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Abstract

The complexity and subjectivity of the judgement task conceals the existence of
biases that undermines the quality of the process. This paper presents a weighted
aggregation function that attempts to reduce the influence of biased judgements on
the final score. We also discuss a set of desirable properties. The proposed weighted
aggregation function is able to correct the “nationalism bias”found by Emerson et
al. (2009) in the 2000 Olympic Games diving competition and suggest the possibility
of a “reputation bias”. Our results can be applied to judgement sports and other
activities that require the aggregation of several personal evaluations.

Keywords: Weighted aggregation function; Judgement by Grading; Nationalism
Bias; Reputation Bias; Bias Correction; Olympic Games.
JEL classification: D72, D81, D03.

1. Introduction

The functioning of our society frequently relies on evaluations and rankings about
objects, performances or issues. These are made by qualified but potentially [con-
scious or unconscious] biased judges. Such is possible because the task is complex
and inherently open to subjectivity and manipulation. The solution usually involves
the aggregation of several evaluations into a single score.

The list of situations that require ranking based personal evaluations is endless.
It includes wines, books, films and music contests, scientific refereeing or any kind of
talent competition, which seem to be object of different sources of bias.1 Nowadays,

1These considerations are particular relevant in judgement sports as gymnastics, diving, skating,
boxing, surfing or dressage, among others. In many websites users are asked to anonymously (or
not) rate every kind of items, from touristic places to blogs comments.
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internet is turning these evaluation procedures even more common. However, recent
controversies have spurred researchers to explore bias in subjective judgments in
more detail.2

Similarly, the list of behavioral biases is enormous. For instance, “nationalism
bias” indicates a [usually conscious] tendency for judges to favor own country ath-
letes (Emerson et al., 2009; Zitzewitz, 2006). On the other hand, “reputation bias”
corresponds to a general [usually unconscious] tendency for judges to be influenced
by the athlete’s reputation (Kingstrom and Mainstone, 1985; Findlay et al., 2004;
among others).3 These bias are not merely an issue prevalent in subjective personal
evaluations but inherent to every dimension of life (Buchanan et al., 1998). Tversky
and Kahneman (1974) and Kahneman and Tversky (1996) describe them as shortcuts
strategies to complex process information.

In addition to the limitations associated with subjective judgments, difficulties
also arise at the aggregation stage. These issues dates back to Borda (1784), Con-
dorcet (1785) and Laplace (1820), see Balinski and Laraki (2010). Range voting
aggregation schemes are frequently used; voters rate each candidate with a grade
within a specified interval. The candidate with the highest sum or average is the
winner. The method has interesting properties and passes certain generalizations
of the Arrow (1950) impossibility theorem but still open to strategic manipulation.
This is actually its main limitation. Often a truncation is used to remove extreme
scores and mitigate potential bias. In this respect, majority judgment (Balinski and
Laraki, 2007; Balinski and Laraki, 2011) ranks candidates by the median score.4

They show that among the existing aggregation mechanisms it is the one that best
resists manipulation and reduces the incentives to exaggerate. However, excessive
truncation may leads to a loss of information and expressiveness that characterizes
these score voting type schemes. For instance, in a typical population ranging from
three to five appraisals, the removal of the highest and the lowest scores corresponds
to an important loss of information. In particular, if bias is only a possibility.

2In this respect, some statistical based rating procedures have shown better results than expert
opinions that are affected by several types of behavioral limitations (Dawes et al., 1989; Meehl,
1954). Other inconsistencies and paradoxical observations are reported in Ashenfelter and Quandt
(1999), Fritz et al. (2012) and Hodgson (2008). A further development of these behavioral factors
is behind the scope of the present paper.

3Other examples are “rank order bias” (Ginsburgh and Van Ours, 2003; among others) or “outlier
aversion bias” in which judges avoid rating far from the mean of other judges (Lee, 2008).

4A particular case is Brams and Fishburn (1978) approval voting method in which only two
different votes may be submitted.
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The well-known Gibbard (1973) and Satterthwaite (1975) theorems point for the
impossibility of designing one system that prevents all forms of bias.5 The present
paper acknowledges this limitation, but simultaneously proposes a practical aggre-
gation mechanism that attempts to reduce the bias influence on the final ranking.

In brief, our argument is the following. If a judge [conscious or unconscious] favors
(respectively, penalizes) a particular candidate, she must be grading above (respec-
tively, below) the mean score of the other judges. Therefore, the more (respectively,
less) a score deviates from the others choices; lower (respectively, higher) must be its
influence in the final score. We do not remove any particular score, instead, we use
the information contained in the other judges grades to reduce the relevance of this
particular score. Technically, the weight given to a particular judge is proportional
to other judges’ distance from the arithmetic mean grade. The formalization is done
in Section 2.

Our proposal is a refinement of the existent procedures. It does not dispense the
complimentary and simultaneous use of transparency policies, as for instance, the
public disclosure of each judge score, which are particularly powerful and simple anti-
bias mechanisms. Note that even if judges have reputation concerns or exist outside
monitoring, conscious bias does not disappear. Instead, it becomes more strategic
and subtle, moving inside narrower intervals, making detection even more difficult.
The aggregation mechanism in the present paper is a solution to these cases.

In Section 3 we state and show a set of desirable properties. Finally, in Section
4 we conclude with an illustrative application to the 2000 Olympic Games diving
competition. We show that the weighted aggregation function is able to correct the
“nationalism bias” found by Emerson et al. (2009). We also point the possibility
that the athletes in question have simultaneously benefited from “reputation bias”.

2. The weighted aggregation function

In general there is no evidence to claim whether a particular judgement is biased
or not. Therefore, we would like to have an aggregation mechanism that benefits from
the expressiveness of the ranking type schemes, but simultaneously deals with the
impossibility of strategy-proof-in-ranking and the existence of effective manipulation

5Another strand of the literature (Miller et al., 2005; Prelec, 2004; among others) proposes
methods for eliciting truthful scoring in situations where objective truth is unknowable, see Schlag
et al. (2015) for a survey. However, the operational applicability of these methods is limited by
the prior informational requirements, assumptions and knowledge about individuals’ true objective
functions.
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or bias. In other words, we want a mechanism that reduces the impact of extreme
scores while minimizing the loss of information.

Another difficulty is the fact that judges’ preferences are private information and
impossible to determine. Therefore, the aggregation function must depend only on
what can be known [in practice], which in many cases is very little.

With these objectives in mind, in what follows, we describe the aggregation mech-
anism suggested in the present manuscript.

Let si,j P rS�, S�s � R be the grade or score award by judge j P J � t1, ..., nu to
competitor or candidate i P I � t1, ...,mu . Let si � psi,1, ..., si,nq denote the vector
of grades award to individual i P I. The competitor i P I arithmetic mean grade
(over all judges j P J) is denoted and defined as si �

1
n

°n
j�1 si,j. The weight given

to the grade award by judge j P J to competitor i P I is a function, denoted as
wi,j : rS�, S�s

n Ñ r0, 1s , and defined as,

wi,jpsiq �

°n
l�j |si,l � si|

α

pn� 1q
°n
l�1 |si,l � si|

α , (1)

where
°n
j�1wi,j � 1, and α ¥ 0 controls for how much penalized are the grades that

are far from the mean. In other words, the weight given to the grade of judge j P J
depends on the grades of all other l � j P J judges and on their distances from the
arithmetic mean.

