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Abstract: In this paper, we assess volatility spillovers across energy markets 

accounting for the persistence of the volatility series. To do so, we compute Diebold 

and Yilmaz (2015) measures of connectedness based on the forecast-error variance 

decomposition of an estimated fractionally integrated VAR (FIVAR). We use this 

method to study volatility spills among oil, unleaded gasoline, heating oil, and natural 

gas. Our main empirical findings are: 1) Accounting for persistence is essential to assess 

the magnitude of the spillover effects in these markets; 2) The traditional VAR 

magnifies the other’s contribution to the volatility variance; 3) There are substantial 

spillover effects across petroleum markets, but the link between these markets and the 

natural gas market appears to be broken in post 2008-crisis data. 
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1. INTRODUCTION 

The analysis of volatility spillovers has recently attracted a lot of interest; as markets 

become more interconnected, volatility in one market tends to trigger volatility in the 

others, a phenomenon that becomes visible in periods of turmoil. Obviously, the 

existence of these linkages can be employed by investors and financial institutions to 

manage portfolios and designing strategies for hedging against risk.  

In a series of papers, Diebold and Yilmaz (2009, 2012, and 2014) introduced 

several measures based on VAR forecast error variance decompositions (FEVD) aimed 

to study spillovers.
1
 This methodology (henceforth noted as DY) provides a 

quantification of the magnitude of the spillovers and of its direction, and is currently 

employed in an increasing number of studies (see e.g., Antonakakis et al., 2016). 

However, the VAR model on which the DY measures are based imposes a fast 

exponential decline to shocks of the different series, which is at odds with the observed 

persistence of squared (or absolute) returns. There is overwhelming evidence that 

markets take a lot of time to forget volatility shocks (months), and many studies 

demonstrate that return volatility series contain a strong long-memory (LM) component. 

In fact, LM models frequently perform better than other models in tracking and 

forecasting volatility (see e.g., Breidt et al., 1994; Baillie et al., 1996; Andersen et al., 

2003);  

In this paper, we account for the persistence of the volatility series when assessing 

volatility spillover effects among four energy future contracts: crude oil, unleaded 

gasoline, heating oil, and natural gas. To do so, we employ DY measures of 

connectedness based on FEVD decompositions from a fractionally integrated VAR 

(FIVAR). In this way, we allow for the possibility of LM, with the responses of the 

                                                           
1
 Diebold and Yilmaz (2015) summarize the methodology. 
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volatilities to shocks declining at a slow hyperbolical rate, which appears to be more 

compatible with the actual behavior of these series. Note that the responses to shocks 

determine the forecast error variances, which are the underlying concept behind the DY 

measures.  

Energy futures have become a popular asset class for portfolio investors (Vivian 

and Wohar, 2012). This overgoing financialization has renewed the interest in 

understanding how these markets are related. However, most of the existing literature 

focuses on prices, while the research related to their volatility connections is still scarce. 

Volatility flows between oil and natural gas have been studied in Ewing et al. (2002), 

Lin and Li (2015), and Zhu et al. (2018). The former two works found evidence of 

volatility spillovers using a multivariate GARCH. However, Zhu et al. (2018) recently 

argued that the volatilities of these two commodities are currently decoupled. The 

authors found no evidence of (Granger) causal links in post-2007 data, which is 

consistent with price independencies documented in Batten et al. (2017). As for the 

petroleum markets, the literature is also dominated by GARCH modeling, and mostly 

concentrated in studying volatility spillovers between returns traded at different centers 

(see e.g., Chang et al. 2010; Hammoudeh et al., 2003; Lin and Tamvakis, 2001). In this 

sense, our work is more closely related to Barunik et al. (2016) and Magkonis and 

Tsouknidis (2017). The later work analyzed spillover effects across petroleum-based 

commodities and among spot-futures volatilities, trading volume, and open interest. The 

authors stressed the importance of computing dynamic spillovers for petroleum 

commodities. Barunik et al. (2016), on the other hand, focuses on petroleum futures, but 

employs realized semi-variances in combination with DY indices to stress the 

asymmetric effect of good and bad spillovers. The authors found that asymmetries play 

an important role before the 2008-crisis but their importance declined strongly after this 
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date.
 
We depart from these interesting studies in two ways. As in Barunik et al. (2016), 

we concentrate on future contracts, but unlike asymmetries, we study the persistence 

and apparent LM of the volatility series. Second, we also examine the relation between 

petroleum and natural gas markets volatilities, which is currently under discussion.  

