 2009). Notice, however, that the dynamics of the model make
direct and indirect effects stretch over time. That is, although the individual-specific effects are
time-invariant, its marginal effects vary over time (to the extent that pg # 0). Yet we cannot
interpret these variations as the result of “temporary” or “permanent” changes in the individual

effects over time (which is the standard interpretation for regressors; see e.g. Debarsy et al.

2012). Bearing this in mind, the impact on the dependent variable in period ¢t =1, ..., T is

9 B

J

(Y| X) = ZP(S) 'S5° (Lnpj + Whoy) (2.6)

This expression can be interpreted as the “global” marginal effect (in period t), to the extent
that it involves all the spatial units and not only at those considered to be neighbours by W,

(Anselin, 2003). However, if we rewrite 2.6 as

ai (Y| X) = Zp nu]+w%+2xwrzp ZS (Loptj + Woay),

J s=1

we notice that the first term in this expression only involves the neighbouring units (as defined

by W,). Thus, we may interpret Z po (Unp; +Whay) as the “local” marginal effect (Anselin,

s=1
2003). In fact, this is the marginal effect when \y = 0, since in that case W,,Y,,; is missing from

the model and there is no “global” spatial contagion.
t
In particular, the row ¢ and column m elements of Zp 'Sy *(Inpj + Waaj) and
s=1

Zp L,y + Wyha ) can be interpreted as the global and local impact, respectively, on



the outcome of unit ¢+ of unit m having the unobserved characteristics of unit j. Following
Miranda et al. (2017), however, we find that is of greater interest to report the impact of unit
m having its own unobserved characteristics (i.e., the unobserved characteristics of unit m) on

the outcome of unit 7. This means using the matrices

t
> 018y [diag(pn) + Wadiag(a,)] (2.7)
s=1
and
t
> o diag () + Wadiag(ay,)] (2.8)
s=1

to compute the global and local marginal effects of interest, respectively. That is, the global

and local marginal effects for each unit of all the other units having their own characteristics.

Thus, the main diagonal elements of these matrices provide, respectively, the direct global
and local marginal effects (to reiterate, the impact on each unit of its own characteristics),
whereas the off-diagonal elements of these matrices provide, respectively, the indirect global
and local marginal effects (for a given time period ¢). We also obtain the spill-in and spill-
out effects of the individual effects by respectively row- and column-summing the off-diagonal
elements of these matrices (LeSage and Chih, 2016). In this vein the spill-in effect provides the
global and local impact on the outcome of unit ¢ of all the units neighbouring ¢ having their
unobserved characteristics, whereas the spill-out effect provides the global and local impact on

the outcome of the units neighbouring ¢ of the individual effect of unit <.

3 QML estimation: likelihood function and asymptotic

properties

In this section we derive the quasi likelihood function of the spatial Durbin dynamic panel
model with correlated random effects. We also study the consistency and asymptotic normality

of the associated QML estimator. All results are obtained assuming that Y, is exogenous.



The endogenous case, which is more involved (see e.g. Su and Yang, 2015), is left for future

research.’

3.1 The QML estimator

Following the notation introduced in 2.4, let us now define Y_; = (Y, Yy, ..., ,:(T_l))/,

X=Il;®X,, X= ( l.r i Y, i X i WX i X i WX ), and n = (n.,,...,n.p). We can then
rewrite the model in 2.3, evaluated at any parameter value and to include all nT" observations,

as

SY = X0 +n (3.1)

with 6 = (c, p, B, By, 7 7r’)/. Further, let ¢ = (¢, 07 5')/, § = (d,\), o = (01,09,03),

7 [e% Yy en

n(\,0) = SINY — X0 and 02Q(0) = 02 (Jr @ 2(0) + Iy ® 1), with $(0) = o011, + oo(W, +
W) + o3W,W!. Then, the quasi-loglikelihood function of the model in 3.1 can be written as
nT’ nT’

£(y) =In[S()] — "5 In(2m) — " In(o?) - %m (o) —

1

2
20

7\ 0)Q a)n(\,0). (3.2)

where |-| denotes the determinant of a matrix. Notice that, given §, the values of § and o2 that

maximize 3.2 are given by:

0(5) = (X’Ql(a)fc>1 X0 (0)S(\)Y
1

52(8) = i ()R ()7(6),

(3.3)

where 7(8) = S(A\)Y — XA(6). Thus, substituting 3.3 into 3.2 we obtain the concentrated
quasi-loglikelihood function of d:

L.(0) =In|SN)| — g (In(27) +1) — % In (62(0)) — %ln 1Q (o) (3.4)

SIn any case, it is interesting to note that Monte Carlo evidence reported by Su and Yang (2015, p. 202-203)
shows that, in the random effects case, estimating a model assuming that Yo is exogenous when it is actually
not yields “estimates [that] are in general quite close to the true estimates except [when p is] large and positive”
whereas, in the fixed effects model, “a wrong treatment on the initial values may lead to misleading results
though to a much lesser degree as compared with the case of random effects model”.



Maximising 3.4 yields the QML estimator of §, 6 = (6, \)’, whereas the QMLE estimators of

6 and o? are given by 0 = é(é) and 6?(3) = 62, respectively. Further, the QML estimator of

g

~ ~ ~ /
2 2\ e o S S N B P 3 (A2
(au,aua,aa) is given by (au,aua,aa) = 0- (01, 09,03) = 626. Therefore, 1) = <9 ,UE,5> )

3.2 Asymptotic Properties

To derive the asymptotic properties of the QML estimator of the model, we must first ensure

that ¢ = (9’ o? 6)/ is identifiable. Notice, however, that given 3.3 it suffices to ensure that

y Ve

d = (o', \) is identifiable. To this end, let us define L£:(d) = Igla;:E [L(¥)]. Tt can be proved

e

that the arguments that maximize E [£(v))] given § are:

6(5) = [E()Z’Q—l(a)fg)]_l B[R (0)S()Y] (3.5)
72(0) = B [ (0927 (0)(0)] (3.

with 77(8) = n(0(0), \). Consequently:
£2(6) = I |S(V)| — % (In(27) + 1) — g n (52(5)) — %m Qo) (3.7)

Notice also that, by using Lemma A.3, 6(8y) = 6y and 5%(5,) = ol

Let us now denote by A = A, x A, the (compact) parameter space of §, with A, and
Ay being the (compact) parameter spaces of o and ), respectively.” Further, let us redefine
5 = max L.(5). We then require the following assumptions to prove that the QML estimator

€

of the model, ¢ = (5’ 02, g’)’ , is consistent and asymptotically normally distributed:

Assumption 1. The available observations are (Y, Ty), i@ = 1,...,n and t = 1,....,T, with
T > 2 fixred and n — oco. Also, all the elements of x;; are independent across i, and have 4 + €

moments for some ey > 0.

"Notice that we do not require specific assumptions about the parametric space of py. In particular, since
we concentrate on the case of T finite and Y,,o exogenous, we do not need to assume that |pg| < 1 to derive the
results obtained in the paper (see Su and Yang, 2015, p. 236).

10



Assumption 2. The elements of the disturbance vector €; are i.i.d. for all i and t, with
E (i) =0, Var (ey) = ago and E |€¢t|4+60 < 0o for some €y > 0. Similarly, (viy, via) are i.i.d.
with E (vi,) = E (via) = 0, Var (vi,) = 05, Var (vie) = 05, Cov (Ui, Via) = Opa, and have
4+4¢€q finite moments for some ey > 0. Moreover, e, and (Vj,, Vjo) are 1) mutually independent,

and i) independent of x4 for alli,j,s =1...n andr,t =1...T. Lastly, oo = (010,020, 030)"

1s in the interior of A,.

Assumption 3. The elements of W,,, Wy;, are at most of order h, b, uniformly in all i and j

with hy,/n — 0 as n — oo.

Assumption 4. Matriz S (\) is nonsingular for all X € Ay, with \g being in the interior of
Aj.

Assumption 5. The sequence of matrices W, and S~ ()\) are uniformly bounded in both row

and column sums and uniformly in X in the compact parameter space Ay

1
Assumption 6. lim T {In 02,857 | — In|GZ(6)S(N)*Q(0)|} # 0 for any § # . Also,

n—oo M

1 - -
—TX’X i1s positive definite almost surely for n sufficiently large.

n
82
Assumption 7. Let H, () = awaw/ﬁ(w) be the hessian of the likelihood function and
0 0 1
- . Both H = lim —FE[H
G, (V) awﬁ(w)awlﬁ(w) be the product of the score vector. Both Aim [H,, (¢0)]
1
and G = lim n_TE [Gn (o)) exist. Also, G and —H are positive definite matrices.

Assumption 8. Matriz Q" is uniformly bounded in both row and column sums.

These assumptions are commonly used in the (spatial) panel data literature. In particular,
Assumption 1 is standard for (dynamic) linear panel data models with large n and small T
where Y, is exogenous. The first part of Assumption 2 is also rather standard in random-

effects panel data models. What is not that common is the part that refers to the bivariate

8We say that a k x m matrix A (or a sequence of matrices A,,) is bounded in both row and column sums if
k m
there exists a constant ¢ < oo such that maxz Aij < cand maxz Aij <ec.
J 7
i=1 j=1

11



random vector (v;,, Vio), which is justified by the existence of spatial spillovers in the individual

effects of our model.

As for the next three assumptions, they are widely used in spatial econometrics models. In
particular, Assumption 3 is a necessary condition for Assumptions 6 and 7 that can be found
in e.g. Lee (2004) and Su and Yang (2015). It is always satisfied if {h,} is a bounded sequence
and essentially allows the weight matrices to be rather “general”, “cover|ing] spatial weights
matrices where elements are not restricted to be nonnegative and those that might not be
row-normalized” (Lee, 2004, p. 1903). Assumptions 4 and 5 can be found in e.g. Lee (2004)
and parallel Assumptions 3 and 5 of Yu et al. (2008). In particular, Assumption 5 was first
employed by Kelejian and Prucha (1998, 2001). While Assumption 4 guarantees that Y can
be expressed exclusively in terms of the exogenous variables, Assumption 5 essentially limits

1 1
, where
Wmin Wmax

Wmin denotes the smallest and wy,.x denotes the largest characteristic root of the spatial weight

the spatial correlation. Notice also that Assumption 4 holds if \y € (

matrix W, (Wmin < 0, Wmax > 0).

The last three assumptions have also been previously used to derive the asymptotic
properties of a QML estimator in spatial econometrics models for cross-section and panel
data (Lee, 2004; Su and Yang, 2015). Firstly, Assumption 6 basically provides conditions
for the global identification of the estimator. More precisely, the first part is the identification
uniqueness condition (White, 1994), while the second part guarantees that the regressors are
not asymptotically multicollinear. In particular, in the second part of the assumption we can
alternatively assume that %E(X’X) is positive definite for sufficiently large n. This is a
softer condition that only requires some additional proof to be applied. Secondly, Assumption
7 guarantees the existence and positive definiteness of the Hessian and the variance covariance
matrix of the score vector. It thus plays a basic role in the asymptotic normality results. Thirdly,
Assumption 8 is necessary for the Central Limit Theorem we use to derive the asymptotic
normality of the estimator (Kelejian and Prucha, 2001). In particular, it can be shown that
this assumption also holds if (I,, + T%(0y)) " is uniformly bounded in both row and column

sums.

Theorem 1. Under assumptions 1 to 6, 1y is globally identified and 15 15 a consistent estimator
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of 1o with h—s1p.
Theorem 2. Under assumptions 1 to 8, vVnT <1Z— 1/10> N (O, I-I_lgH_l).