Our objective is to penalize more the largest grade deviations from the mean, the
ones that are most likely to be biased. However, a value of α that is too large can be
problematic because bias is only a possibility and, in some cases, can be dissimulated
away from the most extreme values. On the other hand, a low value of α may not
penalize enough extreme values.6

Given a competitor i P I, the Weighted Aggregation Function (WAF) weights
by wi,j the grade si,j of judge j P J. We denote this function as swi : rS�, S�s

n Ñ
rS�, S�s , and define it as,

swi psiq �
¸n

j�1
wi,jsi,j, (2)

for all i P I. In case of a tie between competitors the winner is the one with less
dispersion around swi . Otherwise, ties are broken through a lottery.

6Our notion of distance does not correspond to a metric as it does not satisfy the triangle
inequality, except for α ¤ 1.
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Note that the particular cases n � 1 and n � 2 are consistent. In the latter,
we always have wi,1 � wi,2 � 1{2, i.e., there is not enough information to make
considerations regarding whether one judge is more or less correct than the other.
The case n � 1 is trivial, i.e., swi � si,1. Another consistent particular case is when
all grades coincide, in this case we have equal weighting, i.e., wi,j � 1{n for all j P J,
and swi � si � si,j.

7

In practice, it is natural to expect that the WAF correction mechanism is common
knowledge among the judges. This knowledge allows consciously biased judges to
strategically readjust their grades. However, in order to introduce bias in the WAF,
the judges are forced to incur in more extreme behaviors, i.e., they must award
grades that are more extreme than in the case in which the aggregation function is
the arithmetic mean, for instance. This behavior exposes them to easier detection
by third party monitoring. For that reason, the WAF in the present paper does
not dispense public monitoring and the use of transparency policies as the public
disclosure of the grade given by each judge.8

3. Properties

The proposed WAF satisfies the six axioms of the basic model, as defined by
Balinski and Laraki (2007).9 Table 2 below resumes this information. In brief,
neutrality and anonymity mean that any permutation of competitors and judges,
respectively, does not affect the final grade. Unanimity means that if all judges
award the same grade the final grade must be that grade. The symmetry property

7In this case, if si,j � si for all j P J, we obtain an indetermination of the form 0{0. Since the
numerator and the denominator of wi,j are differentiable in some open interval around si, equal
weighting emerges after applying L’Hôpital’s rule.

8The WAF defined in (2) with weights given by (1) is equivalent to the aggregation function
swi �

°n
j�1 w

1
i,j

°n
l�j si,l{pn� 1q, with weights given by,

w1
i,j �

|si,j � si|
α

°n
l�1 |si,l � si|

α , (3)

for all i P I and j P J. Under this interpretation the intuition is reversed; the grade of a biased
judge increases the relevance given to the grades of the other n� 1 non-biased judges. The reader
is free to consider this alternative but equivalent formulation.

9Felsenthal and Machover (2008) provide a critical discussion on some additional properties
of majority judgement and range voting, see also Balinski and Laraki (2014). We note that in
some cases a direct transposition of some classical properties into ranking aggregation schemes is
of interest but may ignore the contextual reality (Chebotarev and Shamis, 1998).
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presented below is a more demanding generalization of unanimity, the implied equal
treatment of every grade imply neutrality and anonymity. Monotonicity means that
a higher grade cannot make the competitor in question worse-off. We will show that
monotonicity holds in most cases. The exception occurs for large deviations from
the mean and when these deviations are heavily punished, i.e., through a large value
α. This property is discussed in more detail below. Independence of irrelevant alter-
natives means that the grades award to other competitors cannot affect directly the
final grade of a given competitor. Continuity has the usual mathematical meaning.
The proof of some of these properties is simple and follows from the definitions of
weights in (1) and WAF in (2).

In this section, we state, prove and comment an additional set of desirable prop-
erties.

The aggregation function must weight equally grades that are at the same distance
below and above the mean. Monitoring is achieved by considering deviations from
the mean. Moreover, the WAF must return the arithmetic mean if there exist full
symmetry between grades. A particular case is when all scores coincide.

Property 1 (symmetry). If si,j ¡ si and si,k   si such that si,j � si � si � si,k,
then wi,j � wi,k. Moreover, if this is true for all j, k P J, then swi � si.

This property implies an equal treatment for the grades that are below and above
the mean. The satisfaction of this property is crucial because in general we cannot
tell whether a particular grade is affected from bias, or whether this bias is below
or above the mean. Moreover, a biased judge may benefit a particular competitor
in several ways: directly through positive bias, indirectly through negative bias in
the opponents of this competitor, or a combination of both. Therefore, we must be
equally attentive to both sides of the mean.

The equal treatment of grades stated in the first part of Property 1 implies
neutrality and anonymity. The second part of Property 1 implies unanimity. Note
that these are three of the axioms of the basic model (Balinski and Laraki, 2007).

Once we have numerical grades we should be able to perform basic arithmetic
transformations without changing their meaning. For instance, the distance between
two points on a number line should not change by adding the same quantity to
both numbers. The multiplication of two points on a number line does not have
this property; distance is not invariant under multiplication. However, since the
proposed weight function (1) is a ratio between sums of distances it is invariant under
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multiplication. Consequently, the weights become invariant to linear operations in
the grades.

Definition (scaling and translation invariant). The weights are scaling and
translation invariant if wi,jpφpsiqq � wi,jpsiq for all i P I and j P J, where φpsiq �
a� bsi with a P R, b P R� and si � psi,1, ..., si,nq.

Property 2 (scaling and translation invariant). The weights are scaling and
translation invariant.

In other words, the weights are invariant to affine transformations of all grades.
This property is passed to the WAF. Consequently, the WAF translates linearly
changes in the grades.

Definition (scale-consistent). The WAF is scale-consistent if swi pφpsiqq � φpswi psiqq
for all i P I, where φpsiq � a� bsi with a P R, b P R� and si � psi,1, ..., si,nq.

Property 3 (scale-consistent). The WAF is scale-consistent.

Scale-consistency is a less demanding property than language-consistency as it
is defined in Balinski and Laraki (2010). The latter property refers not only to
numerical grades but also to grades based on letters or descriptive phrases. This
issue is related with the meaningfulness problem of measure theory in the context
of jury decisions (see Krantz et al. (1971) for an early reference). In the present
manuscript we focus on the aggregation of well-defined grades on numerical scales
with no language-consistency issues among the judges.

A related but different property requires that the weight award by a given judge
decreases with the distance of that grade from the mean.

Property 4 (decreasing weight). Suppose that there exist at least two different
grades other than si,j. Then Bwi,j{Bsi,j ¡ 0 if si,j   si and Bwi,j{Bsi,j   0 if si,j ¥ si
for all i P I and j P J. Otherwise, wi,j is constant in si,j.

