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Nonempty core of minimum cost spanning

tree games with revenues

Begoña Subiza:, José-Manuel Giménez-Gómez;

and Josep E. Peris:

:Universitat d’Alacant, MQiTE and IUDESP.
;Universitat Rovira i Virgili, Dept. d’Economia and ECO-SOS.

Abstract

A minimum cost spanning tree problem analyzes the way to efficiently con-
nect agents to a source when they are located at different places. Once the
efficient tree is obtained, the total cost should be allocated among the in-
volved agents in a fair and stable manner. It is well known that there always
exist allocations in the core of the cooperative game associated to the mini-
mum cost spanning tree problem (Bird, 1976; Granot and Huberman, 1981).
Estévez-Fernández and Reijnierse (2014) investigate minimum cost spanning
tree problems with revenues and show that the cost-revenue game may have
empty core. They provide a sufficient condition to ensure the non-emptiness
of the r-core for elementary cost problems; that is, minimum cost spanning
tree problems in which every connection cost can take only two values (low or
high cost). We show that this condition is not necessary and obtain a family
of cost-revenue games (simple problems, Subiza et al. (2016)) in which the
non-emptiness of the r-core is ensured.

Keywords: Minimum cost spanning tree problem, Elementary cost
problem, Simple minimum cost spanning tree problem, Cost-revenue game,
Core.

JEL classification: C71, D63, D71.

1. Introduction

We consider a situation in which some individuals, located at different
places, want to be connected to a source in order to obtain a good or service.
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Each link joining two individuals, or joining any individual to the source,
has a specific fixed cost. Moreover, individuals do not mind being connected
directly to the source, or indirectly through other individuals. There are
several methods to obtain a way of connecting agents to the source so that
the total cost of the selected network is minimum. This situation is known
as the minimum cost spanning tree problem (hereafter mcst problem) and
it is used to analyze different real-life issues, from telephone and cable TV
to water supply networks. Once the optimal tree is obtained, an important
question is how this minimum cost should be allocated among the individuals
and many proposals have been defined in the literature (see, for instance,
Bergantiños and Vidal-Puga (2008) and Bogomolnaia and Moulin (2010) for
definitions and a comparative analysis).

Estévez-Fernández and Reijnierse (2014) analyze the problem arising from
a general service by explicitly taking into account the revenues generated by
this service. The question is how to share the net revenues obtained from
cooperation among the agents. They study the case of mcst problems with
revenues and show that its core (the r-core) may be empty in general cases.
Moreover, they find a sufficient condition that ensures the non-emptiness of
the r-core in the particular case in which only two values of the connection
costs are possible: low and high cost (this kind of situations are known as
elementary cost problems, or 2-mcst problems). Their sufficient condition
requires that cooperation among the members of the grand coalition grants
the use of the service under consideration to all its members.

An alternative interpretation (or an equivalent problem) arises when we
consider that (instead of revenues) individuals have an upper bound on how
much they are willing to pay to be connected. In both cases, and contrary
to what happens in mcst problems, a coalition may profit from not allowing
all of its members to get the service that generates the revenues. That is, it
is possible a situation in which some individuals remain unconnected in the
optimal cost-revenues spanning tree.

Subiza et al. (2016) introduce the class of simple mcst problems as the
sub-class of elementary problems such that only one individual connects di-
rectly to the source and at most one individual uses a high-cost connection
in the minimum cost tree, the one that directly connects to the source (see
the formal definition in Section 3). Working with this kind of problems it is
easy to obtain the cost of the minimum cost tree and that paper shows that
the Folk solution (Feltkamp et al., 1994; Bergantiños and Vidal-Puga, 2007),
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one of the most popular solutions in mcst problems, shares the optimal cost
equally among the individuals in the grand coalition. Subiza et al. (2016)
also introduce the more general class of simple-components mcst problems
(that includes elementary problems). Simple-components problems allow to
divide the problem in several (simple) independent components, so that we
only need to solve the (smaller) mcst sub-problems and, in some sense, the
grand coalition is not relevant.

In this paper we deal with simple mcst problems with revenues. By using
a sub-family (plain problems) as an intermediate step, we show that the core
of simple mcst games with revenues is non-empty. Moreover, our proof is
constructive, so we provide an allocation in the r-core. The results are also
used to discuss the case of elementary cost mcst problems with revenues.