In terms of its methodology, our paper belongs to the literature employing 

multivariate fractionally integrated models for the assessment of spillovers. Although 

fractionally integrated GARCH models have been successfully employed to study 

volatility connections (see, e.g., Brunetti and Gilbert, 2000; Liu and Chen, 2013), the 

extension of the DY indices to the fractional integration framework has still received 

very little attention.
2
 To our knowledge, only Cipollini et al. (2018) addressed this issue. 

The authors employed a FIVAR model to study vulnerability to systematic risk for five 

European stock markets, finding only small differences in the DY measures computed 

using the FIVAR and the VAR models.
3
 However, the reported evidence of LM is 

rather weak, with small, sometimes non-significant, estimated orders of fractional 

integration in large part of their sample, which in part explains the unobserved 

differences between the two specifications. We depart from Cipollini et al. (2018) in 

two important ways. The first one is methodological. The authors estimated univariate 

models to obtain the LM parameters of the FIVAR, while the autoregressive component 

was estimated in a second step fitting a VAR to the (fractionally) differenced series. As 

in Abritti et al. (2016), we estimate the short- and long-memory parameters together in a 

single step, without relying on univariate specifications, which is a clear advantage in 
                                                           
2
 Outside the fractional integration framework, Caloia et al. (2018) recently employed DY measures 

based on a vector HAR model to account for the persistence of the semi-volatility series assessing 

spillover effects between five EMU stock markets.  
3
 More specifically, Cipollini et al. (2018) find no differences between the two specifications when the 

models were estimated over their entire sample. Using rolling-samples, the FIVAR and VAR measures 

slightly diverge in a relatively small period after the 2008 crises, which is correlated with larger orders of 

fractional integration. Yet, the observed differences are still mild.  
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terms of efficiency over their two-step procedure. Second, we find strong evidence of 

LM in our data, which is stable over the whole sample. In fact, the presence of a LM 

component in the volatility of energy returns is well documented in the literature (see 

e.g., Charfeddine, 2016; Choi and Hammoudeh, 2009; Cunado et al., 2010; Gil-Alana et 

al., 2016; Kang et al., 2009). We find that accounting for this persistence leads to 

substantial differences in the DY indices computed in FIVAR and VAR specifications. 

Our findings can be summarized as follows. 

1. Consistent with previous studies, we find overwhelming evidence of LM in the 

volatilities of the four future returns, with the I(0) assumption decisively rejected 

by the data.  

2. Accounting for LM is necessary to assess the magnitude of the spillovers. In 

particular, the traditional VAR understates the contribution of own-shocks, 

magnifying the spillovers effects.    

3. As in Barunik et al. (2008), we find substantial spillovers across petroleum 

futures, but the link between petroleum commodities and natural gas in post- 

appears to be broken in post-2008 data. Thus, the results of the LM model 

support the thesis of Batten et al. (2017) and Zhu et al. (2018) obtained with 

Granger (non-) causality testing.  

The remainder of the paper is organized as follows. In Section 2, we discuss the 

econometric framework. The empirical application is provided in Section 3. Finally, 

Section 4 offers some concluding remarks. 

2. METHODOLOGY  

2.1 The FIVAR Model and the Estimation Procedure 

The FIVAR model is the multivariate extension of the well-known autoregressive 

ARFIMA. In this paper, we employ an unrestricted specification that allows for 
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different orders of integration of the series, as in Abritti et al. (2016), Golinski and 

Zaffaroni (2016), or Lovcha and Perez-Laborda (2015).
4
 Let the vector  1 ,...,t t NtY y y   

contain all the volatility series. An unrestricted FIVAR model for tY  can be written as: 

 
 

  1  ,

t t

t t t

D L Y u

u F L u 



 
 (1) 

where  D L  is a diagonal matrix with elements given by  1 id
L , and [0,1]id   is the 

order of fractional integration of the
 
ith series in the vector. The larger this parameter, 

the more persistent iy . In particular, if 0id 
 
or 1id  , the series exhibits standard I(0) 

or I(1) properties. Instead, if 0 1id  , the series has LM properties, and the response 

of the variable to a shock takes more time to disappear than if the process was I(0). 

Finally,  F L  is a polynomial matrix of order p of autoregressive coefficients 

governing the short-run dynamics, and t is a vector of zero-mean errors    as the 

variance-covariance matrix.  

