Overlapping generations model

- <u>Time</u> is measured in periods, denoted by t, and indexed by integers: $t \in \{1, 2, 3, ...\}$.
- The only agents are <u>consumers</u>.
- Consumers live for two consecutive periods.
- At every period t a new generation of N(t) consumers is born. Members of generation t are young in period t and old in period t + 1.
- There is only <u>one good</u> in each period.
- The good is exogenously given (gift of nature).
- The amount of good in period t is Y(t).
- The endowment Y(t) is only available at t.

Demographic structure

	time period							
generation	1	2	3	4				
0	old							
1	young -	→ old						
2		young -	→ old					
3			young -	→ old				
4				young				
population	N(0) + N(1)	N(1) + N(2)	N(2) + N(3)	N(3) + N(4)				
amount of good	Y(1)	Y(2)	Y(3)	Y(4)				

Endowments & consumption

- Member i of generation t has $w_t^i(t)$ units of the good at t and $w_t^i(t+1)$ units at t+1.
- The endowment Y(t) in period t is distributed among the people alive in t: $\sum_{i=1}^{n} w_i^i(t) + \sum_{i=1}^{n} w_i^i(t) = Y(t)$

$$\sum_{i \in N(t)} w_t^i(t) + \sum_{i \in N(t-1)} w_{t-1}^i(t) = Y(t).$$

- Member *i* of generation *t* consumes $c_t^i(t)$ units of the good at *t* and $c_t^i(t+1)$ at t+1.
- The <u>consumption basket</u> of $i \in N(t)$ is a pair $c_t^i = (c_t^i(t), c_t^i(t+1))$ that establishes i's consumption when young and when old.

Consumption allocations

- A <u>consumption allocation</u> is a sequence $\{c_t^i\}_{t\geq 0, i\in N(t)}$ of consumption baskets of members of all generations (generation 0 consists only of old people).
- A consumption allocation is <u>feasible</u> if, for all $t \ge 1$,

$$\sum_{i \in N(t)} c_t^i(t) + \sum_{i \in N(t-1)} c_{t-1}^i(t) \le Y(t).$$

• A consumption allocation is <u>efficient</u> if, for all $t \ge 1$, $\sum_{i \in N(t)} c_t^i(t) + \sum_{i \in N(t-1)} c_{t-1}^i(t) = Y(t).$

Preferences & utility functions

- Consumers have <u>preferences</u> over their own consumption vectors.
- When young, the preference of consumer $i \in N(t)$ is represented by a <u>utility function</u> u_t^i .
- The value $u_t^i(c_t^i(t), c_t^i(t+1))$ is i's utility when he consumes $c_t^i(t)$ now (as young) and consumes $c_t^i(t+1)$ in the future (as old).
- When old, i's utility only depends on $c_t^i(t+1)$, which has already been determined when i was young.

Properties of the utility function

• Each u_t^i is, in general, assumed to satisfy the properties ensuring that <u>indifference curves</u> are differentiable, decreasing, and convex.

Notation

- Period of time and generation t
 Number of members of generation t
- Amount of good available in period t Y(t)
- Consumption in period t of individual i of generation t (i young) $c_t^i(t)$
- Consumption in period t + 1 of individual i of generation t (i old) $c_t^i(t + 1)$
- Endowment in t of $i \in N(t)$ $w_t^i(t)$
- Endowment in t + 1 of $i \in N(t)$ $w_t^i(t + 1)$
- Utility function of member i of generation t in period t (i young) u_t^i

Pareto efficiency

- A consumption allocation $C = \{c_t^i\}_{t \geq 0, i \in N(t)}$ is <u>Pareto efficient</u> if there does not exist another consumption allocation $\tilde{C} = \{\tilde{c}_t^i\}_{t \geq 0, i \in N(t)}$ such that:
- (i) for some $t \ge 1$ and some $i \in N(t)$, $u_t^i(\tilde{c}_t^i) > u_t^i(c_t^i)$, and
- (ii) for every $t \ge 1$ and every $i \in N(t)$, $u_t^i(\tilde{c}_t^i) \ge u_t^i(c_t^i)$.
- *C* Pareto efficient means for no other \tilde{C} some i has more utility and no i has less utility.

Marginal rate of substitution (MRS)

• Define *i*'s <u>marginal rate of substitution</u> as

$$MRS_t^i = \frac{\partial u_t^i / \partial c_t^i(t)}{\partial u_t^i / \partial c_t^i(t+1)}$$

where i is a member of generation t.