2. Preliminaries

2.1. Minimum cost spanning tree

A minimum cost spanning tree (mcst) problem involves a finite set of
agents, N “ t1, 2, . . . , nu, n ě 2, who need to be connected to a source ω.
We denote by Nω the set of agents and the source, Nω “ NYtωu. The agents
and the source are connected by edges and for i ‰ j, cij P R` represents the
cost of the edge eij “ pi, jq connecting i, j P Nω. As usual in the literature,
we assume throughout this article that:

(i) cii “ 0, for all i P Nω; and

(ii) cij “ cji, for all i, j P Nω (symmetry).

Let C “ rcijspn`1qˆpn`1q be the symmetric cost matrix. The mcst problem
is represented by the pair pNω,Cq and Nn will denote the class of mcst
problems involving n agents and a source.

Let us denote by Cω the cost of the tree in which every individual joins
directly the source, Cω “

ř

iPN ciω. And, for any individual i P N , ci˚

represents the minimum connection cost of such an individual (interpreted
as the cost to connect with his nearest partner),

ci˚
“ min tcij, j P Nω, j ‰ iu .

Note that the nearest partner may be the source ω, in which case ci˚
“ ciω.

Since the cost matrix is nonnegative, it turns out that the graph that con-
nects all individuals to the source with a minimum cost is a spanning tree.
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A spanning tree over pNω,Cq P Nn is an undirected graph p with no cycles
that connects all elements of Nω. We can identify a spanning tree with a map
p : N Ñ Nω so that j “ ppiq is the agent (or the source) whom i connects
on his way to the source. This map p defines the edges epij “ pi, ppiqq in the
tree. In a spanning tree each agent is (directly or indirectly) connected to the
source ω; that is, for all i P N there is some t P N such that ptpiq “ ω. More-
over, given a spanning tree p, there is a unique path from any i to the source
for all i P N, given by the edges pi, ppiqq, pppiq, p2piqq, . . . , ppt´1piq, ptpiq “ ωq.
The cost of building the spanning tree p is the total cost of the edges in
this tree; that is, Cp “

řn
i“1 cippiq. Prim (1957) provides an algorithm which

solves the problem of connecting all agents to the source such that the total
cost of the network is minimum.1 The achieved solution, the minimum cost
spanning tree, may not be unique. Denote by m a tree with minimum cost
and by Cm its cost. That is, for any spanning tree p

Cm “

n
ÿ

i“1

cimpiq ď Cp “

n
ÿ

i“1

cippiq.

Once a minimum cost spanning tree is built, the problem at hand is how to
allocate the associated cost Cm among the agents.

A cost sharing rule for mcst problems is a function that proposes for any
mcst problem pNω,Cq P Nn an allocation αpN,Cq “ pα1, α2, . . . , αnq P Rn,
such that

řn
i“1 αi “ Cm. Many cost sharing rules have been defined in the

literature. One prominent solution to solve the allocation of this cost is the
so-called Folk solution proposed independently by Feltkamp et al. (1994) and
Bergantiños and Vidal-Puga (2007), among others. The Bird solution (Bird,
1976) allocates to each agent the cost of the link on the (unique) path from
this agent to the source in the optimal tree.

As mentioned in Bogomolnaia and Moulin (2010): “To find a fair and
in some sense stable division of the optimal cost among the n agents is a
challenging question discussed by cooperative game theorists for over thirty

1 This algorithm has n steps. First, we select the agent i with smallest cost to the
source; that is, ciω ď cjω, for all j P N. In the second step, we select an agent in Nztiu
with the smallest cost either directly to the source or to agent i, who is already connected.
We continue until all agents are connected, at each step connecting an agent still not
connected to a connected agent or to the source.

4



years. That literature singles out Stand Alone Core stability as the key in-
centive compatibility property: no coalition of agents should be charged more
than the cheapest cost of connecting all of them to the source, independently
of agents outside the coalition.” To define the stand alone cost of a coalition
S Ď N , we will denote by C|S the cost matrix involving only elements in
S; i.e., C|S “ rcijsi,jPSYtωu. Then, we associate to any mcst problem a TU

cooperative game pN, cq defined in the following way:

cpNq “ Cm, cpSq “ CmpSq @S Ď N, cpHq “ 0,

where CmpSq denotes the minimum cost in the mcst sub-problem pSω, C|Sq.
This cooperative game is the base of the Kar solution (Kar, 2002), which
is defined as the Shapley value of the cooperative game pN, cq; that is,
KpN,Cq “ ShpN, cq.