To estimate the process given by (1) and (2), we use the approximate frequency 

domain maximum likelihood, proposed by Boes et al. (1989). A discussion of the 

multivariate version of the procedure can be found in Hosoya (1996). The method has 

various advantages over existing alternatives. First, in order to circumvent the 

complicated likelihood function of autoregressive fractionally integrated time series 

models, the estimation is produced in the frequency domain, on the contrary, with no 

need of latent variables. More importantly, using this method, all the parameters of the 

                                                           
4
 Fractional co-integrated models, as the ones in Johansen (2008) or in Johansen and Nielsen (2011), 

impose equal coefficients of fractional integration for all variables. 
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FIVAR model, long memory and short memory, are estimated simultaneously, which is 

a clear advantage over two-step procedures.  

Collecting all model parameters in  , an approximate (Whittle) log-likelihood 

function based on 
tY  is given, up to a constant of multiplication by: 

        
/2

1

0

ln , ln det , , ,
T

j Y j Y j T j

j

L f trf I Y      



   
  , (2) 

where 2 ,   1... 2j j T j T  
 

is an equispaced set of Fourier frequencies. The 

spectral matrix  ,Y jf    is given by:  

              
1 11 11

, 2 j j j ji i i i

y jf D e I F e I F e D e
   

  
    

    , (3) 

where i  denotes the imaginary unit,  iD e 
, a diagonal matrix with the n-diagonal 

element given by  1
n

j
d

i
e


  and   1 ...j j ji i pi

pF e F e F e
  

   .   

Finally,  ,T jI Y  in the equation (2) is the periodogram matrix, computed as 

the product of  ,jx Y  by its complex conjugate:  

      
*

, , ,T j j jI Y x Y x Y   , (4) 

where  ,jx Y  is the finite Fourier transform of ,n tY :  

    1

, ,

1

1
,

2

T
i t

n n t n t

t

x y y e
T






 



  . (5) 

Abbriti et al. (2016) and Lovcha and Perez-Laborda (2015) contain more details on the 

estimation procedure.  
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2.2 Diebold-Yilmaz Measures of Connectedness 

The DY framework can be easily applied to the FIVAR model as it is applied to the 

VAR. To deal with correlation in the residuals, we rely on the generalized framework of 

Pesaran and Shin (1998), which does not require the orthogonalization of the shocks.  

In particular, let the MA(∞) representation of the FIVAR model in (1) be: 

    
11( )t t tY D L I F L L 
      . (6) 

The elements of the matrix  L  are infinite polynomials whose coefficients are the 

impulse responses (IRF) of the variables to the (possibly correlated) innovations. These 

IRFs can be computed in the FIVAR model noting that the diagonal elements of the 

matrix  D L  can be expanded using the gamma function    : 

      , ,0
(1 ) ; 1   nd k

n k n k n nk
L D L D k d k d




         . (7) 

The remainder of this section closely follows Diebold and Yimaz (2015). We 

refer to this work for a further discussion. The proportion of the H-step ahead forecast 

error variance of variable iy  accounted for by the innovations in jy  could be computed 

from the generalized IRF as: 

    
21 11

0 0
' ' '

H HH

ij ii i h j i h h ih h
d e e e e

 

 
      . 

Since the own-and-cross shares do not sum to one, the contributions are typically 

normalized by the row-sum: 
1

,
NH H H

ij ij ijj
d d d


 

 

yielding a N N matrix of normalized 

contributions known as the connectedness table.  
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Each entry of this table measures the pairwise directional connectedness from variable 

jy to variable iy :
5
  

H H

i j ijC d  . 

The off-diagonal row sum is defined as the total directional connectedness from 

others to iy : 

 
1; 

NH H

i ijj j i
C d   

  

 and, similarly, the off-diagonal column sum is the total directional connectedness to 

others from jy : 

1;
 

NH H

j iji i j
C d  

 . 

 Net connectedness can be obtained as the difference between the to and from 

measures. Finally, the total connectedness index is defined as the sum of off-diagonal 

elements (total of off-diagonal variation) relative to the total sum (total variation) of 

elements: 

, 1

1 NH H
i j ij
i j

C d
N




  . 

This index measures the extent to which the system is connected. Thus, if 0HC  , the 

components are independent are there are no spillover effects in the system. On the 

contrary, if 1HC  , the system is perfectly connected and all the forecast error variance 

comes from spillover effects.  