Remark 1. Lee (2004), Yu et al. (2008) and Su and Yang (2015) use analog theorems to
prove the consistency and asymptotic normality of their QML estimator in cross-section (Lee,
2004) and panel data (Yu et al., 2008; Su and Yang, 2015) models. In particular, Theorems
1 and 2 are similar to Theorems 3.1 and 3.2 of Lee (2004), Theorems 4 and 5 of Yu et al.
(2008), and Theorems 4.1 and 4.2 of Su and Yang (2015), respectively. Because of the panel
structure, our results are obuviously closer to those of Yu et al. (2008), who analyse a spatial
dynamic panel data model with fized effects and no spatial contagion in the error term (and
large T and n), and those of Su and Yang (2015), who analyse a dynamic panel data with
spatially autocorrelated errors and both fixed and random effects (with small T and large n, as
we do). This means that, on the one hand, our set of regressors is similar to that of Yu et al.
(2008), except that we do not have the spatial lag of the lagged dependent variable and they do
not have the spatially weighted exogenous variables (Su and Yang (2015) do not consider either
spatially weighted regressors or the spatial lag of the — lagged — dependent variable). But, on
the other hand, our error structure does have local spatial contagion, as Su and Yang’s does
(2015), although ours is in the individual-specific effects and theirs is in the idiosyncratic term
(which in turn results in a variance-covariance matriz different from the ones assumed by these
papers). Thus, our model specification is different, and so is the variance-covariance matriz,
but the approach and the proof of our theorems largely follows their work (see Appendices A
and B for details). In particular, the fact that our model specification includes the spatial lag
of the endogenous variable makes the proof more involved than that of Su and Yang (2015). On
the other hand, the scope of our proof is limited by the fact that we do not cover cases where

Y0 is endogenous, as they do.

4 Empirical application

In this section we provide empirical evidence on a growth-initial level equation (see e.g. Islam

1995 and Elhorst et al. 2010) using the correlated random effects specification of the spatial

13



Durbin dynamic panel model presented in this paper. The principal aim of this empirical
exercise is to show that i) we can (largely) replicate the results obtained by Lee and Yu
(2016) using a standard spatial dynamic Durbin model (our benchmark); and i) our model
specification not only provides an estimate of the individual-specific effects but also of their

spatial spillovers.

To this end, we use the data and (basic) model specification of Lee and Yu (2016). The
dataset covers 28 OECD countries (see Ho et al. 2013 for details) over the period 1970 to
2005 (in time intervals of 5 years). The dependent variable, Y, is the real GDP per capita
(units of labour). As for the explanatory variables, N,; + 0.05 is the sum of the annual average
working-age population growth over the last 5 years (N,;) and an approximation to the sum
of the exogenous technical progress rate and the capital depreciation rate (see e.g. Ertur and
Koch 2007 for details); S, is the average investment share in GDP; and Y, ;_ is the real GDP

per capita lagged 5 years.

[Insert Table 1 about here]

The first column in Table 1 reports the results obtained by Lee and Yu (2016) using a
weighting matrix W,, defined by the geographical distance between the capital of the countries.
Notice that W, is a row-normalized matrix with zeros in the diagonal. The second column
provides the estimates of our model.’ The parameter p measures the effect of the time-
lagged real GDP (Y,,;—1) on the dependent variable, whereas A measures the intensity of
its contemporaneous spatial interactions (W,,Y;;). Also, the S-parameters measure the effect
of the exogenous regressors (f; is the coefficient associated with N,; + 0.05 and (5 is the
coefficient associated with S,;), whereas the y-parameters measure the intensity of the spatial
contagion between the OECD countries arising from these exogenous regressors (v, and 7y, are
the counterparts of 8; and f3;). Lastly, the m-parameters are the coefficients associated with
the variables included in the correlation functions. In particular, the 7,-parameters correspond

to those employed for the individual effects (7, is the coefficient of the mean of N, + 0.05

9Estimates were obtained using the optimizing routines of R and the log-likelihood function in 3.2.
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and ,, is that of the mean of S,,) and the 7,-parameters to those employed for their spatial
spillovers (7, is the coefficient of the spatially weighted mean of N,; + 0.05 and 7,, is that of
the spatially weighted mean of S,;).

The first thing to notice is that our results largely concur with those of Lee and Yu (2016).
This means that in both cases the coefficients of the working-age population growth rate (/)
are negative and statistically significant at standard confidence levels, while the coefficients
of the savings rate (f2) are positive and statistically significant. Notice also that while the
parameter associated with the time lagged real GDP is positive and statistically significant,
the intensity of the contemporaneous spatial interactions of Y,,; is not statistically significant.

This stands in contrast to the findings of Ertur and Koch (2007) and Elhorst et al. (2010).

It is also worth noting that only the coefficients associated with N,; + 0.05 are — weakly —
statistically significant in the correlations functions (the p—value of 7, is 0.14, slightly above
the standard 0.10)."° This contrasts with the clear statistical significance of m,, (and the joint
test for the 7, parameters), which supports the existence of spatial spillovers in the individual
effects. However, the estimated variances indicate that the individual effects and their spatial
counterparts do not have a significant random component. All in all, these results seem to be

consistent with an error term specification analogous to the one proposed by Debarsy (2012).

Thus, if we interpret the estimated individual effects as a proxy for the unobserved
productivity of the countries (see Islam 1995), our results suggest that the growth of some
countries may be — weakly — related not only to their unobserved productivity, but also to the
impact that the unobserved productivity of other countries have on their economies.'’ More
generally, our results point to the importance of unobserved country-specific intrinsic features

(economic, social, historical, etc.) in growth.

In order to further explore this idea and following the discussion in Section 2, we computed

OWe also computed Wald tests for the joint significance of the coefficients in each correlation function.
Results show that while the variables included in 7, are not jointly significant (the p-value was 0.21), the
variables included in 7, rejected the null hypothesis (the p-value was 0.01).

HNotice that, given the lack of statistical significance of ¢, our results may also be consistent with the
hypothesis (see Debarsy, 2012) that the growth of one country is linked to its unobserved productivity and this,
in turn, is related to the (mean) characteristics of the other countries (but not to their unobserved productivities).

15



the direct and indirect global and local effects. However, since the A coefficient is not statistically
significant, the global and local effects coincide: the global effects are only of a local nature
(Anselin, 2003). Thus, we interpret our results as local effects and, since the weight matrix
is defined in terms of geographical distances, closer neighbours will have greater weight than
distant neighbours in the indirect effects. In particular, we report the local direct effects for
each period in Table 2 and the “spill-in” and “spill-out” effects of the estimated individual

effects for each period in Tables 3 and 4, respectively.

The first column in Table 2 is the direct local effect in period one, which can be interpreted
as the impact on the dependent variable (the log of real GDP per capita) of the estimated
individual effects. In other words, these figures provide, for each country, an estimate of the
difference in the log of real GDP per capita of having or not the unobserved heterogeneity term
(i.e., having a zero value individual effect). As a caveat, notice that, given the weak statistical
significance of the 7,-parameters, these direct effects may not be statistically different than

Z€ero.

With this in mind, results indicate the existence of three groups of countries in our sample:
those with a large individual effect, with values above the third quartile (Canada, Chile, Israel,
Mexico, Netherlands, New Zealand, Turkey and the US); those with a small individual effect,
with values below the first quartile (Austria, Belgium, Denmark, Finland, Greece, Italy, Japan,
Korea, Norway, Portugal and Switzerland); and those with an intermediate individual effect
(Australia, France, Iceland, Ireland, Spain, Sweden and the UK). It is also interesting to note
that, for most countries, our ranking does not substantially differ from that of Islam (1995).
However, in order to make meaningful comparisons, in the last two columns of Table 2 we
report his estimated individual effects (obtained from a model without spatial interactions
and for a sample of 192 countries over the period 1965 to 1985) and our equivalent estimate,
i+ Wya. We can see then that fifteen out of the 25 countries commonly analysed barely
changed their ranking (Austria, Chile, Denmark, France, Greece, Israel, Italy, Netherlands,
New Zealand, Norway, Portugal, Spain, Sweden, Switzerland and the UK) and that, in fact, the
most important differences arise from seven countries that dramatically changed their position

in the rankings (Japan and Belgium, from the top of his ranking to the bottom of ours, and
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Finland, Ireland, Korea, Mexico and Turkey, the other way round).

As for spill-in effects reported in Table 3, for each 5-year period the columns report the
(local) impact on the log of real GDP per capita of each country associated with the unobserved
characteristics of the other countries. The most affected countries (above the third quartile) are
Austria, Finland, France, Ireland, Italy, Korea, Netherlands, Norway, Sweden and Switzerland,
whereas the least affected countries (below the first quartile) are Australia, Canada, Chile,
Iceland, Israel, Japan, Mexico, New Zealand, and the US. Notice that most of the countries
with a small/large individual effect are among the most/least affected by their neighbours (in
terms of geographical distance). Also, as expected figures in the other columns of the table

show that, to a large extent, these groups remain stable over time.

Lastly, the columns in Table 4 contain, for each 5-year period, the estimated (local) impact
on the log of real GDP per capita of the neighbouring countries associated with the unobserved

characteristics of each country. However, rather than reporting the spill-out effect as described

t
in Section 2, we simply report the estimated Z pt

s=1
picture.'? Results show that the countries that impact least on their neighbours are Canada,

a,, which provides essentially the same

Chile, Iceland, Israel, Korea, Mexico and New Zealand, whereas the countries that impact most
on their neighbours are Austria, Belgium, Denmark, Finland, France, Italy, Japan, Sweden,
Switzerland and the UK. Notice that countries that impact least/most on other countries tend
to be those that are less/more affected by the spillovers from their neighbours (and generally
have a larger/smaller individual effect). That is, there is a negative correlation between the
estimated individual effects and the estimated spill-in (on average, —0.4) and spill-out (on
average, —0.7) effects. Notice also that, as expected, these results largely hold for the seven

periods considered.

t
12Tn particular, following Miranda et al. (2017, p. 4) we may interpret Z p

s=1
spatial spillovers of the individual effects” in each period (i.e., “a measure of the “potentiality of the spatial
contagion” associated with the individual effect of [each] unit” in each period).

s=Llay, “as the “potential” of the
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5 Conclusions

In this paper we consider a correlated random effects specification of the spatial Durbin dynamic
panel model. We derive the likelihood function of the model and prove the consistency and
asymptotic normality of the QML estimator under rather standard assumptions in the spatial
econometrics literature. A major difference with respect to previous studies is that our model

specification includes individual effects and their spatial spillovers.

Obtaining an estimate of the individual-specific effects (net of the spatially weighted
effects) can be critical in certain applications, such as growth models in which a measure
of the unobserved productivity of the geographical units under study can be obtained from
the estimated individual effects and hence the existence of spatial spillovers in (unobserved)
productivity can be analysed. We illustrate this point by estimating a growth-initial level

equation using OECD data and providing evidence of spatial contagion in the individual effects.