The core of the cooperative game pN, cq, denoted as corepN, cq, is the set

of allocations x P Rn such that
n
ÿ

i“1

xi “ cpNq and for any subset S Ď N ,

ÿ

iPS

xi ď cpSq. The aforementioned Bird and Folk solutions belong to the

core of this cooperative game, proving its non-emptiness (see, for instance,
Bogomolnaia and Moulin (2010)).

2.2. Minimum cost spanning tree with revenues

Estévez-Fernández and Reijnierse (2014) introduce the minimum cost
spanning tree problems with revenues in the following way. Let us consider a
mcst problem pNω,Cq P Nn and suppose now that a group of agents S Ď N
connected to the source ω can cooperate in order to obtain a higher joint
revenue. Whenever a coalition S Ď N decides to cooperate, an additive rev-
enue is obtained and a non-additive cost (the cost of connecting individuals
in S to the source ω) is generated.

Formally, let bi P R` the revenue that agent i P N generates if i gets
the service under consideration (that is, if agent i is directly or indirectly
connected to the source ω). We denote by b “ pb1, b2, . . . , bnq the vector of
revenues. Then, the total revenue that a coalition S Ď N can obtain by
cooperation is

ř

iPS bi, whereas the net revenue of this coalition is

πpSq “
ÿ

iPS

bi ´ cpSq.
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We denote this kind of problems by pNω,C, bq. Due to the revenue structure
of the game, it may be more profitable for coalition S not to form as a whole,
so that some agents i P S do not connect to the source ω. Under such
assumption, the worth of a coalition S is

υbpSq “ max tπpRq, R Ď Su .

A new TU cooperative game is thus defined by the pair pN, υbq. The problem
at hand is how to share the worth υbpNq obtained by the grand coalition
among the agents. A first idea is to allocate to each individual his net
revenue, once the cost is shared accordingly to some mcst solution. But this
sharing may end with some agent obtaining a negative amount, which is a
counter-intuitive proposal (individuals can chose not to connect, and then
their net revenue is null; so they are not willing to pay any amount). The
following example illustrates the situation.

Example 1. Let us consider the mcst problem with revenues represented in
Figure 2, in which the number at the edges represent the connection costs
and the boldfaced numbers at the nodes represent the revenue that the corre-
sponding agent obtains.

3

21

ω

12 2

20

10

15

10

15

10

15

Figure 1: The mcst problem with revenues in Example 1.

The minimum cost spanning tree is:

123 ω
10 1010
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Then, cpNq “ 30 and the net revenues are πpNq “
ř3

i“1 bi´ cpNq “ 4. Note
that it is profitable that only agents 1 and 3 connect the source with a cost of
cpt1, 3uq “ 25 and a net revenue πpt1, 3uq “ b1 ` b3 ´ cpt1, 3uq “ 7. That is,
the worth of the gran coalition is υbpNq “ 7.

If we use the Bird solution to share the cost of the mcst, then each agent
pays the edge he uses in the optimal tree; that is, y1 “ 10, y2 “ 10, y3 “ 10
and the net revenues are x1 “ 2, x2 “ ´8, x3 “ 10. This allocation is not
efficient (the worth is 7 and, in aggregate, the individuals receive 4 units)
and it is not acceptable for agent 2 that receives a negative allocation (that
is, this agent should pay 8 monetary units).

In order to share the worth υbpNq, it is possible to pay attention only to
the TU cooperative revenues game pN, υbq and therefore to apply TU games
solution concepts (Shapley value, nucleolus). In this example, the character-
istic function υb is given in Table 1 (we also indicate the cost of building the
tree, cpSq, the revenue

ř

iPS bi, and the net revenue πpSq, for each coalition
S).

S H t1u t2u t3u t1, 2u t1, 3u t2, 3u N “ t1, 2, 3u

υbpSq 0 2 0 5 2 7 5 7

cpSq 0 10 15 15 20 25 25 30
ř

iPS bi 0 12 2 20 14 32 22 34

πpSq 0 2 -13 5 -6 7 -3 4

Table 1: Coalitional values of the mcst game with revenues in Example 1.