 

 

                                                           
5
 Note that, in general, H H

i j j iC C  , and by construction,
1

1
N H

ijj
d


  and

, 1
 

N H

iji j
d N


 .
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3. VOLATILITY SPILLS ACROSS ENERGY FUTURES 

We examine weekly volatility connections among four types of energy commodity 

futures: WTI crude oil, reformulated RBOB gasoline, heating oil, and natural gas. Our 

underlying daily data has been extracted from Thomson-Reuters Eikon and covers 

September 2008 to February 2018.
6
  

Table 1 

Summary Statistics 

 Oil Gasoline
 

Heating oil
 

Natural gas
 

Mean 32.414 31.844 26.899 40.047 

Median 27.094 27.295 23.680 35.151 

Maximum 167.518 126.564 96.051 135.342 

Minimum 7.541 7.395 6.258 14.220 

S.D. 20.200 17.680 13.975 18.361 

Skewness 2.278 1.847 1.521 1.852 

Kurtosis 7.699 4.405 2.844 5.043 

Jarque Bera 1620.1       670.1 351.9 793.0 

 

As in Diebold and Yilmaz (2009) or Yimaz (2010), we follow Garman and 

Klass (1980) and estimate weekly return volatilities using weekly high, low, opening 

and closing prices obtained from underlying daily high, low, open and close data, from 

the Monday open to the Friday close: 

       

 

22

2

0.511 0.019 2 2

0.383

t t t t t t t t t t t

t t

H L C O H L O H O L O

C O

           

 
,  

where tH and tL  are the logarithms of Monday to Friday high and low prices, tO  is the 

Monday open price, and tC is the Friday close (also in natural logs), resulting in 494 

weekly volatility observations. Annualized standard deviations can be computed as 

2100 52   . We provide summary statistics for volatilities in Table 1. 

                                                           
6
 The sample corresponds to the largest set available. Note that asymmetries do not play a fundamental 

role in the studied period (Barunik et al. 2016). 
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3.1 Full-Sample Results 

Following the methodology explained in Section 2, we estimate a FIVAR model of the 

weekly volatilities of the four energy futures: WTI oil, unleaded gasoline, heating oil, 

and natural gas. For the autoregressive part, we select one lag according to SIC criteria.  

 

 
Table 2 

Selected FIVAR Estimation Results 

Oil Gasoline
 

Heating oil
 

Natural gas
 

0.4 
(0.04) 

0.32 
(0.04) 

0.35 
(0.03) 

0.47 
(0.05) 

Notes: The table provides the estimated orders of fractional integration. Standard errors in parenthesis.  

 

Selected estimation results may be found in Table 2, which reports the estimated 

orders of FI of the four series. Corresponding standard errors are provided in 

parenthesis. Consistent with univariate studies, the presence of LM in the data is strong. 

The orders of integration are relatively high and greatly significant. Oil, unleaded 

gasoline, and heating oil have fractional orders of 0.4, 0.32, and 0.35 respectively, while 

the order of integration of natural gas is slightly larger (0.47), just on the border of the 

non-stationary region.
7
 After, we test the VAR specification against the FIVAR 

alternative by bootstrapping the empirical distribution of the likelihood ratio test 

statistic.
8
 The VAR null is rejected at usual significance levels. Overall, we find 

overwhelming evidence of long-memory with the standard I(0) framework decisively 

rejected by the data.  

                                                           
7
 If 0.5 1id  , the series is no longer stationary, although it is still mean-reverting. 

8
 For testing this hypothesis, we assume one autoregressive lag in the VAR, ensuring that the two models 

are nested. For the LR statistic, we estimate both models in the frequency domain and compute the values 

of the likelihood function. We bootstrap the empirical distribution of this statistic using both residual-

based and frequency-domain bootstrap methods, generating 500 bootstrap replications in each case.  
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Once the presence of LM in the data has been confirmed, we examine spillovers 

within the DY framework. The resulting connectedness table is reported in the first part 

of Table 3.
9
  

Table 3 

Volatility Connectedness: FIVAR and VAR 

 
FIVAR 

 Oil Gasoline Heating oil Natural gas FROM: 

Oil 56.6 15.3 28.1 0.0 43.4 

Gasoline 18.5 58.0 23.2 0.3 42.0 

Heating oil 27.4 19.5 52.8 0.3 47.2 

Natural gas 0.1 0.2 0.5 99.2 0.8 

TO : 46.0 35.0 51.8 0.6 C = 33.4 
 

 
VAR 

 Oil Gasoline Heating oil Natural gas FROM: 