- The MRS_t^i evaluated at $c_t^i = \left(c_t^i(t), c_t^i(t+1)\right)$ is the <u>slope</u> (in absolute value) <u>of the indifference curve</u> containing c_t^i .
- MRS_t^i represents the increase in $c_t^i(t+1)$ necessary to keep utility constant given a decrease of $c_t^i(t)$.

Pareto efficiency & MRS

→ *Let C be a consumption allocation. Then:*

C Pareto efficient
$$\Rightarrow \forall t \ \forall i,j \in N(t) \ MRS_t^i = MRS_t^j$$
.

- Equality of the *MRS* of all members of a generation is <u>necessary</u> for Pareto efficiency.
- The converse is not true: equality of the *MRS* is not sufficient for Pareto efficiency.
- Example. All generations identical with n members each: $u_t^i(c_t^i) = c_t^i(t) \cdot c_t^i(t+1)$ and $(c_t^i(t), c_t^i(t+1)) = (2, 1)$.

- The consumption allocation *C* is not Pareto efficient, even though the *MRS* are all equal.
- Consider C̃ obtained from C by letting each young member of generation t give a small ε
 > 0 to a different old member of t 1.
- The old are all better off: each gets an extra ε. Take any young member of generation *t*. He
- gives ε to some old in period t but receives ε when old from some young of generation t+1. His utility in C is $u_t^i(2,1)=2$. In \tilde{C} it is higher: $u_t^i(2-\varepsilon,1+\varepsilon)=2+\varepsilon(1-\varepsilon)>2$.

Key: the number of generation is infinite.

MRS must be high for Pareto efficiency

- Let all generations be alike, with n members, and $u_t^i = c_t^i(t)c_t^i(t+1)$. The allocation a in 13 gives the highest utility to all generations. a marks the beginning of Pareto efficiency.
- Moving from b to a makes generation 0 better off and increases the utility of future generations, so b is not Pareto efficient.
- Moving from *a* to *c* makes the old from generation 0 better off but reduces the utility of future generations, so *a* and *c* are incomparable according to Pareto efficiency.

Market for lending and borrowing

- Let r(t) > 0 designate the (real) interest rate at
 t: lending 1 unit of the good at t implies
 receiving 1 + r(t) units of the good at t + 1.
 Define the gross interest rate as R(t) = 1 + r(t).
- The market for the asset "lending" is a <u>competitive</u> market, so each i takes r(t) as given.
- <u>Intergenerational lending is not possible</u>: old persons at *t* cannot pay/collect debts at *t* + 1.
- Thus, lending/borrowing can only take place among members of the same generation.

Budget constraints

• Let $l^i(t)$ be the <u>lending</u> of member i of generation t ($l^i(t)$ is written instead of $l^i_t(t)$ because i does not lend when old: $l^i_t(t+1) = 0$). Then i's budget constraint when young is

$$c_t^i(t) + l^i(t) \le w_t^i(t).$$

• When old, *i*'s budget constraint is

$$c_t^i(t+1) \le w_t^i(t+1) + R(t)l^i(t).$$

• If $l^i(t) > 0$, i lends when young and receives $R(t)l^i(t)$ when old. If $l^i(t) < 0$, i borrows when young and pays $R(t)l^i(t)$ when old.

Lifetime budget constraint

Combining the two constraints yields

• The above inequality gives the consumption basket $\left(c_t^i(t), c_t^i(t+1)\right)$ that are feasible for member i of generation t given endowments $w_t^i = \left(w_t^i(t), w_t^i(t+1)\right)$ and the gross interest rate R(t).

Consumer's decision problem

- Each consumer $i \in N(t)$, $t \ge 1$, is assumed to choose a consumption basket c_t^i that $\underbrace{\text{maximizes}}_{t} u_t^i$ given w_t^i and R(t). This means that the lifetime budget constraint will be satisfied as an equality.
- Formally, i's aim is to $maximize_{c,i(t)}, i_{(t+1)}, u_t^i \left(c_t^i(t), c_t^i(t+1)\right)$

$$\begin{split} maximize_{\{c_t^i(t),c_t^i(t+1)\}} & \ u_t^i\left(c_t^i(t),c_t^i(t+1)\right) \\ subject \ to & \ c_t^i(t) + \frac{c_t^i(t+1)}{R(t)} = \ w_t^i(t) + \frac{w_t^i(t+1)}{R(t)} \\ & \text{or} \\ \\ max_{\{c_t^i(t)\}} & \ u_t^i\left(c_t^i(t),R(t)[w_t^i(t) - c_t^i(t)] + w_t^i(t+1)\right). \end{split}$$