The WAF decreases the impact of the most extreme values on the final grade by
weighing them less than other grades that are closer to the mean. In our context,
since the objective of the WAF is to correct for the possibility of bias this property
is natural and the intuition is immediate. The more judge j moves away from the
mean the less weight is given to her grade and more weight is given to the other
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judges grades. This is the first statement of Property 4 and holds when there exist
at least two different grades other than si,j.

10

The second statement of Property 4 states that weights are constant when there
is only one grade (or less) different from si,j.

11 In this case we may have two different
scenarios:

(i) In one scenario, we have n � 1 judges coinciding but judge j proposing some-
thing different. Then, it is natural to think that judge j is more likely to be
biased than the other n � 1 judges because she is departing from the others.
Consequently, the weight given to judge j becomes constant at some minimal
value. The judge j is not ignored (because wi,j is strictly positive, see the proof
of Property 4) but its importance is reduced to a minimum (judge j is only
ignored if αÑ 8, see Property 5 below). This property guarantees representa-
tiveness; some information may be less weighted but is not destroyed. In other
words, since the weights are bounded from above and below, the WAF neither
exclude any grade (i.e., 0   wi,j) nor is based in a single grade (i.e., wi,j   1),
with exception of the trivial case n � 1.

(ii) In the other scenario, we have n � 2 judges coinciding with judge j but some
judge k proposing something different. In this case the judge j is part of the
group of judges that is more likely to be correct. Consequently, the grade
of judge j receives a larger weight than in the previous scenario (but also
constant).

However, the fact that wi,j might be constant in some particular cases does not
imply that the WAF is constant. This issue is related with the monotonicity property
discussed below.

In order to discussing monotonicity we consider two asymptotic properties of the
WAF. These properties allow us to better understand the relation between the WAF
and the value of α. Moreover, they provide a basis to understand why sometimes
monotonicity fails.

Before we present these properties, we define extreme grade as the grade at the
largest distance from the mean. Since extreme grades are not necessarily unique

10This statement could have been written without the resource to derivatives as follows: ”(...)
If si,j ¡ si,k ¡ si, then wi,j ¡ wi,k, while if si,j   si,k ¤ si, then wi,j   wi,k, for all i P I and
j, k P J.” The reader may find this alternative but equivalent statement more intuitive.

11The case in which all judges coincide is trivial; all weights are equal and the WAF delivers the
common grade.
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and equal, we also define the average extreme grade as the arithmetic mean over all
extreme grades.

Property 5 (asymptotic cases). If α Ñ 0 then swi Ñ si. If α Ñ 8 then swi Ñ
p
°n
l�1 si,l � si,eq{pn� 1q, where si,e denotes the average extreme grade.

In the limit case αÑ 0, the WAF converges to the mean grade. The WAF weights
all grades equally independently of their distance from the mean (i.e., wi,j Ñ 1{n for
all j P J).

In the limit case α Ñ 8, the WAF ignores the influence of the average extreme
grade. Intuitively, if there is only one extreme grade, the WAF ignores this grade -
the one that is more likely to be biased - and averages with equal weight the other
n � 1 grades. In the most general case, we may consider the possibility of several
extreme grades. If there are r extreme grades, the WAF weights each of these r
extreme grades by pr� 1q{ppn� 1qrq and each of the other n� r non-extreme grades
by 1{pn�1q. The intuition is the same as in the r � 1 case, but we have two different
situations. For instance, in the profile of grades p6, 6, 7, 9, 9q since si � 7.4, we have
two equal extreme grades - both in the same side of the mean, i.e., si,4 � si,5 � 9.
In the profile of grades p5, 6, 7, 8, 9q since si � 7, we have two but unequal extreme
grades - one in each side of the mean, i.e., si,1 � 5 and si,5 � 9.

These observations imply that the WAF cannot be monotonic in a single judge
grade for all values of α. In order to see it, consider the following example.

Example 1. Consider the profile of grades p5, 6, 6.9q with si � 5.97. Suppose that
α is very large (say α � 8) such that the most extreme grade is removed from swi
according to Property 5. In this case, the grade si,1 � 5 has the largest distance from
the mean and for that reason is removed from swi Ñ p6 � 6.9q{2 � 6.45. However, if
si,3 increases from 6.9 to 7.1, then si,3 becomes the most extreme grade and for that
reason is removed from swi Ñ p5 � 6q{2 � 5.5. In this example, after the increase of
si,3, the WAF falls abruptly from swi � 6.45 to swi � 5.5 which shows the failure of
monotonicity with respect to si,3.

The example was constructed specially to show the failure of monotonicity in a
simple way and to motivate the discussion about the meaning and importance of
this property in a bias correction mechanism. This is a crucial aspect; in some sense
we allow a judge to have full control over her own grade but we only allow partial
and restricted influence over the final grade. In this context, we do not exclude
the possibility that the bias correction mechanism reacts to extreme grades with a
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detrimental effect on the final score. In other words, if a judge awards a competitor
with a grade that is too large (respectively, small), with respect to the other judges,
the final grade may decrease (respectively, increase). Consequently, the existence of
a monotonic relation between a particular grade and the final score is not always
guaranteed.

The following property states under which circumstances the WAF is monotonic.

Property 6 (monotonicity). swi is monotonic in si,j if α is sufficiently small.
swi is monotonic in si,j if si,j is sufficiently close to the other judges mean.

The numerical example in Table 1 provides an illustration of Property 6 for α � 3.
Column (6) of Table 1 shows that while the grade of the first judge raises from si,1 � 6
to si,1 � 7 or from si,1 � 7 to si,1 � 8 we observe a monotonic relation between si,1
and swi . In this case, si,1 remains sufficiently close to the mean. However, when the
grade of the first judge raises from si,1 � 8 to si,1 � 9 the WAF falls from swi � 7.314
to swi � 7.303 and monotonicity fails. This movement is due to the fall in the weight
given to the first judge relatively to the increase in the grade (the weight decreases
from wi,1 � 0.204 to wi,1 � 0.107, see Column (1) of Table 1).

The failure of monotonicity occurs because the WAF reacts to extreme grades
(the ones that more likely to have been object of bias) through a correction in the
opposite direction. In such case an extreme positive (respectively, negative) grade
reduces (respectively, rises) the final grade instead of increase (respectively, decrease)
it. In our context, since the objective is to propose a bias correction mechanism
the failure of monotonicity can be seen as a desirable property. This observation
gains even more strength if we consider the circumstances under which it occurs. In
particular, monotonicity fails if α is large enough or si,j is sufficiently distant from
the mean.

Note that the choice of α reflects an explicit intention of punishing deviations
from the mean. In our context, this parameter is controlled by the social planner or
the competition designer. The larger the value of α, the stronger is the reduction in
the weight given to the grades that are distant from the mean. However, if we are
more tolerant regarding the grades that are distant from the mean the monotonic
relation between swi and si,j is likely to be satisfied.