Oil 46.7 (-17.6) 22.8 (49.5) 29.6 (5.5) 0.9 (2139) 53.3 (22.9) 

Gasoline 28.0 (50.9) 46.1 (-20.4) 25.0 (8.0) 0.8 (179.0) 53.9 (28.1) 

Heating oil 32.0 (16.8) 21.2 (8.9) 45.0 (-14.7) 1.7 (474.1) 55.0 (16.4) 

Natural gas 2.6 (4736.9) 1.0 (339.2) 5.1 (834.1) 91.3 (-7.9) 8.7 (945.6) 

TO: 62.6 (36.0) 45.1 (28.8) 59.7 (15.3) 3.4 (438.3) C = 42.7 (28) 

Notes: The results are based on 10-week ahead forecasts. The ij-th entry of the upper-left 4x4 sub-matrix 

gives the ij-th pairwise directional connectedness. The FROM column gives total directional 

connectedness from others. The TO row gives the total directional connectedness to others. Net 

connectedness can be computed subtracting the FROM column to the TO row. The bottom-right element 

C (in boldface) is the total connectedness. Values in parenthesis indicate % change with respect to the 

corresponding measure in the FIVAR. 

 

As can be seen in the table, the total connectedness in the FIVAR system is 

32.4%. Interestingly, connectedness is completely driven by the close link between 

petroleum markets. Note that both gasoline and heating-oil are products of crude oil, so 

shocks across these markets are transmitted quickly. Oil, gasoline, and heating oil 

contribute to the forecast error variance of the other petroleum volatilities with more or 

less the same amount spillovers that they receive, which is consistent with the evidence 

provided in Barunik et al. (2016). Yet, the gasoline market is net receiver, while crude 

                                                           
9
 We employ a 10-week ahead forecast horizon for the connectedness table, as in Diebold and Yilmaz 

(2009).  
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oil and heating oil are net transmitters of spillovers. On average, around 45% of the 

variability comes from spillovers from other petroleum commodities. On the contrary, 

we virtually find no volatility spillovers effects from petroleum markets to natural gas 

market or vice versa. As can be seen in the table, the total directional connectedness 

from and to natural gas is very small (0.8 and 0.6, respectively). Thus, our results 

suggest that the link between these markets is broken in post-2008 crisis data.  

To facilitate comparison with the standard framework, the second half of Table 2 

contains the connectedness measures calculated from the FEVD of a canonical VAR.
10

 

In order to assess the relative importance of the discrepancies, the table also provides 

the percentage of variation with respect to the corresponding measure in the FIVAR (in 

parenthesis). As can be observed in the table, the VAR model significantly understates 

the own-contributions to the FEVD. As a result, the spillovers are largely magnified. 

The total connectedness in the VAR model is full 10 points higher (from 33.4 to a 42.7), 

which is a lot for a magnitude bounded by 0 and 100, and it implies a variation of 

almost 30% with respect to the FIVAR. The difference is even greater for certain 

commodities. For instance, the total directional connectedness of oil to others is more 

than 15 points higher. Yet, in relative terms, the largest discrepancies are in the 

spillovers from and to natural gas. Note that the magnitude of the volatility linkages 

between petroleum and natural gas volatilities in the VAR model is not negligible, and 

is directed from petroleum markets to natural gas (the net connectedness of natural gas 

in the VAR model is -5.3). 

 

 

                                                           
10

 We select two lags according to the same criteria employed in the FIVAR (SIC). However, the results 

are robust to using exactly the same number of lags in the two models. 
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3.2 Rolling-Sample Analysis 

The full sample analysis provides an overall picture of the volatility relationships 

between 2008 and 2018, yet it may well be that connectedness varies with time. As 

typically done in this literature, we carry out rolling estimations over a 250-week 

window. The objective here is twofold. From one side, the resulting time-series of 

connectedness indices allow us to study the extent of the spillover variation and assess 

whether the discrepancies found between the FIVAR and VAR specifications are stable. 

On the other, we can also evaluate the robustness of presence of LM to possible breaks 

in the data. It has been argued that LM may sometimes appear as a spurious 

phenomenon caused by a break (Diebold and Inoue, 2001). Yet, the opposite effect is 

also well documented (Nunes et al., 1995).
11

 In addition, the results obtained by the 

previous literature suggest that, even in the event of any structural change, the presence 

of LM components in the volatility of returns would be robust to structural changes. 