Our results point to the importance of unobserved country-specific characteristics and
their spatial spillovers in growth. In particular, we find that countries with a small/large
estimated individual effect tend to be among the most/least affected by the impact of the
estimated individual effects of their neighbours and among those whose individual effects
impact most/least on the other countries (in terms of geographical distance). This means
that, if we interpret the individual effect as a proxy for the unobserved productivity, more/less
productive economies are less/more interrelated with the other economies. According to our
estimates, examples of countries that fit into the first pattern include Chile, Israel, Mexico and
New Zealand, whereas examples of countries that fit into the second pattern include Austria,

Finland, Italy and Switzerland.
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Table 1: QML estimates

Variable Parameters Lee and Yu (2016) Our model
Wy, A —0.040 —0.011
(0.045) (0.020)
Yy p 0.889™ 0.919"
(0.046) (0.049)
Ny +0.05 Bi —0.198" —0.200""
(0.04) (0.042)
St Ba 0.143* 0.141*
(0.047) (0.048)
W (N; + 0.05) " 0.102* 0.108*
(0.047) (0.048)
WS, V2 0.003 —0.001
(0.057) (0.057)
Ny +0.05 T 0.115
(0.079)
(5t) T ~0.061
(0.057)
W (N; +0.05) T —0.284™*
(0.091)
WS, T —0.004
(0.065)
Variance Components
ai o2 Tpa o2
0.0001 0.0000 0.0001 0.004™
(0.0002) (0.0002) (0.0002) (0.0005)

Note: *p-value<0.1; **p-value<0.05; ***p-value<0.01.

time-mean of a variable with an upper bar.
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Table 2: Local Direct Effects

t=1 t=2 t=3 t=4 t=5 t=6 t=7 Islam (1995) g+ W,a&

Australia -0.40 -0.77 -1.11 -1.42 -1.70 -1.97 -2.21 1.69 0.35
Austria -0.42 -081 -1.16 -1.49 -1.79 -2.07 -2.32 1.72 0.38
Belgium -042 -0.82 -1.17 -1.50 -1.81 -2.09 -2.34 1.75 0.35
Canada -0.39 -0.74 -1.07 -1.37 -1.64 -1.90 -2.13 1.81 0.37
Chile -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.49 0.34
Denmark -0.42 -0.80 -1.15 -148 -1.77 -2.05 -2.30 1.74 0.38
Finland -0.43 -0.82 -1.19 -1.52 -183 -2.11 -2.37 1.66 0.39
France -041 -0.79 -1.14 -146 -1.75 -2.02 -2.27 1.75 0.39
Greece -042 -0.80 -1.16 -148 -1.78 -2.06 -2.31 1.60 0.35
Iceland -041 -0.78 -1.13 -145 -1.74 -2.01 -2.26 - 0.36
Ireland -0.41 -0.78 -1.12 -144 -1.73 -1.99 -2.24 1.60 0.40
Israel -0.39 -0.76 -1.09 -1.40 -1.68 -1.94 -2.18 1.70 0.37
Italy -043 -0.82 -1.18 -1.52 -1.82 -2.10 -2.36 1.69 0.37
Japan -0.44 -0.84 -1.22 -156 -1.87 -2.16 -2.43 1.75 0.29
Korea -042 -0.80 -1.16 -148 -1.78 -2.05 -2.31 1.60 0.39
Mexico -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.65 0.38
Netherlands -0.39 -0.75 -1.08 -1.39 -1.67 -1.92 -2.16 1.73 0.41
New Zealand -0.39 -0.75 -1.08 -1.38 -1.66 -1.91 -2.15 1.69 0.37
Norway -042 -081 -1.16 -149 -1.79 -2.06 -2.32 1.77 0.39
Portugal -042 -0.81 -1.17 -1.50 -1.81 -2.09 -2.34 1.58 0.35
Spain -041 -0.79 -1.14 -146 -1.76 -2.03 -2.28 1.75 0.38
Sweden -0.41 -0.79 -1.14 -146 -1.75 -2.02 -2.27 1.73 0.39
Switzerland -0.43 -0.82 -1.18 -1.52 -1.82 -2.10 -2.36 1.70 0.37
Turkey -0.38 -0.73 -1.05 -1.35 -1.62 -1.87 -2.10 1.53 0.39
United Kingdom -0.40 -0.77 -1.11 -1.42 -1.70 -1.96 -2.21 1.73 0.39
United States -0.39 -0.75 -1.09 -1.39 -1.67 -193 -2.17 1.80 0.36

The last two columns provide the estimated individual effects reported by Islam (1995) and our equivalent
estimate, ji + Wpa.
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Table 3: Spill-in Effects

t=1 t=2 t=3 t=4 t=5 t=6 t=7
Australia 0.75 145 2.09 267 321 371 416
Austria 0.80 153 221 283 340 3.93 441
Belgium 0.78 150 215 276 3.32 3.83 430
Canada 0.76 146 210 269 324 374 4.19
Chile 0.72 1.38 1.99 255 3.06 354 3.97
Denmark 079 1.52 219 281 337 3.89 437
Finland 0.82 157 226 289 347 401 4.50
France 0.80 154 222 284 341 394 4.42
Greece 0.77 147 212 272 326 377 4.23
Iceland 0.76 147 211 271 3.26 3.76 4.22
Ireland 0.81 155 224 287 345 3.98 447
Israel 0.76 146 211 270 3.25 375 4.21
Ttaly 0.80 153 220 282 339 391 440
Japan 0.73 140 201 258 3.0 358 4.02
Korea 0.81 155 223 285 343 3.96 4.44
Mexico 0.76 146 2.10 269 324 374 419
Netherlands 0.80 154 222 285 343 395 444
New Zealand 0.76 145 2.09 268 3.22 372 417
Norway 0.81 156 225 289 347 4.00 4.50
Portugal 0.78 149 215 275 330 381 4.28
Spain 0.79 152 219 280 3.36 3.88 4.36
Sweden 0.80 154 222 284 341 3.94 4.42
Switzerland 0.80 153 221 283 340 3.92 440
Turkey 0.77 148 214 274 329 380 4.26
United Kingdom 0.79 151 218 279 3.36 3.87 4.35
United States 0.75 144 207 265 3.19 3.68 413
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Table 4: Spill-out Effects

t=1 t=2 t=3 t=4 t=5 t=6 t=7
Australia 0.76 145 2.09 268 322 372 4.17
Austria 0.80 1.53 221 283 340 392 441
Belgium 0.80 154 222 285 342 395 444
Canada 0.75 144 207 265 319 368 4.13
Chile 0.73 141 202 259 312 360 4.04
Denmark 0.81 156 224 283 346 3.99 448
Finland 0.82 1.57 225 289 347 401 4.50
France 0.80 153 221 283 340 392 441
Greece 0.79 152 219 280 337 389 4.37
Iceland 0.75 143 207 265 3.18 3.67 4.12
Ireland 0.76 146 2.11 270 324 375 4.21
Israel 0.72 138 198 254 3.05 352 3.95
Italy 0.82 157 226 290 349 4.02 4.52
Japan 0.81 155 223 285 343 396 444
Korea 0.73 140 2.01 258 3.10 3.58 4.02
Mexico 0.72 138 199 255 3.06 354 3.97
Netherlands 0.76 147 211 270 325 375 4.21
New Zealand 0.75 145 209 267 321 371 4.16
Norway 0.78 150 216 277 333 384 431
Portugal 0.79 152 218 280 3.36 3.88 4.36
Spain 0.78 149 215 275 330 3.81 4.28
Sweden 0.82 1.57 226 289 348 4.01 4.1
Switzerland 0.80 1.53 220 282 339 391 4.39
Turkey 076 146 211 270 324 3.74 420
United Kingdom 0.81 1.56 2.25 2.88 346 3.99 4.48
United States 0.76 146 210 2.69 324 3.74 4.19

22



A Lemmas

In this section we make extensive use of the following notation: tr(A) denotes the trace of matrix
A, Tmax(A) the largest eigenvalue of matrix A, 7., (A) the smallest eigenvalue of matrix A, and
|A|l,, the m—norm of matrix A with m = 1,2,00 and F' (m = F being the Frobenius norm).
Further, we use the term u.b.r.c.s. to refer to a matrix or sequence of matrices “uniformly

bounded in both row and column sums”.

We also make use of the following representation of the model in 2.3 and 2.4 (obtained by

repeated substitution):

t—1

Ynt - p[) tYnO + ZPZ)S (j+1 nt ]gb() + Z S ]—H) Unu + w, Unoz + ZP S G+1) 8n,t—j

7=0

where ¢y = (60,610,650,71';0,71';0)/, X, = < I | Xt w W X, w Yn i W, X, > isann x (4K +1)

matrix, and the other elements are defined in Sect1on 2. In full matrix notation:
Y = GOYn,O + 00X¢0 + LO (Unu + anna> + C()E (Al)

Lastly, some of the lemmas make use of the following property:

Property 1. Let D (o) be an r x v symmetric matrir, with ¢ € A being a p x 1 vector of

parameters and A a compact parametric space. Then, there exists a matriz A(o,7) such that

p

i) Do) — D (%) = Z (ox — o) Ar(0,7) for all 0,7 € A
k=1

i1) SUD Timax (D’2(0)) <e¢r <00
geA

i41) SUp Tmax (Ax(0,0)AL(0,7)) < ¢, <oo fork=1,....p
o,0€EA
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Lemma A.1. Let A be a real symmetric n X n matriz and B a random n x m matrix. Then,
Tmin (E (B/AB)) Z Tmin (A) Tmin (E (B/B))

Proof. By definition, mu, (F(B'AB)) = m}i%n {Z’E(B'AB) z|2'2=1}. Let z be such that
zeR™

Tmin (E (B'AB)) =Z'E (B'AB) Z. Let D4 be the diagonal matrix of eigenvalues of A. Since A

is a real symmetric matrix, there exists @) such that A = QDQ" and QQ’ = I,,. Then,

Toin (E (B'AB)) = E (7 B'QD Q' B%)
> Tmin(A)E (7 B'QQ'Bz)
> Tinin(A) Iél}%% {E(?'B'Bz2)| 7'z =1}

> Tinin(A) Toin (E (B'B))

]

Lemma A.2. Let A be a real positive semidefinite n X n matriz and B a real symmetric n X n
matriz. Then,

tr (AB) < Tmax (B) tr (A).

Proof. Since B is a real symmetric matrix, it can be diagonalized. Let Pgp be the orthogonal
matrix with the eigenvectors of B (Pg Py = I,,) and let Dy be the diagonal matrix of eigenvalues

of B such that B = PgDgPj;. Then,
tr (AB) =1tr (APBDBP/B) =1tr (PEAPBDB) =1tr (CDB)

where C' is a symmetric positive semidefinite matrix (given that A is a positive semidefinite
matrix and y' PgAPgy = 2’Ax > 0). Using that tr (C') = tr (A) and given that ¢; > 0 for
i =1,...,n (because of the positive definitiveness of C),

tr (AB) = tr (CDg) = Z CiiTi (B) < Toax (B) ) _ |Cii] = Tonax (B) tr (C) = Tunax (B) tr (A)

=1
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Lemma A.3. Under assumptions 1 to 6, E [X’Qaln} =0.

Proof. We start by noting that, given that X = [ L' Y_, i X i WX i X i WX |, we only

need to prove that E [Y' ,€5'n] =0, since E [Z'Q'n] =0 for Z = 1,7, X, WX, X and WX
by the strict exogeneity of X. Notice also that, by using equation A.1, we have that

Y_1 = GSYn,O + C(;X_ldm + La (’Unu + anna) + Cas, (AQ)

/
with §g71 = (07 X;ﬂa e 7X;L,T—1)/7 Ga - (Irw pOSO_1/7 s 705_25()7(7171)/) 5 La = CO_(ZT ®[n) and

Co=| mS° Sy 0 0
pr25y T pl=egy T plig 9 g

Thus,

YL90"n = YiGo Qg 'n + XL Gy’ + 'Oy + (v, + v W) Lo Q'
First, it is easy to show that E (Y,(G,€y'n) =0=FE ((ﬁ’XLlCa/len). Second, notice that
we can write E <s’Cg’len) = o2r (lecg’) and, given that Ly = (I ® L,) C5", Jp = Iyl
and E [(v, + Watna) (U + Witna)'] = 02, %0,

E ((U;W + U;WW,’Z) Lg'ﬂg%) = o2tr [Qal (Jr ® Xo) Cg’]

1
Also, following Magnus (1982), we can rewrite ;' as Q' = (7 ®1,) — TJT ®
[In — (I + TEO)_I}, which means that

o2 tr (lecg’) +o2tr [951 (Jr @ ) Cg'} = o tr [Cg’} +o2tr [ACg’] —0

€0
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since

1 _ 1
A=— (Jr@ [l — (I +T%)"']) + = (Jr @ T%)
1 _
_(?h®pwwu+nmlog&®m)
1 _
:?h®LJMMh+T&)WQ+T&ﬂ:0
and ¢r [Cy] = 0 because of the structure of Cj,. O

Lemma A.4. Let A, B and C' be real constant matrices of order (n x 1), (r x r) and (r X n)

respectively, with A and C w.b.r.c.s. and B being a symmetric matriz with Tym.(B?) < oo.

Then, for Q = ABC':
i) tr (QQ') = O(min(r, n))
i) 1, QQ'l, = O (n), where l,, is a unit vector of dimension n x 1
iii) i Q% = O(min(r,n)) and tr (QQ) = O(n).
i=1
Proof. Firstly, by the Cauchy-Schwarz inequality and Lemma A.2,
tr (QQ") =tr (ABCC'BA") = tr (BCC'BA’A)

< [tr (BCC'CC'B)]"* [tr (BAA'AA' B)]"/*
< Tanax (B2) [tr (C'CC'C)]V? [tr (A’ AA' A)]?