If we compute the Shapley value of the TU game pN, υbq, we get the sharing
x “ Sh pN, υbq “ p2, 0, 5q, which is a natural solution of the mcst problem
with revenues (in this case, it coincides with the nucleolus).

A different approach to obtain a solution consists on building the efficient
tree with respect to the mcst problem with revenues; that is, only connecting
to the source the agents in the coalition S Ď N such that υbpNq “ πpSq; in
this case, only connecting agents 1 and 3 to the source ω. We can now divide
the cost by using mcst sharing rules. Then, for all i P S,

xi “ bi ´ αi, i P S,
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where α is a cost sharing rule for mcst problems, provides a sharing of the ob-
tained worth among the involved agents. We complete the allocation by defin-
ing xj “ 0, for all j R S. In this example, the connection cost is cpt1, 3uq “ 25
and the Bird and Folk solutions agree on the sharing c1 “ 10, c3 “ 15 (c2 “ 0,
since this agent is not connected). Then, the worth of the mcst game with
revenues is shared as

x1 “ b1 ´ c1 “ 2; x2 “ 0; x3 “ b3 ´ c3 “ 5

that coincides with the Shapley value of the TU game pN, υbq.

Since building a spanning tree needs the cooperation of the involved
agents, an essential condition is that agents agree on that cooperation; that
is, the proposed sharing of the worth υbpNq must belong to the core of the
mcst game with revenues pN, υbq: the set of allocations x P Rn such that

n
ÿ

i“1

xi “ υbpNq and for any subset S Ď N,
ÿ

iPS

xi ě υbpSq.

We are interested in analyzing the non-emptiness of the above core, that we
name r-core and denote by core pN, υbq.

A particular family of mcst problems with revenues that has been exten-
sively analyzed is that of elementary cost problems, in which the cost of any
edge can only take two values (low cost, high cost).

Definition 1. An mcst problem pNω,Cq P Nn has elementary cost if for
all i, j P N , cij P tκ1, κ2u, with 0 ď κ1 ă κ2. We will denote an elementary
cost mcst problem by pNω,C

eq, and En will represent the class of elementary
cost mcst problems involving n agents.

Remark 1. Usually, whenever we are only concerned with the minimum
connection cost, elementary cost mcst problems are defined such that κ1 “ 0
and κ2 “ 1. The general case 0 ď κ1 ă κ2, low and high cost, which turns
out to be relevant when revenues are considered, is also known as 2-mcst
problems.

In general, and contrary to what happens in the mcst cost-game pN, cq,
the r-core may be empty, as shown in Estévez-Fernández and Reijnierse
(2014): They provide an elementary cost mcst problem with revenues that
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has empty r-core (Example 3.1; the example involves 6 individuals and the
source). To solve the emptiness of the r-core, Estévez-Fernández and Rei-
jnierse (2014) assume that the grand coalition N is profitable; that is, they
analyze 2-mcst problems with revenues pNω,C

e, bq satisfying the following
assumption.

Assumption 1. υbpNq “ πpNq “
n
ÿ

i“1

bi ´ cpNq.

Note that the above assumption asks that the optimal revenues-tree (the
most profitable tree) requires that all agents are (directly or indirectly) con-
nected to the source. Under these conditions, they show that the r-core is
non-empty.

Proposition 1. (Estévez-Fernández and Reijnierse, 2014) Every elemen-
tary cost mcst game with revenues pN, υbq satisfying Assumption 1 has a
nonempty r-core. Moreover,

x P core pN, υbq ô x “ b´ y, with y P corepN, cq, y ď b.

Remark 2. The mcst problem with revenues in Example 1 has elementary
cost but it does not fulfill Assumption 1; that is, the grand coalition is not
profitable. Nevertheless, the r-core of the cost-revenue game is not empty: as
can be observed with the data in Table 1, the proposed sharing of the worth
in this example, x˚ “ p2, 0, 5q, belongs to the r-core, that only contains this
assignment.

Note that there is no allocation y P corepN, cq such that x˚ “ b´ y. This
is due to the fact that agent 2 is not connected to the source in the optimal
revenues-tree.