Solution to the consumer's problem

• Given that $c_t^i(t+1) = R(t)[w_t^i(t) - c_t^i(t)] + w_t^i(t+1)$, take the total derivative of u_t^i

$$w_t^i(t+1)$$
, take the total derivative of u_t^i
$$du_t^i = \frac{\partial u_t^i}{\partial c_t^i(t)} dc_t^i + \frac{\partial u_t^i}{\partial c_t^i(t+1)} \frac{\partial c_t^i(t+1)}{\partial c_t^i(t)} dc_t^i \,,$$
 that is,

 $\frac{du_t^i}{dc_t^i(t)} = \frac{\partial u_t^i}{\partial c_t^i(t)} + \frac{\partial u_t^i}{\partial c_t^i(t+1)} R(t).$

• To maximize u_t^i , it must be that $\frac{du_t^i}{dc_t^i(t)} = 0$. As a result,

$$R(t) = \frac{\partial u_t^i / \partial c_t^i(t)}{\partial u^i / \partial c_t^i(t+1)} = MRS_t^i.$$

Savings

- Using the preceding condition $R(t) = MRS_t^i$ and the budget constraint $c_t^i(t+1) = R(t)[w_t^i(t) c_t^i(t)] + w_t^i(t+1)$, a demand function for consumption when young is obtained: $c_t^i(t) = C_t^i(w_t^i(t), w_t^i(t+1), R(t))$.
- Define the <u>savings</u> $s^{i}(t)$ of consumer i of generation t as $s^{i}(t) = w_{t}^{i}(t) c_{t}^{i}(t)$.
- Knowing the demand function for consumption C_t^i it is easy to determine the savings function $S^i(w_t^i(t), w_t^i(t+1), R(t))$.

A Cobb-Douglas example

- Suppose $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$. It follows from $R(t) = MRS_t^i$ that $R(t) = c_t^i(t+1)/c_t^i(t)$.
- Given that $c_t^i(t+1) = R(t)[w_t^i(t) c_t^i(t)] + w_t^i(t+1)$, the demand function for consumption is $c_t^i(t) = \frac{1}{2} \left(w_t^i(t) + \frac{w_t^i(t+1)}{R(t)} \right)$.

Consumption depends positively on wealth and negatively on the interest rate.

• The savings function is $s^i(t) = w^i_t(t) - \frac{1}{2} \left(w^i_t(t) + \frac{w^i_t(t+1)}{R(t)} \right) = \frac{1}{2} \left(w^i_t(t) - \frac{w^i_t(t+1)}{R(t)} \right)$, so a growing interest rate stimulates savings.

General competitive equilibrium (GCE)

- A GCE is a sequence $\{\hat{R}(t)\}_{t\geq 1}$ of (gross real) interest rates and a consumption allocation $\{\hat{c}_t^i\}_{t\geq 0,i\in N(t)}$ such that:
- (i) for all $t \ge 1$ and $i \in N(t)$, \hat{c}_t^i maximizes u_t^i given $\hat{R}(t)$ and i's endowments w_t^i (for t = 0, \hat{c}_t^i is just the available wealth of the old); and
- (ii) for all $t \ge 1$, $\sum_{i \in N(t)} \hat{c}_t^i(t) + \sum_{i \in N(t-1)} \hat{c}_{t-1}^i(t) = Y(t) = \sum_{i \in N(t)} w_t^i(t) + \sum_{i \in N(t-1)} w_{t-1}^i(t)$ [the goods market clearing condition].

On the equilibrium conditions

- Condition (i) holds that, in every period t and for each consumer i, \hat{c}_t^i is the value of i's demand function for consumption given $\hat{R}(t)$ and i's endowments w_t^i .
- Condition (ii) asserts that the market for the good is in equilibrium at every *t*.
- There are only two markets: for the good and for loans. Since only the young at t lend or borrow at t, the loan market is in equilibrium when $\sum_{i \in N(t)} l^i(t) = 0$.