Then, by using the second part of Lemma B.1 in Su and Yang (2015), we can show that
T (B2) [tr (C'CC'ONY? [tr (A'AA' A))Y? = O(min(r, n)).

Secondly,

U.QQ'l, =tr (I,ABCC'BA'l,) = tr (BCC'BA'l,l,A)

< T (BOC' B tr (A1, A) < T (BOC'B) tr (ILAA'L) = O (n),

where the last equality holds because
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n
o given that C is ubrcs, [|C; < [[CI7ICE, < ¢ with max» eyl < e
(2
j=1

maXZ\cm| < cand ¢ < oo, and |Bl5 = Tmax (B?); then, since |.||, is a sub-
i=1

multiplicative norm'®, 7. (BCC'B) = ||C"Bl[5 < [|C']|5 | Bl < Tmax (B?),

e given that A is u.b.r.cs., maXZ|aw| < a, maXZ|aU| < a and @ < oo; then,
7j=1 =1
I AAL, < a®ll, < a’n.

Thirdly, ZQ@% < ZZ’Q”F: 1QII? < r(Q'Q), which, because of result ),
i=1

— i=1 j=1
is O(min(r,n)). Also usin;; result i), tr(QQ) < tr(QQ)*r(QQR)Y? = tr(QQ) =
O(min(r,n)). O

Lemma A.5. Let a = (a1,...,a,) and b = (by,...,b,)". Also, let {(a;,b;)}—, be an i.i.d.
sequence of random vector variables with E(a;) = E(b;) = 0 and finite second moments. Lastly,

let P be an n x n constant matriz and let Q = E(ab’) = papl, such that (a'Pb— tr(PQ)) =

tr (Pba' — PQ) Z Z Pi(a;bj — ;). Then,

=1 j=1
/ _ 2 2 /
E |(d'Pb—tr(PQ))”| = (02, — 020} — 12, Z '+ o2aitr (PP') + o%tr (PP)

where 02 = E(a}), of = E(b3), E(a;b;)) = pay and E[(a;ib; — pay)?] = 02,. Notice that, if a

a

and b are independent, E [(a'Pb - tT(PQ))ﬂ = o20itr(PP’). Notice also that if a = b, then

E (a'Pb—tr(PQ)ﬂ —20%) ZP2+047§7‘ (PP +0Wtr (PP) , with o™ = E[(a2—02)?.

Proof. Notice that FE [(a Pb —tr(PQ)) ] ZZZZP’JP“E ab; — Qi) (arby — Q)]
i=1 j=1 k=1 I=1

Also, given the independence of (a;,b;) and (a;,b;) for i # j, E[(a;b; — ;) (aby — Q)] # 0

3 This means that, for any two matrices A and B, ||AB||, < ||Al, || Bll,-
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onlyfori=j=k=10i=k#j=1landi=1[0%# j=k. Thus,

E[(an—trPQ } Z i) +§:§:R§E

i=1 jti
+ZZP P E [(a:bs)(a;b;)]
i=1 j#i
= (02, — 020} — 12, Z + (oZojtr(PP') + ptr(PP))

O

Lemma A.6. Let a = (ai,...,a,) and b = (by,...,b,)", with {(a;,b;)};_, i.i.d. sequences of
random vector variables with finite second moments. Let P, and (Q,, be n X r constant matrices
u.b.r.c.s.. Lastly, let D(c) be an r X r constant symmetric matriz that satisfies Property 1, with

o € A being a p X 1 vector of parameters. Then,

sup |E (a/P,D™"(0)Qnb)| = O(n)

oEA

Note that the Lemma still holds if a = b and P, = Q,.

Proof. By the Cauchy-Schwarz inequality and Lemma A.2,

sup |E (a/P, D™ (0)Qnb)| < sup E (tr (' P,D*(o )P;La)l/2 tr (b’Q’n(J)an)lﬂ)

oEA gEA

< {SUP Tmax (D_Z(U))] v [E (tr (Plad' P, )1/2 tr (Q.0'Q., )1/2”

cEA

1/2
< {suprmax (D2(0))} Tal2 (PPl T2 (QQn) [E (tr (ad)) B (tr (b6))]"?

cEA

< C[E (tr (ad)) E (tr (bb))]"/*

with C' < oo given that D™ (o) satisfies Property 1, /2 (A'A) = ||All, < (|lA]l, |4l )2 and

’ max
n

P, and @Q,, are u.b.r.cs.. Also, E (tr (ad")) = F Zcﬁ < nE(a?). Thus, given that a and b

7
i=1
have finite second moments, the lemma is proved. O
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Lemma A.7. Let a = (ay,...,a,) and b = (by,...,b,)", with {(a;,b;)};_, i.i.d. sequences of
random vector variables with finite second moments. Let P, and @, be n X r constant matrices
u.b.r.c.s.. Lastly, let D(c) be an r X1 constant symmetric matriz that satisfies Property 1, with
o € A being a p X 1 vector of parameters. Then,

;) {d'P,D7'(0)Qub — E [a'P,D™ (0)Qnb] } =0 uniformly in o € A
,

max (7,

Note that the Lemma still holds if a = b.

Proof. Let us denote E(a;) = pq, E(bj) = pu, E [(a; — pa)?] = 02, E [(b; — )?] = o3 for all i
and j. We start by proving that

[tall, P,D™(0)Qn, (b — )] =0 uniformly in 0 € A
max (n,r)

To prove the uniform convergence (see e.g. Theorem 21.9 of Davidson 1994), we prove that
I! P,D Y (0)Q, (b — ) is stochastically equicontinuous and, for a given o, satisfies a Law of
Large Numbers (LLN hereafter). First we prove the convergence for a given o. Given that

E[l,P,D™"(0)Q, (b — )] =0, to derive a LLN it is enough to prove that

sVar [l;PnD_l(a)Qn (b— ,ub)} — 0

max (n, 1)

It is straightforward to prove that Var [I}, P,D~"(0)Q,, (b — )] = o3l,, P,D~(0)Q,Q;, D" (o) Pyl
and, by Lemma A4, I, P,D ' (0)Q,Q, D *(¢)P,l, = O(n), so that

iV LB D 0@ )] £ el BD T (0)Qu2D 7 ()Pl
§ L)Q == 0(1)
max (n, )

which proves the LLN. To prove the stochastic equicontinuity, note that, by Property 1, the
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Cauchy-Schwarz inequality and Lemma A.2,

|1, P, D™ (0)Qn (b — 1) = 1, Pa D™ (@) Qu (b — )| < |1, P (D™ (0) = D7) Qn (b — )|

p
<Y o = aultr'? (1, Py Ak(0,5) A (0,3) Bil) ¢/ (b — ) Q4Qn (b — )

k=1

p
< 3 [0k — Tl e (Au(0.3) A4 (0,)) 1% (L, PLPAL) 6 (b — 1) Qi (b — 1)

k=1

p
< Z|Jk - 6k|CTtr1/2 (0, PuPly) |t7‘1/2 ((b - Mb)/ Q7 Qn (b— :ub))
k=1
with ¢, < oo. Also, by Lemma A4, t¢r(l/P,Pl,) = O(n) and, by Lemma A.6,
tr ((b— ) Q,Qn (b— 1)) = Op(n), so we can apply Theorem 21.10 of Davidson (1994) to
prove the stochastic equicontinuity and Theorem 21.9 of Davidson (1994) to prove the uniform

convergence.

Next we prove the case F(a;) = FE(b;) = 0. We first prove the convergence in probability
given 0. To this end, notice that E {a'P,D™"(0)Qub — E [a'P,D~'(c)Q,b] } = 0 and, from
Lemmas A.4 and A.5, F { (¢’ P.D~(0)Qub— E [a’PnD_l(a)an])Q} = O(n), so that

lim — {(@P.D7 (0)Qub ~ B[« P.D ™ (0)Qub])*} =0

n—o0 max (n, )

which proves the convergence given o. To prove the stochastic equicontinuity, note that, by

Property 1, the Cauchy-Schwarz inequality and Lemma A.2,

a'P,D™(0)Qub — d'P,D(@)Qub| < |a'P, (D™ (0) — D7(7)) Qub|
S Z ’Uk - Ekl ’a/PnAk(O—a E)anl
k=1

p
< Z 0w — | tr'/? (! P, Ay(0, @) A} (0,7) Pla) tr/? (V Q' QD)

k=1

p
< cotr'? (a By Pla) tr'? (VQ,Qub) Y |ow — 5|

k=1
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Also, by Lemma A.6, E [tr (a'P,P,a)] = O(n) and E [tr (b'Q;,Q,b)] = O(n). Then,
() |a'P,D™(0)Qub — a' P, D™ (7)Q,b| = O,(1)

) |E (a/P, D™ (0)Qnb) — E (' P,D™'(7)Qnb)| = O(1)

max (n, r

and we can apply Theorems 21.9 and 21.10 of Davidson (1994) to prove uniform convergence.

Further, the most general case F(a;) # 0 and E(b;) # 0 follows straightforward by noting that

{d'P,D""(0)Qub— E [d'P,D" " (0)Qnb] } = a*'P,D(0)Q,b* — E [a*'P,D ™ (0)Q,b*] +
a*'P,D(0)Q,E(b) + E(a) P,D ' (0)Q,b*

with a* = a — p, and b* = b — .
O

t—1
Lemma A.8. Let G,; = ptOSO_t, Cut = Gmso—l and L,; = Zp{)SO_(jH). Under Assumption 5,
§=0

WLy, WG and W,,Chy are all u.b.r.c.s. fort =1,2, TT and WLy, WG, and WC, are

all u.b.r.c.s..

Proof. First note that if A and B are two matrices u.b.r.c.s., A+ B and AB are also u.b.r.c.s.
(see Remark A2 in Kapoor et al. 2007). With this result, under Assumption 5 it is easy to

prove that G,;, C,; and L,; are u.b.r.c.s.. Further, given that T" < oo, it is easy to prove that
WLy, WG, and WC; are all u.b.r.c.s.. O

3

Lemma A.9. Let Qo) = (Ir ® I,) + (Jr ® 5(0)) and S(0) = Y _ o4y = 011, + o2(W, +
k=1

W/l) + 0’3WnWé, with W, w.b.r.c.s. and (01,09,03) € A, being A a compact space such

that (o) is positive semidefinite for any o € A. Then, Q (o) satisfies Property 1 for
Ap(0,7) = QHo)(Jr @ Zp)Q @) and any 0,6 € A. Moreover, 3 ¢, < oo such that

SUP Timax (2(0)) < ¢
fSTAN

Proof. We start by proving that 3 ¢, < oo such that sup Tm.x(£2(0)) < ¢,. To this end, note that
ocEA
the eigenvalues of the matrix (I,, + B) are 14 7;(B), with 7;(B) being the i = 1,...,n eigenvalues
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of B. Then, by definition, sup 7. (2(0)) = 1+ sup Tmax ((Jr @ X(0))) = 1+ T Sup Tmax (5(0))-
cEA oceA oEA
Further, using that (o) is a symmetric positive semidefinite matrix, sup mm.x (2(0)) =
oEA
sup ||2(0)||,. Then,
fSTAN

3

sup [|2(0)]l, < suplow||Sklly < suploy |+ suploa| W, + Wi, + suplos |V W,
oEA 1 oEA oEA A<TAN geA

Given that W, is w.b.r.c.s., W,, + W/ and W, W, are u.b.r.c.s., too (see Remark A2 in Kapoor
et al. 2007). Further, (||W, + W, ||, W, +W,|.) < oo and (W, W, |, [WaW, ) < oo.
Then, [W,Willy < (IWa Wil [WaWall )" < oo and Wy + Will, < [Wally + W, <

2(IWally ||Wn||oo)1/2 < o0. Finally, given that ¢ € A and A is compact, supsup o, < oo.
k o€eA

Then, 3 ¢ < 0o such that sup Tax (3(0)) < ¢ and sup Tmax(Q(0)) <1+ Te < 0.
ocEA ceEA

Next we prove that Q'(c¢) satisfies Property 1 for Ay(0,7) = Q (o) (Jr ® £,)Q(7) and