Note also that a necessary condition for monotonicity to fail is that si,j is an
extreme grade. Otherwise, inside the interval bounded by the largest and the lowest
grade, the monotonic relation between swi and si,j is satisfied. In some sense, the
WAF has a self-correction mechanism against extreme grades. Column (6) of Table
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1 shows that monotonicity fails when the first judge raises her grade above the other
judges largest grade which in this case is si,5 � 8.

In spite of the failure of monotonicity being convenient, because it occurs un-
der extreme circumstances, there are also negative aspects associated with it. For
instance, if a given judge ranks individual A above B then the bias correction mech-
anism will not necessarily respect this ordering. Consequently, if that judge is re-
moved from the average then individual A can improve over individual B. This effect
is known in the literature as the no-show paradox (Felsenthal and Machover, 2008;
Fishburn and Brams, 1983; Smith, 1973).

profile wi,1 (1) wi,2 (2) wi,3 (3) wi,4 (4) wi,5 (5) si (6) swi (7) skew

(6,6,7,7,8) 0.204 0.204 0.249 0.249 0.094 6.800 6.686 �

(7,6,7,7,8) 0.250 0.125 0.250 0.250 0.125 7.000 7.000 0

(8,6,7,7,8) 0.204 0.094 0.249 0.249 0.204 7.200 7.314 �

(9,6,7,7,8) 0.107 0.155 0.248 0.248 0.242 7.400 7.303 �

Table 1: Weights, WAF, Mean, Median and Skewness (case α � 3): The effect of variations
in the first judge grade when the grades of the other four judges is constant.

Now, we consider another property of the WAF that is also related with Property
5.

Recall that the proposed aggregation function has the objective of controlling for
individual bias. In this context, the correction mechanism gives more weight to the
opinion of the judges that are assumed not to be biased. The question is, which are
the most likely unbiased judges? Without further information, the answer points
to the judges whose grades show higher prevalence and similitude. This idea has
motivated the WAF proposed in the present paper. An implication is the following
property.

Property 7 (homogeneity stickiness). If the distribution of grades has positive
(negatively, respectively) skewness then swi   si (swi ¡ si, respectively).

The WAF compensates positive skewness by lowering swi below si, and does the
opposite otherwise. This property expresses a movement of the final grade towards
the most similar and frequent grades of the distribution. The most homogeneous
majority has a greater decisiveness in the final grade. This property is important
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because a large group of individuals with more even grades is more likely to be correct
and more difficult to manipulate than a small group.

As a rule of thumb positive skewness implies median   si and negative skewness
implies si   median. However, this rule sometimes fails (e.g., for multimodal distri-
butions or distributions where one tail is long but the other is heavy). In our case,
this rule fails for discrete distributions in which the areas to the left and the right of
the median are not equal. This observation highlights situations in which the WAF
departure from the median is immediate because in those cases the median does not
adjust in the correct direction. In order to better understand this point, consider the
numerical example in Table 1. Part 1 highlights the difference between the median
and the WAF. Part 2 shows how the homogeneity stickiness Property 7 works and
establishes the connection with Property 5.

Example 2. (Part 1) Suppose that n � 5 and si � p6, 6, 7, 7, 8q. In this case the
distribution of grades is positively skewed (Last column in Table 1). The WAF gives
more weight to the most homogenous set of grades p6, 6, 7, 7, .q (Columns (1)-(5) of
Table 1) and we have swi � 6.686   si � 6.800 (Columns (6) and (7) of Table 1).
However, the median moves in the opposite direction, i.e., si � 6.800   median � 7.

(Part 2) In the continuation of Part 1, if the first judge awards si,1 � 8, the
distribution of grades becomes negatively skewed. The WAF gives more weight to
the largest grades p8, ., 7, 7, 8q because they form the most homogeneous block. How-
ever, if the first judge awards si,1 � 9, the distribution of grades becomes positively
skewed again. The WAF gives more weight to the lowest four grades p., 6, 7, 7, 8q.
Finally, note that according to Property 5, if αÑ 8 then swi is the mean of the most
homogeneous block of four grades.

This example is not stylized. With five judges the profiles of grades presented
in Example 2 are extremely common in judgement sports as gymnastics, diving,
skating, boxing, surfing or dressage, among others.

Finally, Properties 1-7 cannot uniquely characterize the proposed aggregation
method, mostly because in our setting the weights are not constant but depend in a
non-trivial way on the grades that they are weighting, see expressions (1) and (2).
Beliakov et al. (2007) and Grabisch et al. (2011a,b) survey this literature. However,
in general Properties 1-7 are not easy to satisfy by other aggregation methods because
of nonlinearities and cross effects.
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Weighted Aggregation Function

Neutrality Yes

Anonymity Yes

Unanimity Yes

Monotonicity Yesbq

Independent of irrelevant alternatives Yes

Continuity Yes

Symmetry Yes

Scaling and translation invarianceaq Yes

Scale-consistency Yes

Decreasing weightaq Yes

Homogeneity stickiness Yes

Table 2: General properties of the Weighted Aggregation Function: aq these properties
refer to the weights, bq this property is true under certain conditions.

4. An Application

The diver Fernando Platas of Mexico lost the 2000 Olympic gold medal in the
3-meter springboard diving competition with an extremely narrow margin to Xiong
Ni of China (Column (1) of Table 3). The result generated controversy among fans
and press because from the eleven dives counting for the final ranking, three were
graded by the Chinese judge Facheng Wang during the semi-final stage.12 Some years
later, Emerson et al. (2009) could not statistically reject the hypothesis that Xiong
Ni has benefited from nationalistic judging bias.

The method used by the International Olympic Committee to compute the final
score was the following one. The judging panel was composed by seven judges.
Each dive final grade is calculated by summing the middle five awards (the lowest
and highest scores were removed) and then multiplying the obtained number by the
degree of difficulty DDi and by 3{5, according to the following formula:

pointsi � DDi �
3

5
�

�¸7

j�1
si,j �min

j
tsi,ju �max

j
tsi,ju



,

for all i P I.

12Judges from competitors’ countries were not assigned to the final - but they could be in earlier
rounds, as in this case, in the semi-final stage.
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Our results corroborate Emerson et al. (2009). The application of the WAF (with
α � 2) to the grades award in the eleven dives returns that Fernando Platas would
have won the gold medal with 709.61 points against the Ni Xiong 709.39 points
(Column (2) in Table 3).

Rank Points (1) WAF (2) MJ (3) (4) = (2)-(1)

Xiong Ni 1 708.72 709.39 713.25 0.67

Fernando Platas 2 708.42 709.61 712.20 1.19

Dmitri Sautin 3 703.02 704.29 699.90 1.09

Xiao Hailiang 4 671.04 671.06 674.10 0.02

Dean Pullar 5 647.40 647.94 645.30 0.54

Troy Dumais 6 642.72 641.62 641.85 -1.10

Mark Ruiz 7 638.22 636.84 631.50 -1.38

Ken Terauchi 8 634.47 633.26 630.60 -1.22

Stefan Ahrens 9 619.17 616.94 617.10 -2.23

Andreas Wels 10 616.53 613.92 616.20 -2.61

Imre Lengyel 11 613.47 613.67 616.20 0.20

Tony Ally 12 583.80 585.00 588.60 1.20

Table 3: The Olympic Committee versus the Weighted Aggregation Function. Source:
Emerson et al. (2009).