Two remarks on GCE

- **▶** If $\{\hat{R}(t)\}$ and $\{\hat{c}_t^i\}$ are a GCE, then, for each $\hat{R}(t)$, $\sum_{i \in N(t)} S^i(w_t^i(t), w_t^i(t+1), \hat{R}(t)) = 0$.
- Adding up the budget constraints of the young at t, $\sum_{i \in N(t)} c_t^i(t) + \sum_{i \in N(t)} l^i(t) = \sum_{i \in N(t)} w_t^i(t)$. In equilibrium, $\sum_{i \in N(t)} l^i(t) = 0$. Therefore, $0 = \sum_{i \in N(t)} w_t^i(t) \sum_{i \in N(t)} c_t^i(t) = \sum_{i \in N(t)} s^i(t)$. This proves the previous result.
- **▶** If $\{\hat{R}(t)\}$ is such that, for all $\hat{R}(t)$, $\sum_{i \in N(t)} S^i(w_t^i(t), w_t^i(t+1), \hat{R}(t)) = 0$, then, for some $\{\hat{c}_t^i\}$, $\{\hat{R}(t)\}$ and $\{\hat{c}_t^i\}$ constitute a GCE.

Computing a GCE

- Assume that, for all t: $(w_t^i(t), w_t^i(t+1)) = (4,1)$; $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$; and N(t) = 200.
- As shown in 20, $s^{i}(t) = \frac{1}{2} \left(w_{t}^{i}(t) \frac{w_{t}^{i}(t+1)}{R(t)} \right)$. Thus, $0 = \sum_{i \in N(t)} s^{i}(t) = 100 \left(4 - \frac{1}{R(t)} \right)$ leads to R(t) = 1/4.
- With $R(t) = \frac{1}{4}$, for all i, $s^{i}(t) = \frac{4-1\cdot4}{2} = 0$. This means that <u>no individual saves</u>: there is no lending nor borrowing, and accordingly consumption in each period coincides with

the endowment at that period.

Equilibrium ⇒ Pareto efficiency

- In the previous example, in a GCE, $\left(c_t^i(t), c_t^i(t+1)\right) = (4,1)$ for all $t \ge 1$ (the old in period 1 consume $w_0^i(1) = 1$). This GCE consumption allocation is not Pareto efficient.
- To see this, suppose the young transfer ϵ to the old. The old are all clearly better off.
- As regards the young, before the transfer their utility is $4\cdot 1 = 4$. After the transfer, their new utility is $(4 \varepsilon)(1 + \varepsilon) = 4 + \varepsilon(3 \varepsilon) > 4$, for sufficiently small ε (specifically, $\varepsilon < 3$).

Failure of Pareto efficiency

gene- ration	1	2	3	4	:	initial utility	new utility
0	1 1+ε,					u(1)	<i>u</i> (1+ε)
1	4 4–ε	1 1+ε,				4	4 + ε(3–ε)
2		4 4–ε	1 1+ε,			4	4 + ε(3–ε)
3			4 4–ε	1 1+ε,		4	4 + ε(3–ε)
4				4 4–ε		4	4 + ε(3–ε)

Equilibrium consumption allocation in italics (blue). New consumption allocation in bold face (red).

Taxes

- A government is created that merely <u>taxes</u> <u>endowments</u> (when the tax is negative, it will be called "transfer").
- Individual i of generation t faces the tax scheme $\tau_t^i = \left(\tau_t^i(t), \tau_t^i(t+1)\right)$, where $\tau_t^i(s)$ is the tax that i pays (or receives) in period s.
- The <u>budget constraint on the government</u> when nothing is done with the taxes (taxes are just paid out as transfers) states that, for all $t \ge 1$, $\sum_{i \in N(t)} \tau_t^i(t) + \sum_{i \in N(t-1)} \tau_{t-1}^i(t) = 0$.

GCE with taxes

- To compute GCE, consider the no tax case and replace $w_t^i(s)$ with $w_t^i(s) \tau_t^i(s)$. The only additional condition to calculate GCE is the government budget constraint.
- In particular, the new lifetime budget constraint of consumer *i* is

$$c_t^i(t) + \frac{c_t^i(t+1)}{R(t)} = w_t^i(t) - \tau_t^i(t) + \frac{w_t^i(t+1) - \tau_t^i(t+1)}{R(t)}.$$

• The definition of savings becomes

$$s^{i}(t) = w_{t}^{i}(t) - \tau_{t}^{i}(t) - c_{t}^{i}(t).$$

Government borrowing

- Assume the government can issue oneperiod bonds, which are (safe) promises of delivering 1 unit of the good at t + 1 in exchange for a price p(t) < 1 paid at t.
- This means that bonds are issued at discount (price smaller than its face value). The (implicit) rate of return of the bond is $\frac{1-p(t)}{p(t)}$. The gross rate of return is then $\frac{1}{p(t)}$.
- Since the old never lend, the government can only borrow from (sell bonds to) the young.

