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Abstract: This paper shows that the frequency domain estimation of VAR models over 

a frequency band can be a good alternative to pre-filtering the data when a low-

frequency cycle contaminates some of the variables. As stressed in the econometric 

literature, pre-filtering destroys the low-frequency range of the spectrum, leading to 

substantial bias in the responses of the variables to structural shocks. Our analysis 

shows that if the estimation is carried out in the frequency domain, but employing a 

sensible band to exclude (enough) contaminated frequencies from the likelihood, the 

resulting VAR estimates and the impulse responses to structural shocks do not present 

significant bias. This result is robust to several specifications of the external cycle and 

data lengths. An empirical application studying the effect of technology shocks on hours 

worked is provided to illustrate the results.   
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1. INTRODUCTION 

Macroeconomic data often presents low-frequency movements, which influence 

considerably the business-cycle analysis but are thought to have little to do with the aim 

of the study. To get rid of this "harmful" influence, standard filters such as the Hodrick-

Prescott (HP) or the Band-Pass (BP) are routinely applied and the filtered data is 

employed in the posterior analysis. Although the practitioner often believes that the 

filtered series conserve intact its business cycle properties, being free from the annoying 

low-frequency cycles, the econometric literature has emphasized that this is not true 

(King and Rebelo 1993; Harvey and Jaeger, 1993; Cogley and Nason, 1995). In fact, the 

use of filtering may result just as unattractive for structural VAR analysis as the 

presence of the contaminated cycle itself. Pre-filtering completely destroys the low-

frequency range of the spectrum, over-subtracting the variances at zero and neighboring 

frequencies, which produces a strong dip in the periodogram. Obviously, this over-

subtraction reduces significantly the persistence of the filtered series and changes the 

pattern of its responses to shocks. Further, filtering (or differencing) may also change 

significantly the way the variables interact in the VAR by removing their low-frequency 

co-movement (Fernald, 2007; Gospodinov et al., 2011). In particular Gospodinov et al 

(2011) show that this subtraction may lead to substantial biases in the impulse responses 

to structural shocks even if the low-frequency correlation is small. The effect is 

magnified when posterior analysis employs estimates of the spectrum at zero frequency, 

such as the use of long-run restrictions, and the true process for the contaminated 

variable is persistent. 

In this paper, we turn to frequency domain analysis to circumvent the problems 

associated with the existence of an external low-frequency cycle, and we propose to 

estimate the VAR maximizing the Whittle likelihood (Whittle, 1964) over a frequency 



band. The intuition behind the proposed methodology is to exclude contaminated 

frequencies from the likelihood. Note that, unlike filtering, the use of a frequency band 

does not destroy the low-frequency range nor changes the data generating process 

(DGP). Simply put, although the method does not employ the information at the 

excluded frequencies, the estimation of the VAR is not driven towards an artificial dip, 

which implicitly imposes zero variability (and co-movement) at low frequencies. We 

show that this simple approach is able to overcome most of the problems associated 

with pre-filtering. Unfortunately, “free-lunch” is rare in econometrics and there is no 

exception here –in the selection of the frequency band, the researcher has to face a 

trade-off between the precision of the estimates and the bias due to neglected 

contaminated frequencies. Yet, standard filtering methods also require the selection of a 

band and result in strongly biased estimates. Besides, we show that even excluding the 

complete low-frequency range from estimation (corresponding to the standard 

calibration of filters for business cycle analysis), the proposed methodology performs 

remarkably better than pre-filtering. 

We organize the discussion as follows. First, we conduct a Monte Carlo 

experiment to study how the omission of an external low-frequency cycle contaminates 

the ordinary least squares (OLS) estimation of the VAR. As expected, we find that the 

estimated process for the contaminated variable results significantly more persistent 

than is stated in the DGP and the impulse responses to shocks are strongly over-

estimated. Consistent with previous findings, the use of either HP or BP filtering 

reduces drastically the persistence of the filtered series and gives rise to substantial 

biases in its responses to structural shocks, especially with the use of long-run 

restrictions. However, the proposed frequency-domain method largely attenuates these 

problems, and neither the VAR estimates nor the impulse responses present significant 



bias. These results are robust to several specifications of the external cycle and different 

sample lengths. Finally, we illustrate our analysis studying the response of hours 

worked to a positive technology shock. How hours should be treated in theVAR is a 

question that has generated a large debate in the macroeconomic literature. If hours are 

either differenced or filtered (as in Gali, 1999 or Canova et al., 2010), the estimated 

response recovered with a long-run restriction is negative. If hours enter in levels (as in 

Christiano, 2003), the estimated response recovered under the same scheme is positive. 

According to Gospodinov et al. (2011), most of the empirical discrepancy can be 

explained by the fact that filtering (or differencing) subtracts the low-frequency co-

movement between hours and productivity, corrupting the application of the long-run 

scheme. Our empirical results support this view. In particular, the proposed frequency 

domain method recovers positive and very similar responses under both short-run and 

long-run identification restrictions. 

We have organized the rest of the paper in the following way. In Section 2, we 

describe the frequency domain estimation of the VAR. We set the Monte Carlo 

experiment in Section 3. In Section 4, we present the simulation results and conduct 

robustness analysis. We also discuss the drawbacks of the method at the end of this 

section. The empirical example is provided in Section 5. Finally, Section 6 concludes. 