Note that the International Olympic Committee and the WAF scoring rules are
very similar (Columns (1) and (2) of Table 3, respectively). This aspect is important
because we want the WAF to correct for potential bias but not to affect indiscrim-
inately the results because bias is only a possibility. In some sense our proposal is
a refinement of the International Olympic Committee procedure, and does not dis-
pense transparency and public disclosure policies which are particularly simple and
powerful anti-bias monitoring mechanisms.

Note that majority judgement (Column (3) of Table 3) preserves the International
Olympic Committee ranking. Therefore, failing to capture the nationalistic judging
bias in favor of the diver Xiong Ni found by Emerson et al. (2009). Regarding this
aspect, majority judgement is a particularly powerful aggregation method against
bias and manipulation. The failure in this particular case is due to the asymmetry of
the median method; see Part 1 of Example 2 above. Note that when we remove one
grade from the left and one grade from the right of the median these two grades can
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be very asymmetric. In the case of great asymmetry there is a loss of information
and in this particular case explains why majority judgement was not able to remove
the existent bias. The situation considered in Table 3 is just a particular example;
in other situations majority judgement may effectively remove bias.

Finally, the comparison of the difference between the WAF and the International
Olympic Committee scores (Column (4) of Table 3) suggests the possibility of an-
other different source of bias.13 The divers ranked from the first to the fifth position
present a positive difference while the following five divers show a negative differ-
ence. This pattern seems to suggest a tendency for the judges to benefit the better
positioned divers - reputation bias. If this was the case, both athletes (Fernando
Platas and Ni Xiong) have been benefited in this dimension. The joint consideration
of these two forms of bias (i.e., nationalistic and reputation bias) may return the first
place back to Xiong Ni. The statistical validation of this claim requires information
that is not easily available. Nonetheless, further research on these issues is of great
relevance to understand the behavioral forces that shape judges decisions. The study
of multiple and simultaneous sources of bias seems to be a particularly interesting
and unexplored subject.

Acknowledgments: I wish to thank to Ricardo Ribeiro, Juan Pablo Rincón-Zapatero, the Asso-

ciate Editor and two anonymous referees, as well as several seminars and congresses participants

for helpful comments and discussions. Financial support from the Spanish Ministerio of Ciencia y
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13It is interesting to note that the aggregation function may have a dual interpretation. If
swi   si (respectively, swi ¡ si) the mechanism corrects for the possibility that candidate i is
benefited (respectively, penalized) by a single judge bias. However, we can reverse the argument
and assume that the minority is correct and look for the existence of a majority bias. In this case,
swi   si (respectively, swi ¡ si) suggests that candidate i might have been penalized (respectively,
benefited) by a generalized bias (e.g., “reputation bias” - judges are influenced by the athlete’s
reputation). This feature of the WAF is particularly interesting. However, the WAF defined in (2)
with weights as in (1) does not perform the correction. Such correction could be done by replacing
the weight function (3) into (2). In this case, the hypothesis is that there are n� 1 biased judges.
Therefore, their grades should lose relevance relatively to the grade of the unbiased judge j P J.
Similar reasoning can be applied to any other number of suspected biased judges.

15



Appendix

Proof of Property 1. In order to show the first statement just note that
if si,j � si � si � si,k by the definition of absolute value function we must have
|si,j � si|

α � |si,k � si|
α . Since all other terms in wi,j and wi,k are similar, we must

have wi,j � wi,k. The second statement implies that if for every si,j exist another
si,k at the same distance from the mean, say si,j � si � si � si,n�1�j which can be
rewritten as si,j � si,n�1�j � 2si, then by the first statement wi,j � wi,n�1�j, and we
have:

swi �
¸n

j�1
wi,jsi,j �

¸n{2

j�1
wi,jpsi,j � si,n�1�jq �

¸n{2

j�1
2wi,jsi � si,

because
°n{2
j�1wi,j � 1{2. In the case that the total number of grades is odd, then there

must exist a odd number of grades equal to the mean in order to exist symmetry.

Proof of Property 2. In order to show scaling and translation invariance,
apply the affine transformation function φpsi,jq � a� bsi,j, where a P R and b P R�,
to each grade si,j in the weight function wi,j, given by expression (1), to obtain:

wi,jpφpsiqq �

°n
l�j

��a� bsi,l �
1
n

°n
k�1pa� bsi,kq

��α
pn� 1q

°n
l�1

��a� bsi,l �
1
n

°n
k�1pa� bsi,kq

��α
�

°n
l�j

��a� bsi,l � a� 1
n
b
°n
k�1 si,k

��α
pn� 1q

°n
l�1

��a� bsi,l � a� 1
n
b
°n
k�1 si,k

��α
�

°n
l�j |si,l � si|

α

pn� 1q
°n
l�1 |si,l � si|

α � wi,jpsiq,

for all i P I and j P J.

Proof of Property 3. In order to show scale-consistency, apply the affine
transformation function φpsi,jq � a�bsi,j, where a P R and b P R�, to each grade si,j
in the WAF swi psiq, given in expression (2). Since by Property 2 weights are scaling
and translation invariant it is enough to show that:

swi pφpsiqq �
¸n

j�1
wi,jpa� bsi,jq � a� b

¸n

k�1
wi,jsi,j � φpswi psiqq,

because
°n
j�1wi,j � 1 for all i P I.

Proof of Property 4. We start by considering the second statement of Prop-
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erty 4, i.e., the case in which there is only one grade different from si,j.
14 We have

two different scenarios. (i) In the first scenario, n � 1 judges coincide but judge j
proposes something different. Let si,k � si,m for all k � j P J, then, we can write°n
l�j |si,l � si|

α � pn � 1q |si,m � si|
α . After having replaced it in expression (1) we

obtain:

wi,j �
pn� 1q |si,m � si|

α

pn� 1qp|si,j � si|
α � pn� 1q |si,m � si|

αq
�

1

pn� 1qα � pn� 1q
� wmin, (4)

where in the last equality we made use of the fact that in this case |si,j � si| �
pn � 1q|si,m � si| for n ¡ 1. Consequently, the weight given to judge j is constant
at some minimal value wmin. (ii) In the second scenario, n � 2 judges coincide with
judge j but some other judge k proposes something different. Consequently, judge j
grade receives a larger weight than wmin because she is in the group of judges that
is likely to be correct, i.e., we have wi,j � p1 � wi,kq{pn � 1q � p1 � wminqwmax.15 In
both cases wi,j is constant with si,j.