The government budget constraint

- For $t \ge 1$, let B(t) stand for the units of bonds that the government issues at t.
- The government budget constraint at t holds that B(t-1), the debt to be paid at t, equals

$$\sum_{i \in N(t)} \tau_t^i(t) + \sum_{i \in N(t-1)} \tau_{t-1}^i(t) + p(t)B(t).$$
taxes on the young taxes on the old new bonds

• The constraint shows the <u>ways of redeeming</u> at t <u>bonds</u> issued at t - 1: <u>tax the young</u> at t; tax the old at t; issue new bonds at t.

Consumers' budget constraints

Since only the young buy bonds, a young *i* of generation *t* faces the budget constraint
 cⁱ_t(t) + lⁱ(t) + τⁱ_t(t) + p(t)bⁱ(t) = wⁱ_t(t).

- $c_t^i(t+1) + \tau_t^i(t+1) = w_t^i(t+1) + R(t)l^i(t) + b^i(t).$
 - Consumer *i*'s lifetime budget constraint is

$$c_t^i(t) + \frac{c_t^i(t+1)}{R(t)} = w_t^i(t) - \tau_t^i(t) + \frac{w_t^i(t+1) - \tau_t^i(t+1)}{R(t)} - b^i(t) \left[p(t) - \frac{1}{R(t)} \right].$$

$$W_t(t) - t_t(t) + \frac{1}{R(t)} - b^*(t) \left[p(t) - \frac{1}{R(t)} \right]$$

• In equilibrium, by arbitrage, $p(t) = \frac{1}{R(t)}$.

Equality of returns

- If 1 > p(t)R(t), then private lending is more profitable than public lending. Then by borrowing p(t) in the private loan market to purchase one bond, at t + 1 the bond pays 1 whereas the refund of the loan requires p(t)R(t). A sure profit of 1 – p(t)R(t) is made. But in equilibrium sure profits cannot arise. A growing demand for loans and bonds tends to rise p(t) and R(t).
- Arbitrage opportunities also occur if 1 < p(t)R(t) (public lending is more profitable).

General equilibrium with bonds

The summation of the budget constraints of all the young at t yields (where i ∈ N(t))
 Σ_i c_tⁱ(t) + Σ_i τ_tⁱ(t) + p(t) Σ_i bⁱ(t) = Σ_i w_tⁱ(t).

• Rearranging,
$$\sum_{i} [w_t^i(t) - c_t^i(t) - \tau_t^i(t)] = p(t) \sum_{i} b^i(t)$$
. That is, $\sum_{i \in N(t)} s^i(t) = p(t)B(t)$.

• Defining $S_t(R(t)) = \sum_{i \in N(t)} s^i(t)$ to be the <u>aggregate savings function</u> in period t, where it is emphasized that savings depend on the interest rate, it follows that

$$S_t(R(t)) = p(t)B(t).$$

- The previous defines the equilibrium in both the private and public loan market. It can be easily verified that this condition implies that the good market is in equilibrium, too.
- Therefore, the general equilibrium condition amounts to $S_t(R(t)) = p(t)B(t)$: total private savings by the young at t equals the total value of the government debt at t.
- Since R(t) = 1/p(t), the equilibrium condition can be equivalently expressed as

$$S_t(R(t)) = \frac{B(t)}{R(t)},$$

so savings equal the present value of bonds.

An example

- The government wishes to borrow 25 units of the good at t = 1, transfer them to the old at t = 1, and pay off the debt by taxing the young at t = 2.
- For all t and i, $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$, N(t) =100, $w_t^i = (2, 0)$ if i is odd, and $w_t^i = (1, 1)$ if i is even. Then the savings function is

$$s^{i}(t) = 1 \text{ if } i \text{ odd } s^{i}(t) = \frac{1}{2} - \frac{1}{2R(t)} \text{ if } i \text{ even.}$$

The aggregate savings function is $S_t = 50(1)$ $+50\frac{1}{2} - \frac{1}{2R(t)} = 75 - \frac{25}{R(t)}$

odd lend and the even borrow.
Total savings by the odd amount to 50. Total

• The savings at t = 1 are $s^i(1) = 1$ for i odd and $s^i(1) = -\frac{1}{2}$ for i even. This says that the

In equilibrium at t = 1, $S_1 = \frac{B(1)}{B(1)} = 25$.

Therefore, $75 - \frac{25}{R(t)} = 25$ and $R(1) = \frac{1}{2}$.