We are interested in problems in which not necessarily all agents need to
connect the source, as in the case shown in Example 1. The following section
explores some ways of ensuring the non emptiness of the r-core without
requiring Assumption 1 in some classes of mcst problems with revenues.
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3. Simple mcst problems

In Subiza et al. (2016) the class of simple mcst problems is introduced and
it is used as an intermediate step to analyze elementary cost mcst problems.
First, the notion of autonomous component is needed.

Definition 2. Given the mcst problem pNω,Cq P Nn, with minimum con-
necting cost Cm, a subset S Ď N is said to be:

• autonomous if Cm “ CmpSq ` CmpNzSq;

• an autonomous component if it is autonomous and has no proper
subset that is also autonomous (if T Ř S, then T is not autonomous).

Remark 3. Obviously, the grand coalition N is always autonomous.

Definition 3. (Subiza et al., 2016) An mcst problem pNω,C
eq P En with el-

ementary cost is said to be simple if the grand coalition N is an autonomous
component. We will denote a simple mcst problem by pNω,C

sq and Sn will
represent the class of simple mcst problems with n agents.

The following result provides the explicit expression of the minimum cost
of building a spanning tree in a simple mcst problem. The proof follows
directly from Subiza et al. (2016).

Lemma 1. Given a simple mcst problem pNω,C
sq P Sn

1) There is at most one individual i P N such that ciω “ κ1
2) For all i P N , ci˚

“ min tcij, j P Nω, j ‰ iu “ κ1

3) cpNq “

$

&

%

nκ1 if ciω “ κ1 for some i P N

nκ1 ` pκ2 ´ κ1q otherwise

It is clear that if there exists an individual i P N such that ciω “ κ1, this
agent will be the one that directly connects to the source in the minimum
cost spanning tree.

Notation. From now on, given a simple mcst problem pNω,C
sq P Sn if there

is an individual whose cost to connect the source is κ1 we relabel the agents
so that this individual is denoted by 1. Therefore, in a simple mcst problem
ciω “ κ2, for any i ě 2.

From this result we obtain the net revenue of the grand coalition in simple
mcst problems with revenues.
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Corollary 1. Given a simple mcst problem pNω,C
sq P Sn and a vector of

revenues b “ pb1, b2, . . . , bnq, then

πpNq “

$

’

’

’

’

’

&

’

’

’

’

’

%

n
ÿ

i“1

pbi ´ κ1q if c1ω “ κ1

n
ÿ

i“1

pbi ´ κ1q ´ pκ2 ´ κ1q otherwise

To analyze the net revenue of coalitions other than the grand coalition,
S Ď N , S ‰ N , it is important to note that although we consider a simple
mcst problem pNω,C

sq, the sub-problems pSω, C
s|Sq may no longer be simple

for all S Ď N , as can be observed in Example 2: this mcst problem is simple,
but if we consider the coalition S “ t1, 3u the mcst sub-problem pSω, C

s|Sq

is not a simple mcst problem since it has two autonomous components, S1 “

t1u, S2 “ t3u.

In our next definition we restrict the class of simple mcst problems by
requiring that each sub-problem to be simple.

Definition 4. Given an mcst problem pNω,Cq P Nn, it is said to be plain
if pSω, C|Sq is simple for all S Ď N . We will denote a plain mcst problem
by pNω,C

pq and Pn will represent the class of plain mcst problems with n
agents.

Plain minimum cost spanning tree problems include situations where the
costs are the same for all connections between individuals, and this common
cost is strictly lower than the cost of connecting any agent to the source. For
example, a group of neighbors who, in order to access to a service platform,
could choose to create a network among themselves connecting agents at a
price κ1 for each connection, as long as one of them is connected directly to
the platform at a higher price κ2. Or they could connect individually to the
platform directly, each of them at a cost of κ2 ą κ1.