Now, we consider the case in which there are at least two grades different from
si,j, i.e., the first statement of Property 4. In this case wi,j is given by expression
(1). In order to reduce the size of the expression of the derivative Bwi,j{Bsi,j, let
zi,j � sgnrsi,j � sis P t�1, 0, 1u denote the sign function where si,j ¡ si implies
zi,j � 1, si,j � si implies zi,j � 0 while si,j   si implies zi,j � �1. Then, differentiate
wi,j with respect to si,j to obtain:

Bwi,j
Bsi,j

�
�α 1

n
|si,j � si|

α°n
l�j zi,l |si,l � si|

α�1 � α
�
1� 1

n

�
zi,j |si,j � si|

α�1°n
l�j |si,l � si|

α

pn� 1q p
°n
l�1 |si,l � si|

αq
2 ,

(5)
for all i P I and j P J, where we made use of the fact that

°n
l�1 |si,l � si|

α �
|si,j � si|

α �
°n
l�j |si,l � si|

α and that the derivative of
°n
l�1 |si,l � si|

α with respect

to si,j is given by αzi,jp1�1{nq |si,j � si|
α�1�αp1{nq

°n
l�j zi,l |si,l � si|

α�1 . We want to
show that Bwi,j{Bsi,j ¡ 0 if si,j   si (zi,j   0) and Bwi,j{Bsi,j   0 otherwise. Since the
denominator is strictly positive the sign of the derivative is given by the numerator.
We have four cases to consider that depend on whether zi,j and

°n
l�j zi,l |si,l � si|

α�1

14The case in which all judges coincide is trivial because all weights are equal.
15We can show that the maximum weight wmax � 1{pn � 1q, for n ¡ 2, is given to the judge or

judges awarding grades that match the arithmetic mean. If all judges award equal grades they are
all equally weighted. If n � 2 we always have wi,j � wi,k � 1{2 because both judge are equally
likely to be correct.
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are negative or positive. If zi,j ¡ 0 and
°n
l�j zi,l |si,l � si|

α�1 ¡ 0, it is immediate

that Bwi,j{Bsi,j   0, while if zi,j   0 and
°n
l�j zi,l |si,l � si|

α�1   0, it is immediate

that Bwi,j{Bsi,j ¡ 0. In the other two cases, if zi,j ¡ 0 and
°n
l�j zi,l |si,l � si|

α�1   0,
in order to show that Bwi,j{Bsi,j   0 we must consider the scenario that makes it
more difficult to satisfy, i.e., when zi,l � �1 for all l � j. Similarly, if zi,j   0 and°n
l�j zi,l |si,l � si|

α�1 ¡ 0, in order to show that Bwi,j{Bsi,j ¡ 0 we must consider the
scenario that makes it more difficult to satisfy, i.e., when zi,l � 1 for all l � j. In
both cases we are left to show that the same inequality is true:

pn� 1q
¸n

l�j
|si,l � si|

α ¡ |si,j � si|
¸n

l�j
|si,l � si|

α�1 ,

for all i P I and j P J. Note that for the case si,j � si the inequality holds trivially.
Since the WAF is scale-consistent (Property 3) we can normalize si � 0 without loss
of generality and for simplicity consider the case of two different grades other than
si,j, i.e., si,j   si � 0   si,k, si,l (the other case si,j ¡ si � 0 ¡ si,k, si,l follows the
same argument). Then, the above inequality becomes:

2p|si,k|
α � |si,l|

αq ¡ p|si,k � si,l|qp|si,k|
α�1 � |si,l|

α�1q,

where we have used the fact that si � 0 implies that �si,j � si,k � si,l. Since all
quantities are non-negative we can remove the absolute value function from the
previous inequality to obtain psi,k

α�1�si,l
α�1qpsi,k�si,lq ¡ 0 which is strictly positive

for all si,k � si,l with k � l P J.

Proof of Property 5. We start by considering the limit αÑ 0. Suppose that
there are t � 0, 1, ..., n � 1 grades such that si,k � si, denoted with the subindex
k P K � J (the case t � n is trivially true that swi � si), and n� t grades such that
si,j � si, denoted with the subindex j P JzK. Then, if αÑ 0 we have |si,j � si|

α Ñ 1
for all j P JzK, and |si,k � si|

α Ñ 0 for all k P K. Consequently,
°n
l�j |si,l � si|

α Ñ
n � 1 � t,

°n
l�k |si,l � si|

α Ñ n � t and
°n
l�1 |si,l � si|

α Ñ n � t, which implies that
wi,j Ñ pn� 1� tq{ppn� tqpn� 1qq for all j P JzK and wi,k Ñ 1{pn� 1q for all k P K.
Therefore, we can write swi Ñ

°
jRKpn�1�tqsi,j{ppn�tqpn�1qq�tsi,k{pn�1q, where

si,k � si �
°n
j�1 si,j{n, which implies that si,k � si �

°
jRK si,j{pn � tq. Replacing

the latter two equalities into swi , after some algebra, we obtain that swi Ñ si.
Now, consider the limit α Ñ 8. In this case we can rewrite wi,j as wi,j �

1{ppn � 1qp1 � |si,j � si|
α {
°n
l�j |si,l � si|

αqq, for all j P J. Suppose that there are
r � 1, ..., tpn� 1q{2u extreme grades (not necessarily equal but at the same distance
from the mean), where txu denotes floor function - the largest integer less than or
equal to x (note: we cannot have more than tpn � 1q{2u extreme grades, otherwise,
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they will not be the extreme grades). There are two different situations to consider.
(i) If |si,j � si| is one of the largest grade differences with respect to the mean (i.e.,
si,j is an extreme grade) and α Ñ 8, then |si,j � si|

α {
°n
l�j |si,l � si|

α Ñ 1{pr � 1q
and

wi,j Ñ 1{ppn� 1qp1� 1{pr � 1qqq � pr � 1q{ppn� 1qrq.

Note that in the particular case r � 1 we have wi,j Ñ 0. (ii) If |si,j � si| is not one
of the largest grade differences with respect to the mean (i.e., si,j is not an extreme
grade) and αÑ 8, then |si,j � si|

α {
°n
l�j |si,l � si|

α Ñ 0 and wi,j Ñ 1{pn� 1q for all
j � k P J. Altogether, we have n� r non-extreme grades, each weighted by 1{pn�1q
and r extreme grades, each weighted by pr�1q{ppn�1qrq. Let the r extreme grades be
indexed as j � n�r�1, ..., n, then swi Ñ p

°n�r
j�1 si,j�pr�1q

°n
j�n�r�1 si,j{rq{pn�1q.

After adding and subtracting
°n
j�n�r�1 si,j in the numerator we obtain that swi Ñ

p
°n
j�1 si,j �

°n
j�n�r�1 si,j{rq{pn � 1q, where

°n
j�n�r�1 si,j{r is the average extreme

grade si,e.