There is also a separate Appendix with the Tables and Figures from the robustness 

section. In addition, we have made available a “user-friendly” code to estimate a 

structural VAR model in the frequency domain. The Appendix and the code may be 

downloaded from the author’s site.1 

 

 

                                                           
1 https://sites.google.com/site/ylovcha/Research 



2. ECONOMETRIC FRAMEWORK 

Frequency domain methods are seldom employed in VAR estimation. The reason is 

simple. In the absence of further complications, the time domain provides an easy and 

reliable framework for the estimation of these models.2 Yet, the frequency domain has 

proved to be useful when difficulties in estimation arise in the time domain, such as the 

estimation of fractal exponents in long-range dependent VARs (Hosoya, 1996; 

Shimotsu, 2007; Nielsen, 2011). In this work, we propose to turn to the frequency 

domain methods to circumvent the problems associated with the contamination of the 

data with an external low-frequency cycle. 

The “Whittle” pseudo-maximum likelihood estimation of a VAR model 

Consider the MA(∞) representation of a reduced-form VAR(p) of the  1N   vector tY : 

   1

t tY I F L u


     (1) 

where I  is the  N N  identity matrix,  F L is a finite order lag polynomial matrix 

with roots strictly inside the unit circle, and p  is the number of lags. Reduced form 

errors have 0 mean and variance-covariance matrix Ω. The spectrum of the VAR 

process (1) at frequency ω, is a N N matrix containing the spectra of the variables on 

the main diagonal, and the cross-spectra out of it: 

          1 11
, 2 i i

y p pf I F e I F e   
       (2) 

where i  is the imaginary unit,   1 ...i i pi
p pF e Fe F e     ,  i

pF e   is its complex 

conjugate and the vector   contains all the model parameters. 

                                                           
2A notable exception may be found in Christiano et al. (2003), where the authors stress the advantages of 

the frequency domain for structural VAR estimation and analysis. 



To estimate the process in (1), we propose to use the approximate frequency 

domain maximum likelihood (Whittle, 1963). To derive the likelihood function, we 

compute the finite Fourier transform of each series ,n ty  in the vector as: 

    1

, ,
1

1
,

2
j

T
i t

n j n t n t
t

x y y e
T




 



   (3) 

for the Fourier frequencies:
2

, 0,..., / 2j

j
j T

T

   . An approximate log-likelihood 

function of   based on tY  is given (up to constant multiplication) by: 

        
/2

1ln ln det , , ,
T

y j y j T j
j

L f trf I Y


     



      (4) 

The N N  periodogram matrix  ,T jI Y in the previous formula is defined as 

     *
, , ,T j j jI Y x Y x Y   , where  ,jx Y is a complex 1N  vector with entries 

given by (3), and  *
,jx Y  is its complex conjugate. For each Fourier frequency j , the 

elements of the main diagonal of  ,T jI Y are the periodograms of the different series 

evaluated at this frequency, which are real. The off-diagonal elements are cross-

periodograms, which are complex. 

Note that when 0  , the estimation is carried out over all frequencies. However, 

if 0  , the estimation is done over a frequency band that excludes the first 1   

frequencies. Obviously, in the absence of contamination, excluding frequencies from 

estimation would result in a senseless loss of information. However, we show that when 

a low-frequency cycle contaminates some of the variables, the use of a sensible 

frequency band is a simple and effective way to circumvent the problems associated 

with pre-filtering. 



The choice of the frequency band is not straightforward. Ideally, the researcher 

knows approximately which frequencies are contaminated after the inspection of the 

periodogram, and can select a band accordingly. However, this may not be always easy 

in practice. In either case, she should be aware of the trade-off between the precision of 

the method and the bias that may cause the neglect of some contaminated frequencies. 

Besides, the researcher may want to exclude the low-frequency range completely, and 

focus the estimation over the business cycle (and higher) frequencies only. This strategy 

is conservative in terms of the bias and it is comparable with the standard 

parameterization of the BP (and HP) filters for business cycle analysis. It can be reached 

by setting 8T s   in the band, where s is the number of data observations per year.3 

We show that even this conservative approach performs remarkably better than pre-

filtering, leading to correct VAR inference. 

3. THE MONTE CARLO EXPERIMENT 

We design our simulation experiment to shed light on two specific questions. First, we 

assess how the existence of an external low-frequency cycle contaminates the ordinary 

least squares (OLS) estimation of the (structural) VAR model, and what are the short 

sample properties of two competing estimation alternatives: pre-filtering the data before 

OLS estimation, and the proposed frequency domain method. Second, we study whether 

the previous procedures are able to recover reliable estimates of the relation among 

variables, represented by the impulse responses to structural shocks. 

3.1 Model Specification 

We restrict our attention to a simple bivariate VAR(1) model with a persistent (but 

stationary) first variable which is observed contaminated by an external low-frequency 

                                                           
3Although there is not a single definition of the business cycle, most of the studies employ for that a cycle 

with periodicity that range between 1.5 and 8 years.  



cycle. In this situation, we expect filtering to influence strongly the estimation of the 

model, and mimic the typical characteristics of the data - macroeconomic series are 

usually persistent but the fist-difference operator generally clears out the low-frequency 

cycles. The second variable is assumed to be I(1) and enters in the VAR in differences. 

This allows us to study the impulse responses to structural shocks recovered with a 

long-run restriction, as in Gospodinov et al. (2011). Overall, the hours-productivity 

literature provides a good example of this specification and, consequently, it is 

employed in Section 5 to illustrate our results. 