In the class of plain mcst problems we can easily obtain the net revenues
of each coalition S Ď N . The result follows immediately from Corollary 1
and Definition 4.
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Corollary 2. Consider a plain mcst problem pNω,C
pq P Pn and a vector of

revenues b “ pb1, b2, . . . , bnq. Then, for each S Ď N ,

πpSq “

$

’

’

’

&

’

’

’

%

ÿ

iPS

pbi ´ κ1q if c1ω “ κ1

ÿ

iPS

pbi ´ κ1q ´ pκ2 ´ κ1q otherwise

4. Non-emptiness of the r-core in plain mcst problems

The explicit expression of the characteristic function of a plain cost rev-
enue game pN, υbq and the non-emptiness of the corresponding r-core are
straightforwardly obtained from Corollary 2.. First, we define the notion of
effective coalition.

Definition 5. Let pNω,Cq a mcst problem and consider a vector of revenues
b “ pb1, b2, . . . , bnq. For each S Ď N , the effective coalition associated to
S, that we denote by S`, is the subset of S such that:

a) υbpSq “ πpS`q

b) if υbpSq “ πpRq, for some R Ď S, then R Ď S`

In words, it is the maximal subset providing the worth υbpSq. Note that
it may be the case that S` “ H (in such a case, υbpSq “ 0). Nevertheless,
the converse is not true, so it is possible υbpSq “ 0 and S` ‰ H. Moreover,
it is obvious that υbpSq ą 0 implies S` ‰ H.

The following result shows additional properties for plain mcst problems
with revenues.

Lemma 2. Consider a plain mcst problem pNω,C
pq P Pn and a vector of

revenues b “ pb1, b2, . . . , bnq. Then, for each S Ď N :

(1) If bi ě κ2 for some i P S, then i P S`.

(2) If bi ě κ1 for some i P S, and υbpSq ą 0, then i P S`.

(3) If c1ω “ κ1 and 1 P S`, then

1 P T`, for any T Ď N , such that 1 P T and υbpT q ą 0.

(4) If ciω “ κ2 for all i P S, then bj ă κ1 for j P S implies j R S`.
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Proof. Let S Ď N , S ‰ H.

(1) Suppose bi ě κ2 for some i P S. If i R S`, then S` Y tiu Ď S and

υbpSq “ πpS`q ď πpS`q ` pbi ´ κ2q ď πpS` Y tiuq

a contradiction.

(2) Now suppose υbpSq ą 0 and bi ě κ1 for some i P S. If i R S`, then
S` Y tiu Ď S and since the sub-problem pSω, C|Sq is simple, individual
i P S may connect with some individual in S` at cost κ1 (note that
S` ‰ H). Therefore,

υbpSq “ πpS`q ď πpS`q ` pbi ´ κ1q “ πpS` Y tiuq

a contradiction.

(3) If c1ω “ κ1 and 1 P S`, this implies υbpSq ą 0. We distinguish two cases:

(a) If b1 ě κ1, part (2) shows that 1 P T`, for any T Ď N , such that
1 P T and υbpT q ą 0.

(b) If b1 ă κ1, and 1 P S`, then

ÿ

iPS`

pbi ´ κ1q ě
ÿ

iPS`,i‰1

pbi ´ κ1q ´ pκ2 ´ κ1q

from definition of effective coalition, which implies b1´κ1 ě κ1´κ2.
Then, for any T Ď N , such that υbpT q ą 0 and 1 P T , if 1 R T`,

υbpT q “ πpT`q “
ÿ

iPT`

pbi ´ κ1q ´ pκ2 ´ κ1q ď

ď
ÿ

iPT`Yt1u

pbi ´ κ1q “ πpT` Y t1uq

a contradiction.

(4) If ciω “ κ2 for all i P S, bj ă κ1 and j P S`, then

υbpSq “ πpS`q “
ÿ

iPS`

pbi ´ κ1q ´ pκ2 ´ κ1q ă

ă
ÿ

iPS`,i‰j

pbi ´ κ1q ´ pκ2 ´ κ1q ď π
`

S` r tju
˘

a contradiction.
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This concludes the proof.

Remark 4. As we know (Lemma 1), in simple (and plain) mcst problems
there exists at most one individual such that the cost of directly connect the
source is κ1. In the mcst problem this agent always connect the source in
order to obtain the efficient tree (minimum cost).

In the cost-revenue game, the individual fulfilling c1ω “ κ1 is not neces-
sarily required to be in the optimal tree (maximum benefit). The proof of the
above result shows that this individual belongs to the optimal tree if and only
if

b1 ě 2κ1 ´ κ2

and this applies for any coalition S Ď N containing this individual. On the
other hand, if c1ω “ κ2, only agents such that bi ě κ1 may belong to the
effective coalition.