- borrowing by the even equals 25. The difference is what the government borrows.
- Using $S_1 = B(1)/R(1)$, with $S_1 = 25$ and R(1) = 1/2, it follows that B(1) = 12.5. This is the amount of <u>bonds issued at t = 1</u> and the taxes the young at t = 2 will have to pay.

Rolling over debt

- A goverment rolls over debt when debt is paid off with new debt.
- In the previous example, suppose that the young at t = 2 are not taxed: new bonds are issued t = 2 to pay off the bonds issued at t = 1, B(1) = 12.5. Now in equilibrium:

$$S_2 = B(2)/R(2)$$
 and $S_2 = B(1)$.

• Therefore, R(2) = 0.4 and B(2) = 5. If the same policy is followed at t = 3,

$$S_3 = B(3)/R(3)$$
 and $S_3 = B(2)$.

• Accordingly, R(3) = 0.35 and B(3) = 1.78.

• The acumulation of bonds and the dynamics of the interest rate are determined by $R(t) = \frac{25}{75 - B(t - 1)} \text{ and } B(t) = \frac{25B(t - 1)}{75 - B(t - 1)}.$

- In a <u>steady state</u>, equilibrium variables take the same value each t. That B(t-1) = B(t) occurs in two cases: (i) B = 50 and R = 1; (ii) B = 0 and R = 1/3 (the equilibrium rate).
- The formulas hold when the govt raises at most 50, so $S(1) \le 50$. If S(1) < 50, B(t) goes to 0 and R(t) to 1/3. If S(1) > 50, borrowing becomes unfeasible for some t: a <u>bubble</u> arises (unsustainable price path for the bonds).

The government raises < 50 at t = 1

t	S(t)	R(t)	B(t)	%
1	49,99	0,9996	49,97001	
2	49,97001	0,998802	49,91014	-0,11981
3	49,91014	0,996419	49,7314	-0,35814
4	49,7314	0,98937	49,20276	-1,06299
5	49,20276	0,969096	47,68218	-3,09042
6	47,68218	0,915154	43,63652	-8,48464
7	43,63652	0,797105	34,78291	-20,2895
8	34,78291	0,621626	21,62197	-37,8374
9	21,62197	0,468358	10,12681	-53,1642
10	10,12681	0,385367	3,902542	-61,4633
11	3,902542	0,35163	1,372251	-64,837
12	1,372251	0,339546	0,465942	-66,0454
13	0,465942	0,335417	0,156285	-66,4583
14	0,156285	0,334029	0,052204	-66,5971
15	0,052204	0,333566	0,017413	-66,6434

Dynamics when S(1) < 50

Monotonic convergence to equilibrium ($S = 0 \& R = \frac{1}{3}$)

The government raises >50 at t = 1

t	S(t)	R(t)	B(t)	%
1	50,00001	1	50,00003	
2	50,00003	1,000001	50,00009	0,00012
3	50,00009	1,000004	50,00027	0,00036
4	50,00027	1,000011	50,00081	0,00108
5	50,00081	1,000032	50,00243	0,00324
6	50,00243	1,000097	50,00729	0,009721
7	50,00729	1,000292	50,02188	0,029173
8	50,02188	1,000876	50,0657	0,087595
9	50,0657	1,002635	50,19761	0,263477
10	50,19761	1,007967	50,59755	0,796729
11	50,59755	1,024487	51,83654	2,448716
12	51,83654	1,079286	55,94645	7,928594
13	55,94645	1,312091	73,40684	31,20912
14	73,40684	15,69205	1151,904	1469,205
15 <	1151,904	-0,02321	-26,7411	-102,321

Dynamics when S(1) > 50

At t = 14 the govt asks for more good (1151) than is available (200). This requires a negative R, which cannot be in equilibrium. The bubble bursts.

Debt sustainability

- If r(t) > 0 (R(t) > 1), then, by lending L at t, you get more than L at t + 1.
- If $-1 \le r(t) \le 0$ ($0 \le R(t) \le 1$), by lending L at t, you get less than L at t + 1.
- If r(t) < -1 (R(t) < 0), by lending L at t, you have to pay at t+1. In this case, in equilibrium, no one lends.
- To sustain a growing govt debt, population must grow or endowments must grow.

Example with growing endowments

• If endowments double each period, then $S_t = \left(75 - \frac{25}{R(t)}\right) 2^{t-1}$, $R(t) = \frac{25}{75 - \frac{B(t-1)}{2^{t-1}}}$, and $B(t) = \frac{25B(t-1)}{75 - \frac{B(t-1)}{2^{t-1}}}$.