3
any 0,5 € A. To this end, we need to prove that: i) Q@ *(c) — Q7 '(7) = Z(ak —0k)Ax(0,7);
k=1

1) SUP Timax (2 72(0)) < ¢r < 00 and i) sup Tax(Ar(0,7)A}(0,7)) < ¢, < oo for k =1,2,3.
gEA 0,0€A

To prove i), note that

3 3
= @ — o) (o) [Jr @] QNE) = (0k — Tk) Ax(0, 7).
k=1 k=1
To prove ii), note that, given that (o) is a positive semidefinite matrix for all o € A,
in£ Tmin (3(0)) > 0. Then, using that © '(c) is positive semidefinite for all ¢ € A (since
S
all the eigenvalues of Jr and (o) are equal to or bigger than zero for all o € A, all the

eigenvalues of (o) are bigger or equal than 1), Sup Tiax (272(0)) = sup [Tmax (Q_l(cf)ﬂ2 =
STAN ocEA

Ligg Tonin (Q(o—))] T {1 + 7 inf T (5(0)) o
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To prove iii), note that ||.||, is a sub-multiplicative norm (see footnote 13). Thus,

SUP Tanax(An(0,7) A4 (0,7)) = sup [|Q7(0) (Jr ® T) Q7' @),

o,0€A 0,0€A

< sup HQ_l(U)H;L |(Jr ® Ek)”;
oEA

S sup [Tmax (Q_1<U))]4 Tmax (JT & zk)
ocEA

< sup [Tmax (Qfl(a))]élTTmaX (3k) < ¢p <0
oEA

using i) and sup Tmax (Xx) < ¢ < 0o (from the first part of the proof).
k

]

3

Lemma A.10. Let B, '(0) = I,, — (I, —|—TE(U))71 and (o) = Z%Ek = o011, + oo(W,, +
k=1

W) + ocoaW,W,, with W, u.b.r.c.s. and (01,09,03) € A, being A a compact space such

that (o) is positive semidefinite for any o € A. Then, B, (o) satisfies Property 1 for
Ap(0,5) = TB:(7) (Jr ® ¥1) Bi(0) and any 0,7 € A with BX(o) = (I, + TX(0)) .

Proof. To prove that B, (o) satisfies Property 1 for Ay(0,7) = TB(7) (Jr ® ¥i) Bi(0), we
3

need to prove that: i) B,(0) — B,(7) = Z(ak — k) AR(0,7); i) SUp Tmax (B, 2(0)) < ¢; < 00
=1 oEA

and i) Sup Tmax(Ag(0,0)AL(0,7)) < ¢, < oo for k =1,2,3.

o,0€A

To prove i), note that

B (o) =B (@) = (I, + TX(@) " — (I + (o))"

n

=T (I, + TS(0)) " (£(0) — £(0)) (I + T(0)) ™"

=T (0x =) (I + TE(@) ' Si (1 + TS(0)) !

= 7Y (o~ 7)Bi(0) ' SkBi o)

To prove ii), note first that B, '(c) is a positive semidefinite matrix for all ¢ € A,

-1 . 1
< ; > 0.
< 1, and ;I€1£Tmm (Bn (0)) >0

since inf 7, (I, + TX(0)) > 1, sup Tmax (In + TX(0))
oEA ceA
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Note also that sup Tmax(B,%(c)) = {sumeaX(B o } and, since (I, +T%(c))"" is a
cEA ocEA

positive semidefinite matrix and inngin (L, —|—TE(O’))71} > 0, then sup Tmax(B, (o)) <
o€ g€eA

. —1
1— Ulggﬂm (I, + T(0) ] < 1.

To prove i), note that, given that 7. (X)) < ¢; < 0o (proved in Lemma A.9) and

-1
sup || B, (o), = sup (1 + TS(7))” H2 < {iggﬂnm (I, +TE(E))] <1, then
gEA o

SUD Tiax (A1 (0,7) A (0. 7)) = sup [[4}(0,)][5 < sup || By (o )2 sup I5ell; < er <00

o,0€A o,0€A 0,0€

]

1
Lemma A.11. Let I1, (o) = T {a’Q7(o)b— E [a'Q ' (0)b] }, with a,b=mn,WY. Under

Assumptions 1 to 6,

L1, (0)—0 uniformly in o

Proof. We provide the proof for the most involved case, a,b = WY. The proof of the other

cases is similar. From expression A.1 we have that

YWQ o)WY =Y, (GiW' Q™ (0)WG,Y,, 0 + 2, (GEW'Q ™! (0) WCXgy
+ 2V, (GoW'Q ™ (0) WL (Unys + Witna) + 2, (GHW'Q ™! (0)WCye
+ X' CHW'Q ! (0)WC Xy + 26,X CoW Q™ ()WL (U + Witna)
+ 20X CHW'Q ™ (0)WCye + (v}, + Ve Wy ) LiW' Q™ (0) WL (v, + Witna)
2 (U, + VW) LyW'Q ™ (0)WCe + €' CHW'Q ™ (0)W'Coe

The proof of the Lemma follows from proving that each of the previous summands, minus
its expected value, converge in probability to 0 uniformly in ¢. Following Magnus (1982), we

1
have that Q7 (o) = Ir ® I,, — fJT ® B, (o) with B, '(0) = I, — (I, + TX(0))™". Also, let
til . .
Gnt = phSy", Coy = GpiSyt and Ly, = Zp{)S(;(]H) (see also Lemma A.8). Thus, we may
=0
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rewrite the summands in the previous expression as follows:

Y \GyW'Q ™ (0)WCo X = ZZY’ G W W, Crt— i X o
t=1 j=1
1 T T t
— 7 SN VG WLB (o)W Ci— X o

s=1 t=1 j=1

T t
Y GoW'Q  (0)WCoe = > > Y, (Gl Wi WoCoijen
t=1 j=1
1 T T t
S S VG WL ) WiCi
s=1 t=1 j=1
t t
GHX' CHW'Q ™ (0)WCoX ¢y = ZZZ%X@% WIWaCt—iXadho
t=1 j=1 I=1

t

T
_ % 3 Z 3 Z X! Ol WEBT (0) WiCl s 1 X160

t=1 s=1 j=1 [=1

T t t
X CLW'Q ! (0)WCpe = ) X! Cly WiW,Cly—iEng
t=1 j=1 I=1
1 T T t s
_TZZ Z% n,j nt J B_l <0> WnCn,s—lgn,s—l
t=1 s=1 j=1 =1
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T
X' CoW'Q (0)WLo (e + Wotna) = 0 XL Ch Wi W, Ly,

T t
1
_? ZZ(bO n,j nt jW/B ( )WTLLTLSU"#

T
+3 N AKX O WiW Lo Witna

1 T T
Z Z ¢0 n,j nt j B_l (0> Wi LpsWintna

t=1 s=1 j=1
And, finally,
T t
eCLW'Q ()WL (Uny + Witna) = dle;Lt ]W'W LytUny
t=1 j=1
1 LT
T Z Z 8n] nt j (0> W”LTLSU"#
t=1 s=1 j=1
T ¢

+Z el Ot WIW, LWy Una

t

1 1 T T
Z Z 8" JC;L t— j (0> WnLnsWnUna

t:l s=1 j=1

Notice that each of the summands in the previous expressions, minus its ex-
pected value, can be written as nLT [a’PnD_l(a)an —F (a’PnD_l(a)an)] with a,b =
Y205 X i B10s X520y X0y X 0T a0s Ents Unps Unai; Py @n = Wi Lg, WGty Wy, Crigy Wy, Crt W,
WLy, WGy, WCy; and D (o) = L,p, 2 '(0), B, ' (0). This means that, if we can apply
Lemma A.7, the Lemma is proved. To apply these lemmas, P, and (),, must be u.b.r.c.s. which
is proved for all the cases in Lemma A.8. Also, D(o)~! must satisfy Property 1, which is proved
in Lemma A.9 for Q7 '(0) and in Lemma A.10 for B, ! (¢). Lastly, a and b must be an i.i.d.

sequence with finite second moments, which is guaranteed by Assumptions 1 and 2.
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Lemma A.12. Let

1
with a,b =n, WY and Qa () = —TAlﬂil(O')B. Under Assumptions 1 to 6,
n

Yan(0)220 uniformly in o

Proof. The proof of this Lemma is similar to the proof of Lemma A.11. Thus, we only provide

the proof for the case a = b = WY (the others are similar). We start by decomposing

TWY,WY (U ) :

Ywy.wy (0) = Qx wy ()5 5 () Qg wy (0) - [QX wy(@)] [ (Qzx(0)] " E [Qzwy ()]
~ { A wy (@) = B | Qe wy ()] } Qx5 (0)Qx v (0)+
E Qi wy (7)] Qxly (0) { [ (QXX<0>)} - Qxx(@)} [F (Qxx(@)] ' Quwy (0)+
B | Qg wy ()] [E (Qxx(0)] " {Qxwy (0) — B [Qzwr(0)]}

First we need to prove that Qg wy (o) — E [Qxwy(0)] and Qg x(0) — [E (Qxx(0))]
converges elementwise to 0 uniformly in o. The proof follows the same steps as that
of Lemma A.11 (note that all the elements of X are in WY, including, as shown in

3.1 and A.1, Y_;), so it is not reproduced here. The elementwise convergence implies,

by the Slutsky theorem, that HQX,X(‘7> E (Qxx )}H = 0p(1) uniformly in o and
||Q5(7WY(O') — [E (QX,WY(O') ]H = 0p(1) uniformly in o. Then, by using the properties
of the matrix norm, HQXX( )— [E (QXX o))] H2 < ”QX,X(U) —[E( x.x( o))] H = 0,(1)

uniformly in o and HQX,WY< ) — [E (Q WY(U))} Hg < HQX,WY(U) - [ (QX,WY(U))} ||F =

0p(1) uniformly in o.

— 0(1)

2

= 0(1).

Next we prove that sup

o

Qv ()]

[F (Qxx(0)]
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Let us first consider

[ @xx(o)] ], =omp e {E (%X'szl(aﬁc) _1}
- (e (s (0%

Note that, since 2 () is a symmetric definite positive matrix, we can apply Lemma A.1 to

obtain

inf T {%E (X’Q—I(U)X) } > inf iy {27 (0)} i {%E (X’X) }
> s s 200)] o {

g

From Lemma A.9, sup Tmax (2(0)) < ¢, < oo and, from Assumption 6, Tyin {
E

[E <QX,X(U))}71H2 <(C<oo= Slip

O(1).
], e 2 [t ]
HE Qs iy ()] HF _— {E ( YW (o )X> E (%XQ*(a)WY)} v
K 12\ /2
=<Z[ (% <o>WY)_> ,
where the last expression is O(1) uniformly in o if sup E(X;ﬂfl(a)WY)‘ = O(n).

g

(X;Q*I(U)WYM = O(n), we follow the same steps as in Lemma
A.1l. Thus, we decompose the term X,Q '(¢)WY in a finite sum of terms that can
be written as a'P,D"'(0)Q,b, with a,b, P,,Q, and D '(c) satisfying the conditions of
Lemma A.6. This provides the proof that sup |E (a'PnD_l(a)anH = O (n) and so that of

(X;n(a)-lwy) ‘ — O(n).