Proof of Property 6. We start by showing the first statement of Property
6, i.e., swi is monotonic in si,j for small α. In order to do it we proceed as follows.
Since α P r0,8q we will show that swi is monotonic increasing in si,j for α small,
i.e., in the zero neighborhood. Then, through a numerical example, we show that
for sufficiently large α the monotonic relation between swi and si,j is not guaranteed.
Note that the WAF defined in (2) can be written as (see Footnote 8):

swi �
�¸n

l�1
|si,l � si|

α
¸n

k�l
si,k

	
{
�
pn� 1q

¸n

l�1
|si,l � si|

α
	
� N{D,

for all i P I and j P J, where N and D denote the expressions in the numerator
and denominator, respectively. Recall that the derivative of swi with respect to si,j
is given by Bswi {Bsi,j � pN 1D � ND1q{D2. In the case that si,j � si for all j P J
(the case that si,k � si for some k P J follows the same argument) the derivative of
the expression in the denominator with respect to si,j is equal to the numerator of
expression (5) multiplied by n� 1, that is:

D1 � pn� 1qαzi,jp1� 1{nq |si,j � si|
α�1 � pn� 1qαp1{nq

¸n

l�j
zi,l |si,l � si|

α�1 ,

where we use the same notation as in the Proof of Property 4. While the expression in
the numerator can be written as N � |si,j � si|

α°n
k�j si,k �

°n
l�j |si,l � si|

α°n
k�l si,k.
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The derivative of this expression with respect to si,j is given by:

N 1 � αzi,jp1� 1{nq |si,j � si|
α�1

¸n

k�j
si,k

�αp1{nq
¸n

l�j
zi,l |si,l � si|

α�1
¸n

k�l
si,k �

¸n

l�j
|si,l � si|

α .

In the limit α Ñ 0, we have N Ñ pn � 1q
°n
l�1 si,l, D Ñ pn � 1qn, N 1 Ñ n � 1

and D1 Ñ 0. Therefore, Bswi {Bsi,j Ñ 1{n for α Ñ 0 which is strictly positive for any
profile of grades. For large values of α we show through a numerical example the
failure of monotonicity. Column (6) of Table 1 shows that for α � 3 when the grade
of the first judge raises from si,1 � 8 to si,1 � 9 the WAF falls from swi � 7.314 to
swi � 7.303, showing that monotonicity is not guaranteed for large α.

Now, we consider the second statement of Property 6. The proof of monotonicity
for si,j around the mean follows a similar strategy. We evaluate Bswi {Bsi,j in the
neighborhood of si, i.e., for si,j Ñ si which is equivalent to si,j Ñ

°n
l�j si,l{pn � 1q

(the other judges mean). In this case we have |si,j � si|
α Ñ 0, and consequently,

N Ñ
°n
l�j |si,l � si|

α°n
k�l si,k, D Ñ pn� 1q

°n
l�j |si,l � si|

α ,

N 1 Ñ �αp1{nq
¸n

l�j
zi,l |si,l � si|

α�1
¸n

k�l
si,k �

¸n

l�j
|si,l � si|

α ,

and D1 Ñ �pn � 1qαp1{nq
°n
l�j zi,l |si,l � si|

α�1 . At this stage the expression for
Bswi {Bsi,j is particularly large. Since the WAF is scale-consistent (Property 3) we can
normalize si � 0 without loss of generality, which implies that si,j Ñ 0 and we can
write

°n
k�l si,k � �si,l. Then, the expression for Bswi {Bsi,j converges to:

p�α 1
n

°n
l�j zi,l |si,l|

α�1 p�si,lq �
°n
l�j |si,l|

αq
°n
l�j |si,l|

α � α 1
n

°n
l�j |si,l|

α p�si,lq
°n
l�j zi,l |si,l|

α�1

pn� 1qp
°n
l�j |si,l|

αq2
,

(6)
for all i P I and j P J. Note that si,l ¡ 0 is equivalent to zi,l ¡ 0 (positive and above
the mean) and implies that zi,l |si,l|

α�1 p�si,lq � � |si,l|
α , |si,l|

α p�si,lq � � |si,l|
α�1

and zi,l |si,l|
α�1 � |si,l|

α�1 , while si,l   0 is equivalent to zi,l   0 (negative and
below the mean) which implies that zi,l |si,l|

α�1 p�si,lq � � |si,l|
α , |si,l|

α p�si,lq �
|si,l|

α�1 and zi,l |si,l|
α�1 � � |si,l|

α�1 . Therefore, we have
°n
l�j zi,l |si,l|

α�1 p�si,lq �°n
l�j |si,l|

α ,
°n
l�j |si,l|

α p�si,lq � �
°n
l�j^� |si,l|

α�1�
°n
l�j^� |si,l|

α�1 and
°n
l�j zi,l |si,l|

α�1 �°n
l�j^� |si,l|

α�1 �
°n
l�j^� |si,l|

α�1 , where the indices of summation l � j ^ � and
l � j ^ � denote the summation over the positive and the negative terms different
from j, respectively. Since the denominator of expression (6) is strictly positive the
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numerator determines the sign of Bswi {Bsi,j. After having replaced these equalities,
the numerator of expression (6) becomes:

pα
1

n

¸n

l�j
|si,l|

α �
¸n

l�j
|si,l|

αq
¸n

l�j
|si,l|

α

�α
1

n
p�

¸n

l�j^�
|si,l|

α�1 �
¸n

l�j^�
|si,l|

α�1qp
¸n

l�j^�
|si,l|

α�1 �
¸n

l�j^�
|si,l|

α�1q,

for all i P I and j P J. The component in the first line is strictly positive. Therefore,
the only way for this expression to be negative is when the term in the second line
is sufficiently negative. We show that such is impossible. Consider the worst case
scenario in which there is only one large positive term and many small negative terms
such that

°n
l�j^� |si,l|

α�1 � |si,l|
α�1 ¡ 0 and

°n
l�j^� |si,l|

α�1 � 0, respectively. The
objective of this assumption is to obtain the largest negative term in the second line.
In this case we obtain that:

Bswi
Bsi,j

Ñ
pα 1

n
|si,l|

α � |si,l|
αq |si,l|

α � α 1
n
|si,l|

α�1 |si,l|
α�1

pn� 1qp|si,l|
αq2

�
pα 1

n
|si,l|

2α � |si,l|
2αq � α 1

n
|si,l|

2α

pn� 1qp|si,l|
αq2

�
1

pn� 1q
,

for all i P I and j P J, which is strictly positive for any profile of grades. The
symmetric worst case scenario with a single negative term and many small positive
terms follows the same argument. For values of si,j distant from the other judges
mean we show through a numerical example the failure of monotonicity. Column (6)
of Table 1 shows that while the grade of the first judge moves from si,1 � 8 to si,1 � 9,
i.e., it gets more distant from the other judges mean

°n
l�2 si,l{4 � p6�7�7�8q{4 � 7,

the WAF falls from swi � 7.314 to swi � 7.303, showing that monotonicity is not
guaranteed for si,1 sufficiently away from the other judges mean.