Next, we obtain the characteristic function of the cost-revenue game
pN, υbq, in the case of plain mcst problems. The proof follows directly from
Corollary 2.

Lemma 3. Consider a plain mcst problem pNω,C
pq P Pn and a vector of

revenues b “ pb1, b2, . . . , bnq. Then, for each S Ď N , the characteristic func-
tion of the cost-revenue game is defined by:

υbpSq “

$

’

’

’

’

&

’

’

’

’

%

0 if S` “ H

ř

iPS`pbi ´ κ1q if c1ω “ κ1 and 1 P S`

ř

iPS`pbi ´ κ1q ´ pκ2 ´ κ1q otherwise

Theorem 1. For any plain mcst problem pNω,C
pq P Pn and any vector of

revenues b “ pb1, b2, . . . , bnq, the core of the TU cooperative game pN, υbq is
non-empty.

Proof. To prove the non-emptiness, we will show that the following alloca-
tion belongs to the r-core:

xi “ max t0, bi ´ κ1 ´ αu @ i P N (1)
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where α ě 0 is chosen so that
n
ÿ

i“1

xi “ υbpNq.

We need to prove that, for all S Ď N , υbpSq ď
ÿ

iPS

xi.

If υbpSq “ 0 the above condition is obviously fulfilled. Then, we suppose
υbpSq ą 0. We distinguish the following cases:

(a) ciω “ κ2 for all i P N
In this case we know (Lemma 2) that i P S` if and only if bi ě κ1. On the
other hand, the extra-cost κ2 ´ κ1 is completely assumed by individuals
in this coalition; that is,

ř

iPS` α “ κ2 ´ κ1. Then,

υbpSq “
ÿ

iPS`

pbi ´ κ1q ´ pκ2 ´ κ1q ď
ÿ

iPS`

ppbi ´ κ1q ´ αq ď
ÿ

iPS`

xi ď
ÿ

iPS

xi

(b) c1ω “ κ1. If b1 ă 2κ1 ´ κ2 then this individual does not belong to the
optimal tree (for any coalition) and the result follows analogously as in
the previous case. Otherwise, if b1 ě 2κ1 ´ κ2, then κ1 ´ b1 ď κ2 ´ κ1
and

(b1) If 1 P S, υbpSq “
ř

iPS`pbi ´ κ1q ď
ř

iPS xi.

(b2) If 1 R S, υbpSq “
ř

iPS`pbi ´ κ1q ´ pκ2 ´ κ1q ď

ď
ř

iPS`pbi ´ κ1q ´ pb1 ´ κ1q ď
ř

iPS xi.

This concludes the proof.

5. Simple problems: non-emptiness of the r-core

In order to show the non-emptiness of the r-core of simple mcst problems
with revenues the first goal is to obtain the net revenues πpSq and the char-
acteristic function υbpSq of each coalition S. Contrary to what happens with
plain problems (sub-problems are also plain), a sub-problem pSω, C|Sq of a
simple mcst problem may not be simple (as shown in Example 1). Never-
theless, these sub-problems have elementary cost and can be split in several
simple problems (see Subiza et al. (2016)), that we call simple components.2

2In Granot and Huberman (1981) the notion of simple-components mcst problem is
analyzed with the name of efficient coalition structure. We additionally ask the sub-
problems to be simple.
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The main feature of this kind of problems is that a mcst problem with simple
components can be solved by solving its simple components.

By using simple components, the following result provides the form of net
revenues of simple mcst games.

Lemma 4. Let pNω,C
sq P Sn, b “ pb1, b2, . . . , bnq the vector of revenues,

and consider S Ď N . Then, for each simple component St in pSω, C|Sq

πpStq “

$

’

’

’

’

&

’

’

’

’

%

ÿ

iPSt

pbi ´ κ1q if c1ω “ κ1 and 1 P St

ÿ

iPSt

pbi ´ κ1q ´ pκ2 ´ κ1q otherwise

and

πpSq “
qS
ÿ

t“1

πpStq “

“

$

’

’

’

&

’

’

’

%

ÿ

iPS

pbi ´ κ1q ´ pqS ´ 1qpκ2 ´ κ1q if c1ω “ κ1 and 1 P S

ÿ

iPS

pbi ´ κ1q ´ qSpκ2 ´ κ1q otherwise

where qS is the number of simple components in pSω, C|Sq.