Moreover, given that HQX,WY<O') —[E (QXWY(U))]H2 = 0p(1) uniformly in o and
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Sup |E (Qx wy )|| = O(1), then sup HQX,WY(U)HQ = 0,(1).
Finally, we need to prove that sup HQ;X(U) H = O,(1). To this end, notice that
- ) 2

s g, o (05) < s [ 0% )

(e

= [igf Tunin (%X’Q*(@X)} B
< {ix;f i (1 (0)) T (%Xxﬂ B
<o (62 [ (X %)|

which is O,(1) given that, by Lemma A.9, sup Tmax(€2(0)) < ¢, < oo, and, by Assumption 6,

1 - -
Tonin <_TX 'X ) > 0 almost surely for sufficiently large n.
n

Then,

{Qewy (@) = F [ Qg wy ()] } Qi () Qs v (0) = 0,(1)0,(1)0, (1)
E [Q;z,wy(f’)] Q'x(0) {[E(Qxx(0)] - Qxx(0)} [E (Qxx(0)] " Qrwy(0) = 05(1)0,(1)0,(1)
and

E[Q,x’wy(a)] [E(QXX )] {QXWY ) [QXWY ” O O( )0p(1>’

all the cases uniformly in o. This proves that Ywy wy(c) = 0,(1) uniformly in o (and the

proof is analogous for the rest of cases). O

Lemma A.13. Under Assumptions 1 to 7,

7 i =2 (e )] =)

Proof. It can be proved, following the proof of Lemmas A.11 and A.12, that each
PLW) [ 1L
Yoy’ nT oy

a P,D™" (o) an—E(a’PnD’l (O’O)an)], with a,b = Y0, Xu,, €, Unp and vpg;

element of the matrix ) can be written as the finite sum of

|
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Pm Qn = WnLnta WnGnt7 Wncnt; and D_l (UO) = Az [BnAng + BgAjBn] Aia AanAng +
B,A;B, A, fori,j=0,1and k,0=0,1,2,3 with Ay = By = I,,, A, = B, '(00), B, = %, for

k=1,2,3 and B, '(0y) and ¥, defined in Lemmas A.9 and A.10 (see Appendix C for details on
0*L (¢o)
QoY
1
of Lemma A.7 in all the cases, then e [a'P,D (00) Qmb — E (' P,D (0¢9) Qmb)] = 0, (1) in all
n

the elements of ). This means that if a,b, P,,Q,, and D! (0y) satisfy the conditions

the cases, which proves the Lemma. Notice also that we do not need to prove the uniform
convergence because these second derivatives and their expectations are evaluated at the true
parameters of the model. It is therefore enough to prove that D' (oy) is a symmetric matrix

with Tax (D’2 (00)) < 0.

Firstly, Lemmas A.11 and A.12 show that all the possible cases of a,b, P, and @),, satisfy
the conditions of Lemma A.7. Secondly, given that D' (oy) is by definition symmetric,
L]l = 1, m,?x||2”||2 < ¢; < oo (the bound is provided by Lemma A.9) and HB;I(UO)H2 =
Trax (B;l(ao)) < ¢; < 00 (the bound is provided by Lemma A.10),

Toax (D72 (00)) = | D™ (00) 5 < 2 max || A3 max | B.[; < ¢, < oc.

]

Lemma A.14. Let a; = {ai+}iq, b = {bi+}i, be nx 1 zero-mean random vectors independent
T

i 1. Let us also define Q,, = Z ay Py nby with Pi,, mox n real matrices and T < oo. Lastly, let
t=1

us denote pg, = E(Qn) and SQQn = B(Qn — pg,)?]. If Py fort=1,...T are u.b.r.c.s. and

{(as, b)) },_, has 4 + e, finite moments for some ¢, > 0 and n~'sg, > c¢>0, then

@n e, 4,y
SQn

Proof. The proof of this Lemma follows the proof of Theorem 1 in Kelejian and Prucha (2001, p.
T n
243). First note that, given the independence in i of a; and b, pg, = Z Z P, i, 1) E(aishis),

t=1 i=1
where we use the somewhat abusive notation P, , i, j] to refer to the row ¢ and column j element
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T n
of the matrix P,,,. Notice also that @, — 1o, = Z Z Y: . with

t=1 i=1
i—1 i—1

Yie = Praliyi] (aithis — Eaiihit)) + aiy Z Pnld, i]bj,t + big Z Pt,n[iyj]aj,t
J=1 J=1

fori=1,2,....,n

Let us now consider the o—fields Fo, = {0,Q} and F;, = o (a;,bi,a;—1,bi—1, ..., a1,b1,),

with a; = {ai7t}tT:1, b = {bi,t}thl and 1 < i < n. By construction, f;_;, C
Fin and Y, is F,;,—measurable. It can also be shown that E(Yi¢F,-1.) = 0.
Therefore, {Yis, Fin,1 <i<mn,n>1} forms a martingale difference array and so sén =
Z (Z E th —|— 2 i i E (YY) ) Thus, the expression for the variance of (),, follows
from e
i—1
E (YitYis) = Poali (1 Poali 11007, + 02, 034.0 D (Pralis ) Pelis )+ Pl il Penli 1)
i1 ~
+ OetsOest D (Ponlis 1 Panldyi] + Ponlis j1Pinli. 1)) (A.3)
j=1
with ops = E(aibis), 0oy = El(@ibic — 00e)(@isbis — 0ess)]s 020y = Elaisais] and

ait,s = E [b;sb;s]. Also, if we define X;; = Y;;/sq,, then {X;;, Fin,1 <i<n,n> 1} forms a

martingale difference array.

In what follows we prove that

<n — HQn ZZXH—MV (0,1)

i=1 t=1

T
by showing that X, = Z X ¢ satisfies the remaining conditions of the Central Limit Theorem

t=1
of Génsler and Stute (1977, p. 365). In particular, we demonstrate that X, satisfies the
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condition: i
E:E{E“LM”%&AA}—%O (A.4)
=1

for some 6 > 0, which in turn is sufficient for

kn,
Y E[1Xin1(| X0 > )| Fiz1n] =20

i=1

for all € > 0 and with 1(-) being an indicator function. Then we prove that X, satisfies
kn
S E[X2|Fiia] 51 (A.5)
i=1

Let us take 0 < 0 < €;/2. We note that, under the maintained moment assumptions

on {(as,by)},_,, there exists a finite constant, C, > 1, such that F (|aiibizaizpit]) < C. for

2,t1,5 1,8

4
Zrl <4420, r>0,t=12,...,T and i = 1,2,...,n. We further note that, under the
=1
maintained assumptions on the matrices F;,, there exists a finite constant, (), > 1, such

that Z(|Ptn[l,]]| +|Pnls,d]]) < Gy, for t = 1,2,...,T and ¢ = 1,...,n. Lastly, note that

j=1
n

Z (|Penlt, 71| + | Prnlds i)])" < CF, for r > 1 and

Jj=1

n

Y UPnli 41+ 1Penlisdll) (1Poalk, )| + [Pl K]) <

J=1
n n

D (Palis )+ [Pnldidll) D (1Ponlk, 1l + [ Poali K] < C,

Jj=1 J=1

fort,s=1,2,...,T.
T

> Vi

t=1

g T
Let us now take ¢ = 2+ 6 and let 1/¢ + 1/p = 1. We note that < qu Y%
t=1
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Also, using the triangle and Holder’s inequalities, we have that

i—1 i—1 q
Yiil" = | Pinli,i] (@ishis — 0cpr)) + @iy Z Prinld,ilbje + big Z Py uli, jlag
i=1 j=1
i—1 q
< 20 |1/2P, i, i1 Pl i) (aihis — Ocra) + aie » | Penlds (17 Ponld, i1 %50| +
j=1
i—1 q
21 11/2P, i, i)/ Py [i, 4] (@isbis — Ocps) + big D Prnlis 1P Punli 4],
j=1
i a/p i—1 a/q
Z | Penld, i]\] 270 | Pyl a] aiibiy — ocpal” + ’az’,t|qz | Penld, 4] 1056l +
j=1 j=1
i a/p i—1 a/q
Y Pl Al |27 [ Punli i)l aiibie = ol + 1bia|"Y | |Prnlis 5] el
j=1 j=1
i—1
< QQCZ{I) (2_q |Pt,n[i7i]| |ai,tbz‘,t - Uc,t,t|q + |az‘,t|qz |Pt,n[j7 il |bj,t|q) +
=1
i—1
21C4" (Tq | Penliy ]| |aiehi — ocpel® + |bi,t|qz | Penlis J]] |aj,t|q> -
j=1
Consequently,
D E{B[IY 1" Fiaa]} <
=1
n i—1
pppaeri (\Pt,n[MHEUGi,tbi,t = oeaal] + Ellasd) Y 1Pl 1] E [bjel” ])
i=1 ]=1

=1

+22ch/p <|P [, 4] E [|asbiy — 0ersl?] + E[|bis]] Z|PMME [laj.|® ])
7j=1

n i—1 i—1
<Y 2cyre, (2 |Ponli il + ) Pl i)l + ) | Penli j]\) < p2etlCurtio,

i=1 j=1 j=1
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Thus,

S BB Xl nal} = - S0 BAE VAl F i)

i=1 Qn =1 t=1

n T
1 1
- n—1g2 }1+5/2 nl+d/2 Z Z E {E HY;,tm Fz’—l,n]}

| On i=1 t=1
1 { 1
< QQHCZ@/IJHCG}
|:7’L_182Qni|1+6/2 n5/2

Since n_lsan > ¢ > 0, the right-hand side of the last inequality goes to zero as n — oo,

which proves that condition A.4 holds.

n T T t—1
Now, using Sén = Z (ZE (th) + QZZE (Y;,tYi,s)> and the definition of X, we
obtain that s =2
- 1 1 &
ZE [an‘ Fiin) —1= Wﬁ ZZ [E (th| Ficin) —E (YZQt)} +
i1 n =1 =1
92 1 n T t—1
mﬁ -~ ; ; (E(YitYis| Fici) — E(YiiYis)]

This means that, since n’lsén > ¢ > 0, we can prove condition A.5 by proving that
1 < P
=D B (YViYisl Ficin) = B (Yiis)] =50
i=1

for t,s = 1,2,...,7. We start the proof by noting that, since (a;4,b;;) are independent with
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zero mean, it follows that

1—1
[E (K,tm,s‘ Fifl,n) - E (}/z’,tY;,s)] :O'c,a,t,sf)t,n[ia Z] Z Ps,n[j7 Z]b] s + UcbtsP:fn Z { Z Ps n Z ,] a] s+
j=1
i—1 1—1
O-c,a,s,tPs,n[ia Z] Z Pt,n[ja i]bj,t + O-C,b,s,tp&n[i? 7’] Z Pt,n [i7j]aj7t+
j=1 J=1
i—1 i—1
Oant,s Z Z Pt R ]: P, R l Z] [bj,tbl,s - 1(] = Z)Ub,t,s] +
j=1 1=1
i—1 i—1
Oets D0 Ponlii1Penlic 1] [js1s — 107 = Doed] +
j=1 =1
i—1 —1
et D> Ponlds i1 Prnlis [ [bsare — 1(j = Doy +
j=1 I=1
i—1 i—1
Obt,s Z Z Pt,n[ia j]Ps,n[iv l] [aj,tal,s - 1(] = l>0a7t,8]
j=1 1=1

with o415 = E(a;tbita;s) and ocprs = E(a; b 1bis), and so

n

1
ngummnm> (YieYis)] Zmn
where the subindex 1,...,8 indicates, in order of appearance, a summand in the expression
1 n
above. Thus, to prove that = Z B (YiiYis| Ficin) — E(YiiYis) -0, next we prove that
Qn =1
Hy 250 for k=1,...,8.
n—1
To prove that H,, = ngmbzs with ¢;, = n~ JcatSPtn X Z P; .[7,1], notice that,
=1 Jj=i+1
n—1
given that the b; 5 are independent with mean zero, £ |bi,$|1+5 < C, for § > 0, lim sup Z Din =
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n
lim sup n ' op a6 Pynli, 1] Z P, ,[j,1 < C.C? < oo, and

n—oo

j=it+1
n—1 n 2
lim sup Zcpfn = lim sup n~? catsZPtn X LZ P; .07, z]]
n—1
<n 'C2CnT'Y C2 <nT'CIC, =0
i=1

Then, H17ni>0 by Davidson (1994, p. 299). Further, the cases Hy, for k = 2,3,4 can be

proved in the same way.