3.1.1 The Structural VAR model and identification restrictions 

Consider a reduced VAR model of order 1p  for the vector 1, 2,t t tY y y     as in (1). 

The structural representation can be written as: 

 1, 1, 1 1,11 12

2, 2, 1 2,21 22

,     t t t

t t t

y yF F a b
A A

y yF F c d








        
                   

 (5) 

where the structural errors 1,t  and 2,t  are assumed to be orthogonal, with variances 

scaled to unity. The matrix A  relates the structural and reduced-form shocks in the 

following way: t tu A  and, as a result, AA  . After simple algebraic 

transformations: 

 
 

   
   

1, 1,22 12 22 12

2, 2,21 11 21 22

1 11

1 1det
t t

t t

y F L a F Lc F L b F Ld

y F La F L c F Lb F L dF




       
             

 (6) 

Finally, the impulse responses to structural shocks are given by the coefficients of the 

polynomials in (6). 



To recover the structural parameters of the matrix A from the reduced-form 

estimation, it is necessary to impose one additional restriction. 4 The most popular 

schemes in the literature are the short-run (SR) and the long-run (LR) identification 

procedures. SR identification is a recursive scheme, usually imposing that the shocks to 

the second variable take at least one period to percolate to the first (i.e., it restricts A to 

be a lower-triangular matrix). This is usually attained by the Cholesky decomposition of 

the variance-covariance matrix of the reduced-form errors:  A chol  . On the other 

side, the LR identification assumes that, in the long-run, the level of the non-stationary 

variable  2,ty is only affected by its own shock. Thus, the infinite sum of the responses 

of this variable in differences (as it enters the model) to the first shock 1,t must be zero. 

The LR restrictions can be expressed from (6) as:    21 111 0 with det 0F a F c F    . 

The precision of the estimated impulse responses depends on the accuracy of both 

the estimated autoregressive coefficients and the recovered structural parameters. SR 

identification only requires the estimated variance-covariance matrix Ω to recover the 

matrix A from the reduced form estimation. On the contrary, LR requires both F and Ω. 

Consequently, the LR restriction usually leads to less precisely estimated responses 

presenting wider confidence intervals. Yet, the LR is the most popular scheme in the 

literature since it is satisfied in a wide variety of macroeconomic models. At the same 

time, the recursive assumptions required for SR identification are seen by some 

researchers as being too restrictive. 

 

                                                           
4  See Ramey (2016) and Lovcha and Perez-Laborda (2016) for a review of different identification 

schemes for the technology shock in the literature, or Rubio-Ramirez et al. (2010) for a general treatment 

of identification of structural VAR models. 



For the Monte Carlo exercise, we choose the following parameterization for the 

structural VAR: 

11 12

21 22

0.8 0.3

0.1 0.5

F F
F

F F

   
    

  
 and 

1 0

0.5 1

a b
A

c d

   
       

            (7) 

This parameterization satisfies the restrictions required for both SR and LR 

identification. In addition, the first variable is very persistent and there is a nontrivial 

correlation at low frequencies. These last two properties are clearly observable in Figure 

1, which plots their spectral densities and the coherence. The spectral density of a 

process can be understood as the decomposition of its variance into a set of uncorrelated 

components at each frequency, and the coherence gives a measure of the correlation 

among variables at each frequency point. To help in interpretation, we have signaled the 

frequencies with 20-years and 8-years period with a vertical dotted line. Thus, the 

beginning of the business cycle frequencies starts to the right of the second vertical line.  

3.1.2 The process for the contaminated variable 

We assume that we do not observe the true value of the first variable, but a value 

contaminated with an external low-frequency cycle. To construct the contaminated 

series, we sum the external cycle to the first series generated by the VAR: 

 1, 1,t t tyc y C   (8) 

where 1,tyc is the contaminated series and tC is the external low-frequency cycle. We 

employ three types of specifications for the cycle: deterministic trigonometric, 

stochastic trigonometric, and changes in the mean. These three specifications, together 

with the parameterization employed for the simulations, are described below. 



The deterministic trigonometric cycle. We generate this cycle by a cosine wave with 

frequency ω: 

 , cosd tC B   (9) 

where B is a parameter regulating the amplitude of the cycle. The trigonometric 

deterministic cycle ensures that the external cycle contaminates the first variable only at 

frequency ω. Although this assumption is rather restrictive, this type of cycle is 

interesting from the instructive point of view, and it is relaxed in the following two 

processes. 

For the Monte Carlo, we set the amplitude parameter B to 4 and the frequency   

to 2 40s , corresponding to an external  cycle of 40 years period, being s the number 

of data observations per year. 

The stochastic trigonometric cycle. Following Harvey (1989), we write the process for 

the stochastic trigonometric cycle as: 

 

,

1
* * *

1

cos sin

sin cos

s t t

t t t

t t t

C DS

S S

S S

 
 







      
             

 (10) 

where D governs the amplitude, and t  and *
t are mutually independent zero-mean 

error terms with equal variance. This cycle contributes to the variance of the 

contaminated series at the selected frequency ω mostly, but the adjacent frequencies 

also result contaminated due to its stochastic behavior.  

We parameterize the cycle with 2 40t s   (the same than in the deterministic 

cycle), and we set the parameter D = 2 in order to have comparable amplitudes of the 

two trigonometric cycles. Finally, we set the variance of the errors terms to 0.001. 