Proof. It follows straightforwardly from Corollary 1. Note that, being the
mcst problem pNω,C

sq simple, the low and high cost are always the same,
κ1ptq “ κ1 and κ2ptq “ κ2, for any simple component St. To obtain the
expression of the revenue of coalition S, πpSq, observe that the collection
tSt : t “ 1, 2, . . . , qSu is a partition of S, so the individual with low cost to
connect the source (if any) belongs at most to one of the subsets St Ď S.

Proposition 2. For any simple mcst problem pNω,C
sq P Sn and any vector

of revenues b “ pb1, b2, . . . , bnq, the characteristic function of the TU cooper-
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ative game pN, υbq fulfills:

υbpSq ď

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if S` “ H

ÿ

iPS`

pbi ´ κ1q if c1ω “ κ1 and 1 P S`

ÿ

iPS`

pbi ´ κ1q ´ pκ2 ´ κ1q otherwise

where S` is the effective coalition associated to S.

Proof. We know that υbpSq “ πpS`q and the result follows from Lemma 4
by observing that qS` ě 1.

From this result we obtain the non-emptiness of simple mcst games with
revenues. The proof runs parallel to that in Theorem 1, so we omit it.3

Theorem 2. For every pNω,C
sq P Sn, and every b “ pb1, b2, . . . , bnq the core

of the TU cooperative game pN, υbq is nonempty.

6. Final comments

We have shown a sub-class of problems (simple mcst games with rev-
enues) in which the core is always not-empty. Moreover, this result cannot
be extended to the class of elementary cost mcst games with revenues since
we know that the core in this case may be empty (Estévez-Fernández and
Reijnierse, 2014). These authors provide a sufficient condition to ensure the
non-emptiness of the core: the grand coalition must be an effective coalition.

Can we apply our results to discuss the core of elementary cost mcst
games with revenues? We know that these problems have simple components,
and that each simple component is a simple mcst problem with not-empty

3The main difference is that we now use Proposition 2 instead of Lemma 3, and we get
an inequality when analyzing the value of υbpSq. As in Theorem 1, it can be shown that
the allocation

xi “ max t0, bi ´ κ1 ´ αu @ i P N

belongs to the r-core, where α ě 0 is chosen so that
n
ÿ

i“1

xi “ υbpNq.
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core (although the core of the whole problem may be empty). So, we can
pick up allocations in the core of such sub-problems and propose them as
a possible solution. Let us see the result of applying this procedure in the
example provided by Estévez-Fernández and Reijnierse (2014) with empty
core, which is represented in Figure 2.

351

ω

4

2

6

Figure 2: The elementary cost mcst problem with revenues in Example 3.1, from Estévez-
Fernández and Reijnierse (2014). The cost of each link appearing in the picture is cij “ 1,
whereas the undrawn links have cost cij “ 2. The revenues vector is b “ p2, 2, 2, 0, 0, 0q.

This elementary cost mcst problem can be split into three simple com-
ponents, as many as individuals with ciω “ 1 (low cost to the source), in the
following different ways:

• S1 “ t1, 2, 4u S2 “ t3, 5u S3 “ t6u

• S1 “ t1, 2, 4u S2 “ t3, 6u S3 “ t5u

• S1 “ t1, 3, 5u S2 “ t2, 4u S3 “ t6u

• S1 “ t1, 3, 5u S2 “ t2, 6u S3 “ t4u

• S1 “ t2, 3, 6u S2 “ t1, 4u S3 “ t5u

• S1 “ t2, 3, 6u S2 “ t1, 5u S3 “ t4u
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By selecting, in each possible configuration as a simple components problem,
the core allocation provided in the proof of Theorem 1 for any simple mcst
sub-problem we obtain:

xi “ 0.5, if i P S1 X t1, 2, 3u , xi “ 0, otherwise.

If all the possible splittings in simple components are considered equally
probable, the average of these allocations is

x “

ˆ

1

3
,
1

3
,
1

3
, 0, 0, 0

˙

that coincides with the nucleolus of the cost revenues game pN, υbq.
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