For Hs,,, notice that

n i—1 1—1

—Ua,t,sn Z Z Z Ptn Ja s n l Z] [bj,tbl,s - 1(] = Z)Ub,t,s]

i=1 j=1 [=1
n n i—1 7—1
=0q.t, sn Z Z IDt ,n ]7 s ,n ]7 ] [b] tb], Ub,t,s] + Ua,t,sn ! Pt n ja s n l Z]b',tbl,s+
=1 j=1 i=1 j=1 [=1
n i—1 j—1
Ua,t,sn_l Z Z Z Pt,n[la i]Ps,n[ja Z.]bl,tbj,s
i=1 j=1 I=1
=H15, + H2;5, + H3;5,,.
To prove that H 15,ni>07 we follow the same steps as in Hi,. Notice that
H15,n - quz,n (bi,tbi,s - ab,t,s) with ¢i,n = n Uats Z Ptn ja sn ]7 ] Then, giVen
i=1 j=i+1
that (b;:bis — opts) are independent With mean zero, E|b;:b; s — ab’t7$|1+6 < C, for § > 0,
n—1 n—1
lim sup Z¢i,n = lim sup n’lawS Z Z P, 17,1 P g, 1] < aatsC and lim sup Z¢
n—oo 7] n—00 =1 j—it1 n—oo 7]

2
lim sup n~ aatsz LZ P, 17,8 Py, i ]] < lim sup n~ aatsCf;l = 0. Thus, H157ni>0 by

n—00 n—00
=i+1

Davidson (1994, p. 299).

Similarly, for H2;,, given that the b;,b; s are independent with zero mean, it is not difficult
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to see that

n i—1 j—1 n i—1 j—1
E(H2,) <n?C.> Y Y Polj P Ponll. i +4n72Ce Y Y 0> " Pinlj il Pinlr il Poslj. i Pon[r ]
i=1 j=1 I=1 i=1 j=1 r=1
n —1 k-1 k-1
+ 2n_2Oe Pt,n[jy i]Ps,n[r; Z.]P)t,n []a k]Ps,n[ra k]
i=1 k=1 j=1 r=1
n n k-1 k—1
<n_QC’eZC’;‘;—|—4n_QC’eZC4 +2n72C, ZZP“‘]’ ZPM], ZPM[T, i) Py [, K]
=1 j=1 r=1

< 'C,CH —0

Then, given that £ (H25,) = 0, H25,ni>0. Also, the proof of H357ni>0 follows the same
steps. This proves that H5,ni>0. Lastly, the cases Hy,, for k = 6,7,8 can be proved in the

same way. This concludes our proof of A.5, and hence that of the Lemma. n

Lemma A.15. Under Assumptions 1 to 8,

st (0 (55 )

Proof. The key to the proof is to show that X’Qalniﬂ\f (0,G11), with Gi; =

1
. vnT
lim —TE [}N(' Q' Qy 15(] In particular, by the Cramér-Wold device, it suffices to show

n—oo 1

that for any ¢ = (¢}, ¢y, c3)’ € R¥™ 2 x R with ||c[| = 1,

Lz -1 d ,
dX'Qy'n—N (0, Gyi0).
\/ﬁ o N ( 11€)
Let us define X1 = [lnT‘X X}, X2 = [Xix}’ b0 = (Covﬁioﬂﬂo), and ¢y =
(Bh9, Tho)'- From A.2 we have that:

IX'Q5 'y = X1'Qy ' + GX2W'Q 'y + Y Q5 'n
= X1UQy ' + BX2WQ ' + e3Y, Gy Oy '+

30 X1 CY Q' + c366,X2'C5 Q' + esm' CF ' Qg ' .

Following the steps of Lemma A.11, we can write the summands of the previous expression as
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sums of quadratic forms:

T T T
1
XV =) AXL 6 — )Y AX LBt

t=1 t=1 s=1

Z X1, Whtne — Z X1, B Wytna

1
AXAW'Q 'y = Z X2, Wikt — Z Z hX2, W Brd st

t=1 t=1 s=1

T T

/ / / / /
E o X2, W, WiUna — E X2, W! B "W v,
t=1 t=1

T T T
. 1 _
Y,0Go 'y = Z Yi0Greo16nt — T Z Z Y 10Grit—1 Brg s+

t=1 t=1 s=1

T T
/ ! / ! —1
E :YnOGnt—lwnUna - E Y,0Gri—1 B Watna
=1 t=1
t

T t T T
ey 1 _
ROy 05" =30 3 S Clay i = 3D DRI Bt
J=1

t=1 j=1 t=1 s=1
T t T T
ZZ%OXHUC;” —j— 1anna_zz¢1oxum nt—j—1Bno ) Wi Ung
t=1 jfl t=1 j=1
T t T
WO 00 =3 S a2 WICL, | = L SOY S KA WICL, | Bttt
t=1 j=1 t=1 j—l s=1
T t
ZZ¢2OX2/ W,C/t —j—1Wh Una_ZZ%OXQ/ n nt —j— 1Bro Watna
t=1 j=1 t=1 j=1
t T
"70 Q n= Zzgn] nt—j— 1§nt Z Zéng n,t—j—1 golgns

t=1 j=1 t=1 j=1 s=1

T t 1 T t T
+sznaw/clt —Jj— 15nt TZZ ;Lozwéc;lt —7—1 7:015713—’_

t=1 j=1 t=1 j=1 s=1

t

Zzgw nt—j— 1WnUna — szm nt—j— 1B W”UW+
t=1 j=1 t=1 j=1
szna n nt —j— 1W Una_zzvna n nt —j— 1B;01WTLUTL0£
t=1 j=1 t=1 j=1
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with & = (nt + Unp)s Cno1 = Opxn and Byy = B,,(09)™" (see Lemma A.10 for the definition

of B,(a)™).
N L
We can thus write ¢X'Qg'n = Z a; P, by with L < oo. Then, it is easy to verify that a;, b,

=1
and P,; for [ = 1,2,..., L satisfy the conditions of Lemma A.14 and, by Assumption 7, that

X'y

n~WVar(dX'Qy'n) > ¢ > 0, so that —%4N (0,1), which in turn implies

[Var(c’)z’ﬂgln)] 2

that c'}N('QalnLN (0,dGyic) for any ¢ € R*™ 2 x R with ||| = 1. This proves the

1
vnT
convergence for the first term of the gradient.

L (o)
O

can be written as a finite sum of quadratic forms, so that the proof for these cases proceeds by

To conclude the proof, we note that each component of (see Appendix C for details)

closely following the previous steps. We consequently omit the details of these proofs. O

B Proof of Theorems.

We start by proving the consistence of the QML estimator (Theorem 1). The proof of normality

comes next (Theorem 2).

B.1 Consistency

Proof of Theorem 1. The consistency proof closely follows the proof of Theorem 4.1 of Su and
Yang (2015). In particular, by Theorem 3.4 of White (1994), it suffices to show that:

(1.) iT £2(5) — L£.(5)] 50 wniformly in 6 € A = A, x A,
n
and

1
(2.) lim sup max — [L£(0) — L:(dp)] < 0 for any € > 0, where NZ(dp) is the complement

n—o0 0ENE(do) nT’
of an open neighbourhood of §y on A of radius e.

To show that (1.) holds, it is sufficient to show that the following conditions hold: (1.a)

~2

52(0) — 7%(6)-2+0 uniformly in § € A and (1.b) 72(8) is uniformly bounded away from zero on
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A. Since (1b) will be checked in the proof of (2.), next we concentrate on the proof of (1.a).

By definition of our model, 7(6) = S(A\)Y — X0(8) = QY%(0)M(0)Q2"?(0)S(\)Y, where
~ /- N1~
M(o) = Ly — Q" 12(0)X (X’Q’l(a)X> X'Q2V2(5). This means that

52(0) = % (Y’S’(A)Q*l/Q(U)M(U)QW(a)) Q" Y(0) (91/2(U)M(U)QM(U)S(A)Y)
1

1
= =02 (0)n — —Qx ,(0)Q x (7)Qx ()

nT’
1 1
— (A= Xo) n—Tﬂlﬂfl(U)WY + (A = Ao) n—TQ;@,,(U)Q;X(U)QX,WY(U)
1 1
= (A= 20) =YW (0)1+ (A = M) —Qf wy (7)Qx'5 (7)Qx 5 (0)

9 1

1
+ (A= Xo)? n—TY’W'Q_l(J)WY — (A=) n_TQljgwy(O)Q)—”;X(U)QX,WY(U)

with Qa(d) = A’Q'(0)B.

From max E [L(1)],

2
0,02

Then,

20



and, consequently,

5.(6) = %E Q" (o)n] - % (A~ o) E [ (0)WY]
B [Q )] [F (Qsx(0)] ' B [Qgy(o)]
(0= 20) B [Q ()] [F (Qax(@)] ™ B [Qswy (0)]
— % (A= X)) E[YWQ ' (o)n] + % A=) E[YWQ ' (0)WY]
(= 20) B [ Qg ey (0)] [B (Qux(@)] ™ B [Qn(0)]

Let us also define

M, (0) = niT (297 (0)b — E [ (0)b] )

Tan(0) = QL () () () — Qi ,(0)] [F (Qxex(@))] ' E [Qsul0)] }

where a,b = n, WY. By using these when calculating the difference between 7.(d) and 6.(9)

we obtain:

6:(8) = 0:(6) = Iy (o) — (A = o)y wy (0) — (A — A0)IL, wy (0) + (A — X0) TIwy,wy (0)
— Yyn(0) + (A= 2)Topwy (o) + (A= X)X wy (o) — (A= X0)*Twy wy(0)

and, therefore, condition (1.a) follows by using Lemmas A.11 and A.12.

To show that condition (2.) holds, we closely follow the literature (Lee, 2004; Yu et al.,

2008; Su and Yang, 2015) and use an auxiliary process to show, using Jensen inequality and
2
Oco

52(80) = Ttr(Qalﬂo) = 02, (which follows from the definition of 52(5) and Lemma A.3), that
n

L3(6) < Le(bo) (B.1)

1
Next we prove that —TEZ(é) is uniformly equicontinuous on § € A by showing the uniform
n
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1 1
equicontinuity of T In|S(A)], then that of T In|Q(c)| and finally that of In(62(d)) on § € A.
n n

Firstly, by the mean value theorem, In|S(\*)|— In|S(\*")|= <% 1n|S(X)\) (A" = X)) with
A€ (A, \). Also,

since ST (A)W is w.b.r.c.s. uniformly in A and hence tr [S™'(A)W] = O(nT). Thus, In|S())]
is uniformly equicontinuous in A on Aj.
3
Secondly, by the mean value theorem, In|Q(c*)|—In|Q2(c Z < In|Q(a |) (o) —
80k

k=1
o;"), with @ lying elementwise between ¢* and ™. Also,

1 0 1 L
T 9o IR@)| = it [97(@) (Jr © 1))

1 0 1 L ,
T Doy PIR@)] = Lt [7@) (Jr @ (W + W)
1 0 1 L /

nT 80'3 ln’Q( )‘ ﬁtr [Q (O’)(JT & Wan>]

Notice that, by Lemma A.2, and, given that tr(W, + W) = O(n) (see Remark A2 in
Kapoor et al. 2007) and sup Tmax (2 '(0)) < ¢ < oo (by Lemma A.9), we can show

that 0 [27) (U (W, + W) < - fsup @) tr (U (W, +777)) <

1
—TcTtT(JT)tr(Wn + W) = O(1) uniformly on A, and similarly for the other two cases (since,
n
by Remark A2 in Kapoor et al. 2007, tr(W,W)) = O(n)). Thus, In|Q(c)| s uniformly
equicontinuous in o on A,.

Thirdly, to show that In[52(5)] is uniformly equicontinuous on A it suffices to show that

52(8) is uniformly equicontinuous and uniformly bounded away from zero on A. Thus, we start

3
by noting from the definition of 52(§) used in the proof of (1.a) that all its elements appear in
I, (o) and Y, (o), which, using the same arguments as in Lemmas A.11 and A.12, and the
results in Lemma A.7, proves the uniform equicontinuity of &.(8). Next, to show that 52(d) is

uniformly bounded away from zero, we follow Su and Yang (2015) and establish the claim by

a counter argument based on making its dependence on n explicit. To this end, we include the
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subindex n in 62(8), so that it then becomes &7,,(5).