The changes in the mean cycle. Changes in the mean are relatively common in 

economic data and contribute to the low part of the spectrum of many economic time 

series. To generate this cycle, we divide the sample of T  observations into three equal 

subsamples, and we assume different means for each. In particular, for the Monte-Carlo 

exercise, we specify: 

 ,

1 3     

3 2 3

2 3

4;

2;

 3;   
m t

t T

T t T

T t T

C

 

 

 


 



 (11) 

which generates a cycle with similar amplitude to the previous two trigonometric 

cycles.  

Figure 2 depicts examples of contamination by the three types of cycles for a 

realization of 500 quarterly observations from a structural VAR model parameterized as 

in (7). The figure also plots the periodogram of the true and the contaminated series. As 

can be seen in the figure, the deterministic cycle contributes only to the selected 

frequency, with the periodograms of the contaminated and non-contaminated series 

coinciding at any other frequency point. On the contrary, both, the stochastic 

trigonometric and the changes in the mean cycles contribute to a bunch of frequencies in 

the low-frequency range. The trigonometric stochastic cycle contaminates mostly the 40 

years period frequency, although adjacent frequencies also result contaminated. As can 

be seen in the figure, the changes in the mean cycle contaminates mostly the very low-

frequency range, but there is considerable presence of contamination in the whole low-

frequency range.  

 

 

 

 



3.2 Simulation Set-Up 

To study the sample properties of the three estimation alternatives, we assume normality 

and employ a structural VAR parameterized as in (7) to generate I=1000 bivariate time 

series of the following lengths: i) 500T  quarterly observations (125 years); ii) 

240T  quarterly observations (60 years) and; iii) 720 monthly observations (60 years). 

We contaminate the first variable of each simulated series as in (8), using for that the 

three different specifications for the cycle: the trigonometric deterministic (9), the 

trigonometric stochastic (10), and the changes in the mean (11). After, we collect the 

resultant contaminated first variable together with the differenced variable in a 

contaminated vector: , 1, 2,i t t t i
YC yc y    , for i=1,…,I. 

For each simulated dataset, we estimate the parameters of a reduced form VAR(1) 

with the three estimation alternatives: i) OLS applied to non-filtered data; ii) OLS, pre-

filtering the first variable with the HP and BP filters, and; iii) the “Whittle” estimation 

with non-filtered data using two different frequency bands for estimation. After, we 

recover the structural matrix A with both SR and LR restrictions and we compute the 

responses of the variables to structural shocks. 

For the HP filter, we use a standard value for the penalty parameter (λ = 1600 for 

quarterly data, λ = 14400 for monthly data). For the BP, we do not allow passing 

frequencies with periods longer than 8 years, as typically done in the business cycle 

literature. As noted before, filtering the data completely subtracts the variance at low 

frequencies, creating a dip in the periodogram. This dip is clearly observable in Figure 

3, which plots the periodogram of the filtered series of the illustrative example (depicted 

in Figure 2) contaminated with the trigonometric deterministic cycle. Figure 3 also 

depicts the periodogram of the true series to help in interpretation. 

 



For the “Whittle” estimation, we employ two frequency bands. The first band 

omits all the frequencies with a period longer than 8 years. Thus, it employs only the 

information at business cycle and higher frequencies for estimation, which is the same 

parameterization that we use in the BP filter. The second band excludes the frequencies 

with a period longer than 20 years. We chose this band with a view to including as 

many frequencies as possible without allowing for strong contamination. The two 

vertical dotted lines included in the previous figures signal the beginning of these bands.  

4. DESCRIPTION OF THE RESULTS 

We organize the results as follows. We discuss below the results of the Monte-Carlo 

experiment for quarterly data of length T=500 contaminated by the trigonometric 

deterministic cycle. The results for the other two specifications of the external cycle and 

the results of the simulations with 60 years of data (both quarterly and monthly) are 

discussed as a robustness analysis. Finally, at the end of this section, we make an 

overall analysis of the methodology and we discuss its most important drawbacks.  

Table 1 and Figure 4 summarize the simulation results for data contaminated by 

the deterministic trigonometric cycle. Table 1 presents the mean of estimated 

parameters across the 1000 replicas. The first half of the table (Table 1.a) contains 

results for the estimation of the autoregressive coefficients. The mean of the structural 

parameters recovered with both SR and LR restrictions across simulations is provided in 

Table 1.b. The numbers in parenthesis correspond to the 2.5th and 97.5th estimated 

percentiles. For the OLS with filtered data, we present only the results for the BP filter, 

since the results obtained with the HP are virtually identical, but are available upon 

request. 

 



As can be seen in the table, neglecting the external cycle strongly influences the 

OLS estimates of the autoregressive parameters. The estimated process has to adjust for 

the additional exogenous persistence of the first variable, so the estimates of its own-

autoregressive term result upward biased. Contamination also affects the estimates of 

the cross-autoregressive term of the second variable, which is biased downwards. Given 

that the variance-covariance matrix Ω is relatively well estimated, the parameters of the 

structural matrix A recovered with any of the two schemes do not present strong 

estimation bias. On the other side, when the contaminated variable is pre-filtered it 

becomes substantially less persistent. Consequently, the OLS estimation with filtered 

data produces negatively biased estimates of the autoregressive coefficients. On the top 

of that, the estimated parameters of the matrix A are also biased, especially when they 

are recovered with the LR scheme. Note that the bias in the contemporaneous effect of 

the second structural shock on the first variable is particularly strong. Finally, the table 

also reports the results from the proposed frequency domain method. The Whittle 

estimation over a frequency band performs very well in terms of the bias. Neither the 

autoregressive coefficients from the matrix F nor the structural parameters from A 

present significant short sample estimation bias, even if LR restrictions are employed 

for identification. Also, note that the use of the 8-years cycle band also results in non-

biased estimates but as expected, the method becomes less precise than with the 20-

years period band. 