Finally, following Property 4, if there exist only one grade different than si,j then
we can construct a situation in which occurs a downward discontinuity in the weight
of judge j after an increase in her grade by an infinitesimal amount. In order to
complete the proof we must verify this case. In order to construct such case assume
that initially all judges (including judge j) are awarding the mean grade si,j � si �
si,m. Consequently, all grades are equally weighted by 1{n and swi � si � si,m. Now,
suppose that judge j increase her grade from si,m to si,j ¡ si,m. In this case she
departs from the other n � 1 judges and the weight wi,j given to her grade falls
discontinuously from 1{n to wmin � 1{ppn � 1q � pn � 1qαq (see scenario (i) in the
proof of Property 4) while the weight of the other n � 1 judges jumps from 1{n to
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p1 � wminq{pn � 1q. Therefore, in the discontinuous case, the difference between the
new WAF swi and the initial WAF swi � si,m is given by:

swi � si,m �
1

pn� 1q � pn� 1qα
si,j �

�
1�

1

pn� 1q � pn� 1qα



si,m � si,m

�
si,j � si,m

pn� 1q � pn� 1qα
,

which is strictly positive for all si,j ¡ si,m. The proof of the case si,j   si follows
from symmetry (Property 1).

Proof of Property 7. If the distribution of the grades has positive (negatively,
respectively) α�1-th absolute central moment, defined as

°n
k�1 |si,k � si|

α psi,j�siq{n
(where if α ¡ 0 is even and integer we have the usual α�1-th central moment), then
swi   si (swi ¡ si, respectively). In order to show the relation between the α � 1-
th absolute central moment, the skewness and the WAF manipulate the inequality
swi   si to obtain:

si ¡ swi �
¸n

j�1

°n
l�j |si,l � si|

α

pn� 1q
°n
l�1 |si,l � si|

α si,j

ô 0 ¡
¸n

j�1

°n
l�j |si,l � si|

α � |si,j � si|
α � |si,j � si|

α

pn� 1q
°n
l�1 |si,l � si|

α psi,j � siq

ô
¸n

j�1
|si,j � si|

α psi,j � siq{ppn� 1q
¸n

l�1
|si,l � si|

αq ¡ 0,

for all i P I. The sign of the expression in the numerator (i.e., the α� 1-th absolute
central moment) determines the skewness, which is positive if swi   si. The case
si   swi follows the same argument.

References

Arrow, K. J., 1950. A difficulty in the concept of social welfare. The Journal of Political Economy
58 (4), 328–346.

Ashenfelter, O., Quandt, R., 1999. Analyzing a wine tasting statistically. Chance 12 (3), 16–20.

Balinski, M., Laraki, R., 2007. A theory of measuring, electing, and ranking. Proceedings of the
National Academy of Sciences 104 (21), 8720–8725.

Balinski, M., Laraki, R., 2011. Election by majority judgment: experimental evidence. In: In situ
and laboratory experiments on electoral law reform. Springer, pp. 13–54.

22



Balinski, M., Laraki, R., 2014. Judge: Don’t vote! Operations Research 62 (3), 483–511.

Balinski, M. L., Laraki, R., 2010. Majority judgment: measuring, ranking, and electing. MIT press.

Beliakov, G., Pradera, A., Calvo, T., 2007. Aggregation functions: a guide for practitioners. Vol.
221. Springer.

Borda, J., 1784. Histoire de l’académie royale des sciences, 657–665.

Brams, S. J., Fishburn, P. C., 1978. Approval voting. American Political Science Review 72 (03),
831–847.

Buchanan, J. T., Henig, E. J., Henig, M. I., 1998. Objectivity and subjectivity in the decision
making process. Annals of Operations Research 80 (0), 333–345.

Chebotarev, P. Y., Shamis, E., 1998. Characterizations of scoring methods for preference aggrega-
tion. Annals of Operations Research 80, 299–332.

Condorcet, J., 1785. Essai sur l’application de l’analyse á la probabilité des décisions rendues á la
pluralité des voix. l’Imprimerie Royale, Paris.

Dawes, R. M., Faust, D., Meehl, P. E., 1989. Clinical versus actuarial judgment. Science 243 (4899),
1668–1674.

Emerson, J. W., Seltzer, M., Lin, D., 2009. Assessing judging bias: An example from the 2000
olympic games. The American Statistician 63 (2), 124–131.

Felsenthal, D. S., Machover, M., 2008. The majority judgement voting procedure: a critical evalu-
ation. Homo Oeconomicus 25 (3/4), 319–334.

Findlay, L. C., Ste-Marie, D. M., et al., 2004. A reputation bias in figure skating judging. Journal
of Sport and Exercise Psychology 26 (1), 154–166.

Fishburn, P. C., Brams, S. J., 1983. Paradoxes of preferential voting. Mathematics Magazine 56 (4),
207–214.

Fritz, C., Curtin, J., Poitevineau, J., Morrel-Samuels, P., Tao, F.-C., 2012. Player preferences
among new and old violins. Proceedings of the National Academy of Sciences 109 (3), 760–763.

Gibbard, A., 1973. Manipulation of voting schemes: a general result. Econometrica 41 (4), 587–601.

Ginsburgh, V. A., Van Ours, J. C., 2003. Expert opinion and compensation: Evidence from a
musical competition. The American Economic Review 93 (1), 289–296.

Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 2011a. Aggregation functions: construction
methods, conjunctive, disjunctive and mixed classes. Information Sciences 181 (1), 23–43.

Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 2011b. Aggregation functions: means. Informa-
tion Sciences 181 (1), 1–22.

23



Hodgson, R. T., 2008. An examination of judge reliability at a major us wine competition. Journal
of Wine Economics 3 (2), 105–113.

Kahneman, D., Tversky, A., 1996. On the reality of cognitive illusions.

Kingstrom, P. O., Mainstone, L. E., 1985. An investigation of the rater-ratee acquaintance and
rater bias. Academy of Management Journal 28 (3), 641–653.

Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A., 1971. Foundations of Measurement (Additive
and Polynomial Representations), vol. 1. Academic Press, New York.

Laplace, P., 1820. Œuvres compl’etes de laplace tome 7 (3rd Ed), v and clii–cliii.

Lee, J., 2008. Outlier aversion in subjective evaluation. Journal of Sports Economics 9 (2), 141–159.

Meehl, P. E., 1954. Clinical versus statistical prediction: A theoretical analysis and a review of the
evidence. University of Minnesota Press.

Miller, N., Resnick, P., Zeckhauser, R., 2005. Eliciting informative feedback: The peer-prediction
method. Management Science 51 (9), 1359–1373.

Prelec, D., 2004. A bayesian truth serum for subjective data. Science 306 (5695), 462–466.

Satterthwaite, M. A., 1975. Strategy-proofness and arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic Theory
10 (2), 187–217.

Schlag, K. H., Tremewan, J., Van der Weele, J. J., 2015. A penny for your thoughts: A survey of
methods for eliciting beliefs. Experimental Economics 18 (3), 457–490.

Smith, J. H., 1973. Aggregation of preferences with variable electorate. Econometrica 41 (6), 1027–
1041.

Tversky, A., Kahneman, D., 1974. Judgment under uncertainty: Heuristics and biases. Science
185 (4157), 1124–1131.

Zitzewitz, E., 2006. Nationalism in winter sports judging and its lessons for organizational decision
making. Journal of Economics & Management Strategy 15 (1), 67–99.

24


	24wp-2016.pdf
	wp24_Osorio
	Introduction
	The weighted aggregation function
	Properties
	An Application