• The govt can borrow initially 62 but not 63.

t	S(t)	R(t)	B(t)	
1	62	1,92	119,2	
2	119,2	1,62	193,7	1
3	193,7	0,94	182,3	
4	182,3	0,47	87,3	
5	87,3	0,35	31,3	-
6	31,3	0,337	10,6	
7	10,6	0,334	3,5	

S(t)	R(t)	B(t)
63	2,08	131,2
131,25	2,66	350
350	-2	-700
-700	0,15	-107,6
-107,6	0,3	-32,9
-32,9	0,32	-10,8
-10,8	0,33	-3,6

Equivalence between bonds and taxes

- → Let C be an equilibrium consumption allocation with bonds. Then, for some tax-transfer scheme (without bonds) that balances the govt's budget at each t (taxes at t equal transfers at t), C is also an equilibrium consumption allocation.
- With bonds, the equilibrium $\hat{R}(t)$ at t solves $S_t(\hat{R}(t)) = B(t)/\hat{R}(t)$. Given $\hat{R}(t)$ and the bond holdings $b^i(t)$, the same equilibrium consumption allocation can be obtained with taxes (but without bonds) by setting $\tau_t^i(t) = b^i(t)$ and $\tau_t^i(t+1) = -\hat{R}(t) \cdot b^i(t)$.

Ricardian equivalence proposition

- ◆ (attrib. David Ricardo) Consumption allocations & interest rates do not change if the govt borrows now & taxes later instead of just taxing now.
- Relies on the fact that the new policy should not alter the consumer's present value of endowments.
- The equivalence may fail if, for instance, one policy is to borrow from generation 1 & tax generation 2 while the other is to tax generation 1 (different generations involved).

Example of Ricardian equivalence

- Suppose members of generation t are all identical, with $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$. This implies that there is no private borrowing.
- <u>Policy 1</u>: set tax $\tau_t^i(t) = m$. The consumption basket is $c_t^i = (w_t^i(t) m, w_t^i(t+1))$.
- <u>Policy 2</u>: borrow m from generation t at t & tax generation t at t+1 to pay off the bonds issued at t. Now, $c_t^i = \left(w_t^i(t) b^i(t), w_t^i(t+1) + R(t)b^i(t) \tau_t^i(t+1)\right)$. Since taxes must only pay off the bonds, $\tau_t^i(t+1) = R(t)b^i(t)$.

- But $b^i(t) = m$, so $\tau^i_t(t+1)$ has present value m. This means that the present value of i's tax liability is not altered: it is m (at t) under policy $1 \& m \cdot R(t)$ (at t+1) under policy 2.
- The consumption basket is therefore the same under the two policies.
- Moreover, in equilibrium, $R(t) = MRS_t^i$. As $MRS_t^i = \frac{c_t^i(t+1)}{c_t^i(t)}$, the MRS does not change.
- Accordingly, the interest rate is the same under both policies.

Why fiat money?

- Let <u>all generations be identical</u>, grow at a constant rate *n*, and old people have nothing.
- Specifically, N(t) = (1+n)N(t-1), $u_t^i = u_s^j$, and $w_t^i = w_s^j = (w,0)$, for all generations t and $s, i \in N(t)$, and $j \in N(s)$.
- If inside money (loans) is not possible, there is no trade (autarky) and consumers must consume their endowments (the old starve). The aim is to show that <u>each generation's welfare can be maximized with fiat money</u>.

Welfare maximizing consumption

• The consumption allocation that maximizes generation t's welfare is obtained by maximizing $u_t^i\left(c_t^i(t),c_t^i(t+1)\right)$ subject to the resource constraint at t

$$N(t)c_t^i(t) + N(t-1)c_{t-1}^i(t) = N(t)w$$
 where w is the young person's endowment.

• Since N(t) = (1+n)N(t-1) > 0 and $c_{t-1}^i(t)$ = $c_t^i(t+1)$,

$$c_t^i(t) + \frac{c_t^i(t+1)}{1+n} = w$$

where n is a short of "biological interest rate".

the solution satisfies $1+n=MRS_t^i=c_t^i(t+1)/c_t^i(t) \text{ and }$ $c_t^i(t+1)=\big[w-c_t^i(t)\big](1+n).$

• With $u_t^i(c_t^i(t), c_t^i(t+1)) = c_t^i(t) \cdot c_t^i(t+1)$,

• Consequently, $c_t^i(t) = w/2$ and $c_t^i(t+1) = (1+n)w/2$.