Figure 4 depicts the Monte-Carlo results for the impulse responses. We depict 

here only the responses of the first variable (i.e., the one observed contaminated) since 

these responses concentrate the larger disparities among the three estimation methods 



and have received more attention in the macroeconomic literature. 5  The figure 4.a 

depicts the responses of the first variable to its own structural shock recovered with SR 

and LR restrictions. The cross responses can be found in Figure 4.b. In both cases, the 

solid lines represent the mean responses across simulations and the dashed lines the 2.5 

and the 97.5 percentiles. We collect the responses obtained from a VAR estimated with 

the OLS methods (with filtered and non-filtered data) in the first column of each figure, 

while the second column contains the analysis of the impulse responses from a VAR 

estimated in the frequency domain (using the two selected frequency bands). In order to 

interpret the results, we have included the true responses in each graph (dotted line).  

Consistent with the analysis of the estimated coefficients, the OLS estimation with 

non-filtered data produces largely overstated responses of the first variable to system 

shocks that are considerably more persistent than the true responses due to the neglected 

contamination. Bothe the own- and cross-estimated responses are upward biased 

irrespective of the restrictions employed to identify the shocks. The percentile bands 

recovered with the LR scheme are substantially wider, reflecting the larger uncertainty 

associated with this identification method.  

As can be seen in the figure, filtering does not improve the results at all. The 

responses are strongly biased downward, with the true response lying always above the 

percentile bands. Note that the sampling uncertainty in the estimated responses is 

substantially smaller than in OLS estimation with non-filtered data, especially those 

responses recovered with LR restrictions. However, it is important to highlight that the 

reduction in uncertainty comes from the removal of a sizable portion of the true 

variance of the first variable by filtering the data. In addition, given that the responses 

                                                           
5 None of the estimation methods shows very strong bias in the responses of the second (i.e., observed 

non-contaminated) variable. Yet, the proposed methodology still performs better than the other estimation 

methods in the Monte Carlo study. These responses are available upon request to the authors.  



are strongly biased, the narrow bands not containing the true values indicate that, with 

very high probability, the estimated response is going to be far the true response 

regardless of the identification method applied. Yet, the analysis of the response to the 

second shock (figure 4.b) identified with an LR restriction is especially relevant. Recall 

that this response is not only affected by a large bias in the estimated autoregressive 

coefficients, but also by a strong bias in the estimated structural parameter governing 

the contemporaneous effect. As can be seen in the figure, the mean of the estimated 

responses becomes negative in the short-run, with the zero value lying outside the 

percentile bands. This result is especially important because it provides an example of 

how pre-filtering may lead towards misleading inference in the VAR, not only about the 

magnitude and the persistence of the responses, but also about their sign. Finally, the 

right column of the two figures collect the mean responses from a VAR estimated in the 

frequency domain with the two selected bands (20-years and 8-years period). As can be 

seen in the figure, none of the estimated responses presents significant bias, neither with 

LR nor with SR identification schemes. Note that, in particular, that there is no 

estimation bias in the response to the second shock recovered with LR restrictions. As 

expected, the sampling uncertainty grows with the number of frequencies excluded from 

the estimation band, but even the 8-years period band performs very well in terms of the 

bias and appears precise enough for inference. More important, as far as the confidence 

intervals for impulse responses reflect the true degree of uncertainty observed in 

simulations, using the proposed frequency domain method the econometrician would 

not be misled in inference regardless the identification scheme she uses. Yet, our results 

suggest a close inspection of the periodogram in order to select a sensible band prior 

estimation in order to increase the precision of the method. 

 



4.1 Robustness Analysis   

We check for robustness along two different directions. First, we carry out additional 

simulations for the other two specifications for the external cycle, the trigonometric 

stochastic and the changes in the mean. After that, we study if the results of the previous 

section are robust to changes in the sample size or the frequency of the data. The tables 

and the figures from this section are provided in a separate appendix to this work to 

conserve space.  

4.1.1. Alternative processes for the external cycle 

In the previous section, we contaminate the first variable with a trigonometric 

deterministic cycle, which only alters a single frequency in the spectrum (40 years 

period). Note that in this way, the two selected bands for frequency domain estimation 

contain only non-contaminated frequencies. We relax this assumption with the 

trigonometric stochastic and the changes in the mean specifications for the external 

cycle. As can be observed in Figure 2, we have parameterized these cycles such that the 

bunch of contaminated frequencies is still situated to the left of the frequency of 20-

years period. However, there is also presence of contamination at (relatively) higher 

frequencies. This contamination is mostly located in between the 20-years and the 8-

years period frequencies, which allow us to study the trade-off between bias and 

precision.   

Overall, the results of the simulation study are very similar to those obtained with 

the trigonometric deterministic cycle. A summary is provided in Table A1 and Figures 

A1 and A2 in the separate Appendix to this work. Again, the proposed frequency 

domain method performs remarkably better than the two OLS alternatives, with the two 

selected bands. Yet, now the use of an 8-years period band usually leads to slightly 

better results in terms of the bias, but at the cost of penalizing precision. Obviously, the 



larger the amount of contamination neglected by the band, the larger the bias incurred 

by the method. Yet, our results seem to indicate that the proposed methodology is not 

extremely sensible to a small amount of contamination, which again advocates for the 

selection of a sensible band upon the study of the periodogram.  