If 52 ,,(6) is not uniformly bounded away from zero on A, then there exists a sequence {4, }

in A such that lim &2,(6) = 0. Now, by B.1 we have that, for all J,
n—oo =’

[ [So] —In SO +— [10]€2(0)] — In 2]

—In[62(6)] < —In[62(60)] + —

1
Using the mean value theorem, as we previously did, it can be proved that T [In|So| —In|S(N)|]
n
2
O(1) and e [In|Q(0)] — In |€|] = O(1) uniformly in A. This implies that —In [62(5)] is
n
bounded above, which is a contradiction, so we conclude that 6€2m(6) is uniformly bounded

away from zero on A.

Finally, the identification uniqueness also follows by contradiction. Using 62(8y) = 02, (see

Lemma A.3) we have that

L. x 1 1 2 2
T [L£7(6) — L5(do)] = T {In [] — In [Q2(0)|} + 3 {In [02)] —In [62(6)] }

1
+ — {In[S(V] — In[So}
1

= 5 (I [0%8:° Q] — I [52(9)S*(N)Q(0)]}

If the identification uniqueness condition does not hold, then there exists an ¢ > 0 and a
sequence {9, } in NZ(dg) such that

lim _T [‘Cc,n<5) - [’c,n(do)] =0,

n—oo N,

where we have written L7, (.) for £;(.) to stress its dependence on n. However, by the
compactness of NZ(dy), there exists a convergent subsequence {d,, } of {d,} with the limit J,

of 6,, being in NF(dp). This implies that 4 # &y. Furthermore, by the uniform equicontinuity

1 1
of n_TEz’"((S)’ nh_g)lo T L5, (64) — L%,(6)] = 0. Yet this contradicts Assumption 6, since it
1
amounts to lim T [L£:,(6) — L2, (8)] # 0 for any 0 # J. This completes the proof of the
n—oo N ’ ’
theorem. 0

33



B.2 Asymptotic normality

Proof of Theorem 2. By Taylor series expansion,

1 0L (y)

_ 1 PLW)
5 VnT 0¢

nT O0Yoy’

0= 1 0L (y)

= =3 VT (9= o)

o n

. _ _ !/
where the elements of ¢ = <0/,EE, A,E') lie in the segment joining the corresponding elements

of ?Z and vg. Thus,

By Theorem 1, $—251, and so ¥—231,. Therefore, it suffices to show that:

0 el LW o),
) 5 s (G ) o
(m);%?aﬂﬁ@kiﬂv(QE<i%aggmai§?y))

Since ii) and (iii) follow from Lemmas A.13 and A.15, respectively, only (i) is left to be

L ()
eI

= 0, (1) for w,w = 0,0

shown. In particular, given the expression of provided in Appendix C, it suffices to
1 9L (Y) 1 0L (o)
how that —
Show tha nT Owdw’ nT OJwiw’

show this for (w,w) = (0,6), (8, 0?) , (A, A) and (04, 0,), with &, 0 = 1,2,3, for the other cases

2

-,A and 0. However, we only

can be shown in an analogous way.

For the (0, 60) case, notice that

1 [0*C(¥)  9%L (W) 113 S

2 _ - X0 @)X+ — XX

nT | 0000 ~ 0000 nT o2 @)X+ p o2 X

= ilﬁ-iiw&+ii{iw%mﬂ—nm*mi] (B.2)
-\ o3 )T ainT 0 7 0 ? '
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Given that o2, > 0 and 7>—>02, (52—_2> = 0,(1), from the proof of Lemma

£

1 ~ ~
A.12 we can show that —TX’QalX = O, (1). As for the second term in the rh.s. of
n
B.2, note that 7/2 (2 (o) — 90)2) = O, (|[d —a||) = 0,(1). To prove this, notice that,

since Tmax (A ® B) < Timax (A) Tmax (B), then 71/2 (Q@) - 90)2) = 772 (@) - 20)2).
Further,

a2 (B @) - 20)°) = I(Z (@) — o),
=/(@1 — 010) I + (T2 — 020) (Wo + W) + (T3 — 030) W, W, |l

< |71 = ol [ ally + T2 = 020) [[[(Wa + W), + T3 — o30] W WV, ]],

Then, given that W, is wbr.cs., [Wo+Will, < (IWa+ W, [IWe+ WiV <
1/2

oo and [W,Will, < ([WaWill IWaWill)' < oo Thus, ni2 ((R(3)—Q)°) <

[|61 — 0'1()| + |52 — 0'20| + |52 — 0'20|] TCT with Cr < OQ.

Let ¢ be an arbitrary column vector in R**2. Then, by the Cauchy-Schwarz inequality,

1| o~ ~
Lemmas A.9 and A.2, and v c’X’Xc‘ = O, (1) (which can be proved following the same steps
n

as in Lemma A.12), we have that

X' (QF) — Q) QL (7) ic‘

nT

1 ~ ~ 11/2 ~ 11/2
<— dx’nglnglxc( X071 (7) (@) — Q) (2 7) — ) Q7! (7) Xe

¢X'Xe

< o (923") T (27 (@) 72 (5) — 0)) -

<Oy (7 =al) Oy (1) = 0, (1)

1
Since — = O, (1), it follows that the second term in the r.h.s. of B.2is o, (1).

£
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For the (6’, 052) case, notice that

1 [022(@) @cwo)] 1 [lepy o = 1o
nT | 90002 00002 | nT {gXQ (o)n(e,A)—a—éxszo n}
1 1 1 &, 1 (o) oy B N

1 ~
Following the same steps as in Lemmas A.12 and A.13, it can be proved that —TX’ Qy In =
n
1 & 1 < ~ S —
o, (1), EX'QalY =0, (1) and ﬁX’QalX = O, (1). Thus, by usingn (6, 1) = (Ao —A) Y+

n+ X (@ — 90), it can be proved that the three summands in the previous expression are o, (1).

For the (A, \) case, notice that

1

ONOA ONOA

PL(Y) L wo)]

- niT o ((s'W)*) =t (87 ()W) >+YW’Q WY - YW (7) WY |

= [ (85 W) — (5 (Y W))] + o [YW'R; ! (2(7) — 2) WY

Let us now consider the first term of the previous expression. Given that S™ (\) and W

are u.b.r.c.s. uniformly in A, then

e (85" W) = (57 (Y W)?) < [X—Ao| ot (85"WS ™ (%) WS (%) W)

+ | A= Ao %tr (Sg'WS;'WS™ () W)

<o, (H)O(1),

where the second inequality holds because tr (Sa 'ws! (X) WSt (X) W) = O (nT) and
— 1
tr (Sg'"WS;'"WS™ (X) W) = O (nT). As for the second term, T [YWQ' (2(5) — Q) WY =
1 S _ S 1 _ _ 1 v _
— |8X'05" (@) — 20) Xt | +— [/ (Q(7) — Q)] +2— [HX'Y" (2(@) - ).

so that, using arguments analogous to the ones used in previous cases, it can be proved that
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LT [Y'W'Q5" (2 (5) — Q) WY] =0, (1).

n

For the (o,,0,) case, notice that

1 |PL(Y) 0L 1 [1e U DU
nT | 9o 8<<7) " 0o giO) T [;X'ﬂ H(@) 207 ()7 (9) —;X’QOIEHQOW}
1 1\ 1 et oo
~ (5 02 (Ko s
+ %% [X'QA @) 2.7 (@) n (0,)) — X’leznﬂgln]
1 1\ 1 foeia oo
~ (552 ur (Xm0
11 -
+ 55— [X (@7 @07 (0) - 950 n (0.))]
L1 [ e 1%
+ 5 | X0 B0 X (0 )]

The first and third summands can be proved to be o, (1) using arguments analogous to the

ones used in previous cases. For the second one, note that

w2 (07 @) 507 (0) - ' 54"’ = T2 (57 () B2 (0) - %' 5 ") )

max

Also, since |57 (7) — X5 1H2 = 0, (1) and previous results show that Je, < oo such that

Tmax (261) S Cry Tmax (2_1 (6)) S Cr and Tmax (ZH) S Cr for k = ]-7 27 37

max

A2 (ET @I 0 - 5')) =[BT @S @) - 55,

<E=1E) - S @), +

=02k (27 (@) = o),

<=7 @ =S5, 124l (157 @), + (126 )

<=7 (@) — =5, e = 0p(1)

Thus, 7/ ((Q—1 (@) .07 (@) — 95125951)2) =0, (1).

? max

Further, let ¢ be an arbitrary column vector in R***2 Then, by the Cauchy-Schwarz

o7



1| e 1o
—5 [¢X'Xe| = 0, (1) and —n (8.3)'n (8.3) = 0, (1)

inequality, Lemma A.2, the fact that

(which can be proved following the same steps as in Lemmas A.12 and A.13),

1 /— 1 = - - l S5 2 1 Y n (0 X v
<2 (@7 @ B0 @) - 9'm)’) [ﬁcXXc} [—Tn(fw) n(e,x)} !

max

so that, given the previous result showing that 7./2 ((Qfl (7). (@) - 95125961)2> =

max

11 _
0, (1), = = [ X (07 (7) 2,07 (@) - 2 '=.9") 7 (6, A)} o, (1).
1 |0*C (¢ 2
Finally, to prove the (o4, 0,) case notice that — &7,{;?@) 68 (i (;;(;) can be expressed
as
LL o 7)E.Q ' (0)2, - Q'S
En_Ttr[ (@) 207 (0) 2, - Q' Z,.9,'5,] +

1

/ 1 e 1 e (N7
HT{ Q20,120 — 277()\,9) Q@) X0 (7) 2,0 1(0)77()\,9)}

Note also that 742 (([9—1 (@) =.Q7! () —95125951})2) = 0,(1) and, given that ¥,

1
is wbres., tr(X2) = O(nT). Then, —Ttr Q@0 (), - 2'T.0'E,] <
n

1T iz (([ﬂ—l (@) .07 @) - lezﬁagl])Z) (nT)2tr'/? (32) = 0, (1) O (1) = 0, (1) and

L1/2

2 ("=, - 7 (0) 207 (0) 2,07 ()
<

195" 2.2 — Q71 (6) 227 (0)]],, Trmax (o) Tmax (27 (7)) +
19257 — Q71 (@)||, Tmax (207)” Tonax (Z) Tanax (Z) = 0, (1) O(L).

1
Therefore, using arguments analogous to the ones used in previous cases, —

op(1).

PLE)  PLE)| _
Oo00, do,00, n
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We conclude the proof by noting that the o,(1) of the other components of
1 [PL)  PLE)

nT | 0ol 9voy

the ones used in the cases considered here. We consequently omit the details of these proofs.

can be proved using previous results and arguments analogous to

O

C Gradient and Hessian of the QML function

C.1 Gradient

The gradient function 7L(¢g) = %{ZJO) has the following elements:
aﬁa(;bo) _ %X,Qo_ln
Ggizw - _2Z§0 * 201;10 (AL
8?&“ = —%tr (Q'S,) + %%n’ﬂglzmgln
aﬁa(;%) = —tr (ST'W) + U%Y’W’len
0Q(o)

Whereli:]_,273 and En: ) . AAISO7 21 :JT®21 :JT®]n7 EQZJT®22:
Ok

JT & (Wn + Wé) and 23 = JT (%9 23 = JT (%9 WnW;l
C.2 Hessian matrix

The Hessian of the likelihood function in 3.2 is:

0’L(vo) 0°L(¥o) *L(t)

9000 90902 0005
H (o) = PL) PL)
mr 002002 90200
0*L(tho)
9605'
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Next we provide detailed results for each row of the Hessian matrix. Thus, the first row of the

Hessian matrix is

S = X'
a;ggw _ _Uigmglzmaln

while the second row of the Hessian matrix is

825(%) nT 1

—1
o200 201 g7k M
0”L (o) 1
- Y’ /Q—l
Ja20\ ol Wik n
0”L (o) L o1y -1
do20o,, - _20477/90 L

and the third row of the Hessian matrix is

OLE) _ ((Sglw)2> —Y'WQ'WY

OO
0°L (1) I .

o, oz Wkl
82£<¢0) 1 _ ) 1 a 9 B
ao_mao_n = 5757“ [(QolZn) ] — ﬁn/ (9012/@) QO 177
0L (o)

1
= —tr (Q;'2,.0,'%
do,do, QT( 0 e %)

1
202

7' 2.9, + 2,0,'3.] Q'n,

with kK # p and p = 1,2, 3.
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