Choi and Hammoudeh (2009), for example, provide evidence of LM in the absolute and 

squared petroleum futures returns, with structural breaks having only a small marginal 

effect on the fractionally integrated parameters. Nevertheless, finding significant 

presence of LM in the different rolling-samples will make irrelevant the practical 

importance of this possible critique to our full sample results. 

Figure 1 plots the resulting orders of fractional integration across the different 

windows together with two standard error bands. As can be seen in the figure, the 

evidence of LM is strong. The fractional orders are relatively high and significant. 

Moreover, they are also quite constant across the different subsamples, with values 

                                                           
11

 Although there are techniques aimed to distinguish between the two types of processes (see e.g., Qu, 

2011, and references therein), they have not yet been extended to the multivariate case. This is important 

since, as far as any structural break found using a univariate specification is explained by a change in the 

composition of shocks, this is not a concern in the multivariate model.  
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always close to those estimated in the whole sample. Thus, the rolling-estimates of the 

multivariate model suggest that structural breaks (if any) play only a marginal role on 

the LM characteristics of the volatility series, which is in line with the results of the 

preceding univariate studies.  

 

 

 

 

 
 
Fig. 1. Rolling-estimation orders of fractional integration. The shadowed area is the two standard error 

band. 
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The time-varying version of the total connectedness index is depicted in Figure 

2. The figure also includes the corresponding measure computed in the VAR. Note that, 

although the LM parameters are rather stable, the total connectedness in the system 

presents a significant declining trend, ranging from 39% (the window ending in August 

2013) to 28% (the window ending in February 2018). Interestingly, this decline is also 

present in the VAR (from 47% to 39%), but with a completely different pattern. The 

index computed in the VAR presents a considerably faster decline in the first quarter of 

the subsamples. As a result, the gap between the indexes computed in the two models is 

progressively closing; however, it remains almost a plateau after. As a result, the larger 

discrepancies between the two specifications are found in the last quarter of the rolling-

estimations.
12

   

 

 
Fig. 2. Rolling-estimation total connectedness. 

 

 

                                                           
12 The minimum distance is found in the samples ending in January 2014 and August 2014 (2 points), 

coinciding with small dips in the estimated persistence of petroleum and natural gas volatilities. The 

maximum divergence is found in the sample ending in October 2017 (12 points).  
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Finally, we employ the rolling-sample estimates to shed more light on the 

relationship between petroleum and natural gas volatilities. Figure 3 depicts the time 

pattern of the total directional connectedness to natural gas volatility from the 

petroleum markets and vice versa. Note, that although these two measures are never 

large, their values are significantly larger than the magnitudes obtained using the whole 

sample in the first third of rolling-samples, reaching maximums of 12.4% and 10.1%, 

respectively. However, the two measures experienced a progressive decline so that the 

volatility spillover effect between the natural gas and petroleum markets is virtually 

nonexistent in any direction for recent subsamples.  

 

Fig.3.  Dynamic Total Directional Connectedness FROM-TO Natural Gas computed in the FIVAR 

model. Net spillover effects can be computed as the difference between TO and FROM 

 

4. CONCLUSIONS 

It is now well understood that return volatility usually presents a degree of persistence 

that, although still consistent with an essential stationary process, cannot be properly 

captured by standard autoregressive specifications. In this paper, we have proposed a 

FIVAR model combining both long and short-memory components to assess volatility 

spillovers across energy futures markets within the DY framework. We have found that 

the different return volatility series are well characterized by this combination, with LM 
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providing important persistence to shocks, yet still in a context of mean-reversion. Our 

results suggest that neglecting this type of persistence results in a misleading assessment 

of spillovers. In particular, the canonical VAR understate the own-contributions to the 

forecast error variance, magnifying the magnitude of spillover effects. From the 

empirical view, we have shown that while petroleum markets present substantial 

volatility linkages, the relation between these markets and natural gas appear to be 

broken in post-2008 data, indicating that there are no volatility spillovers that can be 

employed by market participants to find optimal hedging positions.  

Like all empirical work, our approach suffers from several shortcomings. The 

most important, in our opinion, is that the LM model is not well-suited for the analysis 

of very short sample spans and is computationally more demanding than the VAR, 

which may complicate the joint analysis of many volatility series. Yet, the strong 

support of LM in the literature suggests that additional empirical studies taking into 

consideration these issues are required. In this respect, it would be interesting to assess 

the influence of LM on the assessment of the spillovers between the oil and the financial 

market volatilities. We consider this issue an interesting avenue for future research.  
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