4.1.2. Modifying the length and the frequency of the artificial data 

The empirical studies of the business cycle are usually based on quarterly or monthly 

data, which often leads to the use of relatively short datasets. To see how the proposed 

methodology behaves with the standard lengths found in business cycle analysis, we 

carry out additional simulations for shorter artificial datasets of T=240 quarterly 

observations (corresponding to 60 years of data). Results are summarized in Table A2 

and Figure A3 in the Appendix. Overall, we find no significant differences with respect 

to the use of T=500 quarterly observations, except an expected small increase in the 

sampling uncertainty associated with all the estimation methods.  

Finally, we study if the use of higher frequency data improves the precision of the 

frequency domain estimates. A larger number of observations per year increase the 

resolution of the periodogram in a very particular way, since it makes available a larger 

set of Fourier frequencies mostly situated at the medium and the high-frequency range 

of the spectrum (thus not influenced by the external low-frequency cycle). To study this 

issue in deep, we draw artificial datasets of T=720 monthly observations (which 

correspond to the same short span of 60 years). Figure A4 and Table A2 (right) in the 

Appendix collect these results. Again, the OLS alternatives are penalized either by 

contamination or by filtering, while the frequency domain estimates do not show 

significant bias. However, the most interesting result is that, although the use of 

monthly data reduces the sampling uncertainty of all methods, the frequency domain 

alternatives result much more benefited from it. This is especially relevant for the 



estimation with the 8-years period band, which now presents unbiased and very precise 

estimated responses, comparable to those obtained with the 20-years band. 

4.3 Overall Evaluation and Limitations 

In the simulation study, we show that the proposed frequency domain method is a useful 

alternative to deal with contamination at low frequencies in structural VAR analysis. It 

outperforms significantly the OLS estimation with non-filtered data and overcomes the 

strong problems associated to pre-filtering. However, like all econometric 

methodologies, it has several drawbacks and limitations, which should be taken into 

account in real data applications. 

The first of them is that the method requires the selection of a frequency band for 

estimation. The choice of the band can sometimes be ambiguous, and there is a trade-off 

between the bias due to the possible neglected contaminated frequencies and the 

precision of the estimates. In most situations, a close inspection of the periodogram may 

help to select a sensible band for estimation. On the contrary, if the researcher wants to 

restrict the estimation to the business cycle and higher frequencies, the precision of the 

method suffers, especially if the true process is very persistent. As it is shown in the 

robustness section, the use of monthly data may help a lot in these situations. Yet, the 

estimation shows no significant bias and, as far as the confidence intervals capture the 

true uncertainty, the researcher is not going to make mistakes inferring with the 

estimated model no matter the identification scheme she applies. On the other hand, 

standard filtering methods also require the selection of a band, and their use leads to 

strong estimation bias and erroneous VAR inference.6 

                                                           
6 With the BP filter, the choice of the frequencies to be removed is done exactly in the same way. The 

issue is more problematic with the HP filter since it is not always easy to establish a one to one relation 

between the choice of the penalty parameter and the frequencies removed.  



The second limitation concerns the use of maximum likelihood estimators. Unlike 

OLS methods, it may be necessary to enforce stationarity if the process is very 

persistent. In addition, in the presence of quasi-unit roots, the precision of the estimated 

error variance may be affected. As shown in the literature, the use of a taper may 

alleviate this problem.7 We illustrate the application of these strategies in the empirical 

example of the next section. Besides, note that these problems are not exclusive of the 

proposed frequency-domain method, and may arise as well using maximum likelihood 

estimation in the time domain.  

5. EMPIRICAL EXAMPLE 

In this section, we assess the response of hours to a (positive) technology shock to 

illustrate the results of the simulation study. This response has been the subject of a 

strong debate in the literature since the work of Gali (1999), who cornered the real 

business cycle models (RBCs) finding a negative response of hours in a structural VAR 

identified with an LR restriction. The heart of the debate centers on how hours should 

enter the VAR. If hours are either differenced or filtered, and the technology shock is 

identified with an LR restriction (Gali, 1999; Canova et al., 2010), the response of hours 

is negative. However, when the hours enter in levels (Christiano et al. 2003), the 

response is positive even if the LR identification is applied.8 Fernald (2007), Francis 

and Ramey (2009) and Canova et al. (2010), analyze the low-frequency movements in 

hours worked arguing that the series contains some noise at very low frequencies that 

                                                           
7 Dahlhaus (1988) shows that tapering reduces the leakage effect of the periodogram as estimate of the 

true spectrum. He finds that the new estimate competes well with the Burg estimate for an AR(14) model 

where roots of the characteristic equation are complex and close to the unit circle. There are several other 

studies concerning the use of data tapers in univariate AR models (Pukkila and Nyquist, 1985; Kang, 

1987; Hurvich , 1988; or Zhang, 1991). The general conclusion of these works is that tapering should be 

conducted. However, the specific taper and amount applied appear not to be of much importance. 
8SR restrictions recover a positive response of hours irrespective of how this series enters the VAR. 



must be removed prior to VAR estimation. For Fernald (2007) and Canova et al. (2010), 

the noise is the consequence of some changes in the mean of the process. Francis and 

Ramey (2009) attribute these changes to demographic and sectoral movements affecting 

the US labor force. However, Gospodinov et al (2011) have called into attention that 

differencing or filtering this noise corrupts the application of the LR scheme, which 

may lead to erroneous inference.9 

 In order to assess the response of hours to a technology shock, we construct a 

dataset similar to that of Christiano et al. (2003), collecting data from the Federal 

Reserve Bank of St. Louis (FRED). The dataset runs from 1948:1 to 2009:4, thus 

covering a similar period than other popular datasets in the literature, and contains data 

from all sectors (including the farm sector). The total business productivity is defined as 

the log of the output per hour of all persons (OPHPBS), and the hours worked as the log 

of the ratio of the business hours of all persons (HOABS) to the civilian non-

institutional population over the age 16 (CNP16OV). The last series are converted to 

quarterly by taking the average of the monthly observations inside the quarter. Except 

for population, all the series are seasonally adjusted. 

Figure 5 presents the estimated impulse responses up to 20 quarters (5 years) 

recovered from a VAR(4) identified with both SR and LR restrictions together with one 

standard deviation bootstrapped bands.10 We also include in the figure the periodogram 

of the first variable and its estimated spectrum from the VAR. The results from OLS 

estimation with rough data are collected in the first row of the figure. Consistent with 

the previous analysis, the periodogram of the non-filtered hours presents a very strong 

                                                           
9 A different stream of the literature has considered alternative identification assumptions (Uhlig, 2004; 

Francis et al., 2010; Lovcha and Perez-Laborda, 2016) or other model specifications that internally 

account for the degree of persistence (Pesavento and Rossi, 2005; Lovcha and Perez-Laborda, 2015). 
10 We employ 1000 nonparametric bootstrap replicas. 



peak at the very low part of the spectrum, corresponding to a cycle of about 60 years 

period. Consequently, the estimated process is very persistent (the highest eigenvalue of 

the companion form matrix equals 0.98). As can be seen in the figure, the responses 

recovered with SR and LR restrictions are both positive, but the response recovered 

with LR restrictions is much stronger presenting wider confidence bands. As a second 

step of the analysis, we BP filter hours before OLS estimation.11 As standard in the 

business cycle literature, we filter all the frequencies with a period longer than 8 years, 

but the results are robust to the use of a 20 years period band in the filter.12 The 

responses estimated with filtered data are depicted in the second row of the figure. 

Filtering the data over-subtracts the variance at low frequencies, producing a strong dip 

in the periodogram, which is visible in the first plot. Consequently, the estimated model 

attempts to reproduce that dip, as can be seen in the spectrum from the estimated VAR. 

As a result, the model is significantly less persistent than was estimated with rough data. 

The SR identification returns positive responses, but smaller than those obtained 

without filtering the data. On the other hand, the LR identification returns negative and 

significant responses, in compliance to the well-known puzzle in the literature. 

Confidence bands for LR responses are of the same magnitude as SR responses since 

filtering removes a substantial part of the variance. Finally, we employ the proposed 

frequency domain methodology for estimation of the VAR. We assume that the 60 

years period cycle in hours is exogenous and employ the 20 years band used for 

                                                           
11 Again, the analyses of the HP and BP filtered series do not differ, so we present in the paper the results 

from the BP only to save space. 
12The periodogram shows another peak on the border of business cycle range, which may contain useful 

information for business cycle analysis. However, the results do not change significantly including or 

excluding this frequency with BP filter.  



simulations, in order to exclude the lesser number of frequencies as possible.13 Due to 

the strong persistence of the data found in OLS estimation, we ensure stationarity and 

apply a cosine taper before estimation (Tukey, 1967).14 Results from the frequency 

domain estimation are depicted in the last row of Figure 5. The dots in the periodogram 

of tapered hours signal the part corresponding to the excluded frequencies. Bootstrapped 

bands for impulse responses are computed with non-parametric bootstrap in the 

frequency domain (Berkowitz and Diebold, 1998). As can be seen in the table, the 

estimated process is slightly less persistent than one estimated with OLS using raw data 

but substantially more than the one estimated with filtered hours. Note that the 

estimated spectrum is not driven towards zero in the low-frequency range. The 

responses of hours recovered with the SR and the LR schemes are both positive and 

very similar to each other, but of smaller magnitude than those estimated by OLS with 

non-filtered data. Furthermore, the confidence bands for LR contain the responses 

recovered with the SR scheme. Note that with the other estimation methods, the 

responses recovered with the LR and the SR schemes are not compatible. 

To sum up, the proposed methodology backs up positive and similar responses 

under LR and SR restrictions, but smaller than those found neglecting the external 

noise. On the other hand, if the data is filtered, the response recovered with an LR 

scheme is negative and significant, even if the same 20-years cycle band used for 

frequency domain estimation is employed in the filter. In the view of the results of the 

Monte-Carlo study, we believe that the negative response found with filtered data under 

LR restrictions is a direct consequence of the filter, unless in our dataset. 

                                                           
13Although including more frequencies for estimation would be useful to reduce the variance associated 

to persistence, this is not feasible due to the small amount of observations. 
14The ratio of taper to constant sections (the parameter) is taken equal to 0.125. The results are robust to 

the choice of the taper and to other parameterizations. 



5. CONCLUSIONS 

In this paper, we propose the frequency estimation of the VAR as an alternative of pre-

filtering when some of the variables are contaminated by an external low-frequency 

cycle. In these situations, the OLS is largely penalized by contamination, giving rise to a 

substantial bias in the impulse responses to shocks. We show that the use of filtering 

can be even more harmful that the neglect of contamination, which is consistent with 

other analyses in the literature. In particular, not only the estimates of the autoregressive 

parameters appear downward biased, but also the estimates of the structural parameters 

are biased under the LR scheme. As a result, the true responses in the DGP and the ones 

recovered from the model may diverge completely, not only in magnitude and 

persistence but also in sign. This can easily lead to erroneous inference based on the 

estimated model. The increase in the number of observation does not improve the 

situation. On the contrary, the proposed frequency-domain method takes into account 

contamination overcoming the problems of filtering. If a sensible band is employed for 

estimation, neither model estimates nor the impulse responses present signs of 

significant bias. This result is robust to several specifications of the external cycle and 

data lengths. We have shown the utility of the method in applied work assessing the 

response of hours to a productivity shock, which we have found positive under both SR 

and LR identification schemes, proposing a solution to a largely debated puzzle in the 

literature.  

Like any empirical methodology, our approach suffers from several shortcomings 

that we have discussed in the text. In our view, the most important drawback is that the 

researcher has to face a trade-off between the bias arising from the neglect of 

contamination and the precision of the method when selecting a frequency band for 

estimation. Yet, filtering also requires the selection of a frequency band and, although 



the precision of the proposed method suffers, it works much better than pre-filtering, 

even excluding the low-frequency range completely. As a result, the researcher cannot 

go wrong using the estimated model no matter the identification scheme she applies. 
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TABLES AND FIGURES 

Table 1 Monte Carlo results: trigonometric deterministic; T=500-quarters 

Tab. 1.a Autoregressive parameters from the matrix F 

 True OLS, non-filtered OLS, BP Whittle, 20 Whittle, 8 

F11 0.8 0.94[0.92; 0.95] 0.61 [0.52; 0.69] 0.79 [0.72; 0.85] 0.79 [0.67; 0.91] 

F12 0.3 0.30[0.22; 0.38] 0.19 [0.12; 0.26] 0.29 [0.23; 0.37] 0.30 [0.20; 0.40] 

F21 0.1 0.02[-0.01;  0.05] 0.08 [0.00; 0.16] 0.10 [0.02; 0.17] 0.10 [-0.00; 0.21] 

F22 0.5 0.49[0.40; 0.57] 0.52 [0.43; 0.60] 0.49 [0.40; 0.57] 0.49 [0.38; 0.60] 

 
Tab 1.b Structural parameters from the matrix A 

 True OLS, non-filtered OLS, BP Whittle, 20 Whittle, 8 

SR IDENTIFICATION 

a 1.0 1.05 [0.97; 1.11] 0.95 [0.89; 1.01] 0.99 [0.93; 1.06] 1.00 [0.92; 1.07] 

c -0.5 -0.52 [-0.61; 0.43] -0.55 [-0.64; -0.45] -0.49 [-0.59; -0.40] -0.49 [-0.59; -0.39] 

d 1.0 0.99 [0.93; 1.05] 0.98 [0.91; 1.03] 0.99 [0.93, 1.06] 1.00 [0.92; 1.07] 

LR IDENTIFICATION 

a 1.0 1.02 [0.82; 1.10] 0.90 [0.81; 0.97] 0.98 [0.89; 1.05] 0.95 [0.71; 1.05] 

b 0.0 -0.01 [-0.64; 0.37] -0.31 [-0.48; -0,13] -0.01 [-0.35; 0.33] -0.02 [-0.50; 0.74] 

c -0.5 -0.50 [-0.84; 0.18] -0.19 [-0.38; -0.00] -0.48 [-0.79; -0.12] -0.47 [-1.05; 0.03] 

d 1.0 1.00 [0.74; 1.15] 1.10 [1.02; 1.18] 1.00 [0.78; 1.13] 1.00 [0.38; 1.14] 

 
Notes: OLS- OLS estimation with non-filtered data; OLS, BP - OLS estimation data filtered with the BP; 
Whittle, 20 and Whittle, 8 denote the simulation results from the “Whittle” estimation of the VAR 
excluding frequencies with a period longer than 20 and 8 years, respectively. 
 

Figure 1 Spectral densities and coherence of the parameterized VAR 
SPECTRAL DENSITIES COHERENCE 

  

  
 
Notes: a) the spectral densities and the coherence are depicted up to 1.5 year period frequency; b) the 
vertical dotted line signals the frequencies with periods  20-years (left) and 8-years (right) 
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Figure 2 Examples of contamination by low-frequency cycles 
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Notes: a) periodograms are depicted up to the 1.5 years period frequency; b) the vertical dotted lines 
signal frequencies with periods 20-years (left) and 8.years (right); c) y1 - non-contaminated first variable, 
yc1 -contaminated value by the external low-frequency cycle C . 

 

Figure 3 Periodograms of the filtered series; trigonometric deterministic cycle 
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Notes: y1: non-contaminated fist variable, y1hp and y1bp: HP and BP filtered series respectively. 
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Figure 4 Monte Carlo results: trigonometric deterministic, T=500 quarterly 

Fig.4.a Impulse response of the first variable to the first shock 
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Fig. 4.b Impulse response of the first variable to the second shock 
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Notes: a) impulse responses are depicted up to a 5 years horizon; b) solid lines depict the average 
response across simulations. Dashed lines the percentiles 2.5 and 97.5%. 
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Figure 5 Empirical example: the response of hours to a positive technology shock 
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Notes: CI denotes one standard deviation confidence intervals for impulse responses computed with non-
parametric bootstrap.  
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