• In autarky, utility for the young is $u_t^i(w,0) = 0$ and for the old, it can be taken to be 0 (since the old do not consume). In the previous solution, the young gets $u_t^i(w/2,(1+n)w/2) > 0$ and the old obtains positive utility because $c_t^i(t+1) > 0$.

The role of fiat money

- The previous solution could be regarded as the one a social planner would choose. Is this solution achievable through money markets?
- Imagine that the old invent <u>fiat money</u> in period 1: a <u>worthless asset</u> intended to be generally accepted in exchange for the good.
- Let M be the <u>amount of fiat money</u> created at t = 1 and, for all t, let p(t) designate the price of the good in terms of money: 1 unit of good at t is worth p(t) units of money.

Money in the budget constraints

- p(t) can be interpreted as the <u>price level</u> in the economy, whereas 1/p(t) would be price or <u>value of money</u> (amount of good that one unit of money can purchase).
- The previous solution could be regarded as the one a social planner would choose. Is this solution achievable through money markets?
- If the young at t buy $m^i(t)$ units of money, the constraints for the young and old are

$$c_t^i(t) + \frac{m^i(t)}{p(t)} = w \text{ and } c_t^i(t+1) = \frac{m^i(t)}{p(t+1)}.$$

Equilibrium in the money market

- Money supply at t is given by M. Money demand per person at t is $m^i(t) = p(t)(w c^i_t(t))$. Total demand is then $N(t)m^i(t)$.
- In equilibrium, $N(t)m^{i}(t) = M$. That is, $p(t) = \frac{M}{N(t)[w c_{t}^{i}(t)]}.$
 - This relationship is also valid for t + 1: $p(t+1) = \frac{M}{N(t+1)[w-c_{t+1}^{i}(t+1)]}.$
- As all generations are alike, $c_{t+1}^i(t+1) = c_t^i(t)$. Thus, given N(t+1) = (1+n)N(t),

$$\frac{p(t)}{p(t+1)} = \frac{N(t+1)}{N(t)} = 1 + n.$$

- The above is the <u>equilibrium condition in the</u> <u>money market</u>.
- P = p(t)/p(t+1) is the gross return of fiat money: is the amount of good earned in t+1 by investing one unit of good in money.
- 1 unit of good at t can get p(t) units of money at t. As 1 unit of money at t + 1 buys 1/p(t + 1) units of good at t + 1, p(t) can buy P = p(t)/p(t + 1). So 1 unit of good invested in money at t yields P units of good at t + 1.

Money demand & consumption

• The young maximize $c_t^i(t) \cdot c_t^i(t+1)$, that is,

$$\left(w - \frac{m^i(t)}{p(t)}\right) \cdot \frac{m^i(t)}{p(t+1)}$$

• After equating to zero the derivative with respect to $m^i(t)$, real money demand is

$$\frac{m^i(t)}{p(t)} = \frac{w}{2}.$$

• Consumption when young and old are

$$c_t^i(t) = w - \frac{m^i(t)}{p(t)} = \frac{w}{2}$$

$$c_t^i(t+1) = \frac{m^i(t)}{p(t+1)} = \frac{w \cdot p(t)/2}{p(t+1)} = \frac{w(1+n)}{2}.$$

Fiat money and welfare

- The preceding results show that fiat money
 (i) can replicate the consumption patterns
 that maximize each generation's welfare and
 (ii) improves upon the no trade situation.
- Defining the inflation rate at t as $\pi(t) = \frac{p(t)-p(t-1)}{p(t-1)}$, it follows that

$$1+\pi(t)=\frac{1}{1+n}.$$

• Thus, $\pi(t) = -n/(1+n)$: there is a <u>deflation</u> at a constant rate. Also, $c_t^i(t+1) = \frac{w/2}{1+\pi(t+1)}$: the old consume half of the (inflation-based) present value of the young's endowment.

Fully funded pensions

- From 22, the govt taxes the young at t, lends the revenues, and pays out the proceeds to the old at t+1 as a pension. Are the young forced to save more than they wish?
- When young, i's budget constraint is $c_t^i(t) + l^i(t) + \tau(t) = w_t^i(t)$; when old, it is $c_t^i(t+1) = w_t^i(t+1) + R(t)[l^i(t) + \tau(t)]$.
- The pension has no effect since budget constraints coincide with those without the pension $(l^i + \tau \text{ replaces } l^i)$. Savings are cut to pay taxes so that income remains the same.

Unfunded (pay-as-you-go) pensions

- The pension p(t) to the old at t are paid out from current tax receipts $\tau(t)$ on the young.
- Suppose population grows at rate n. The govt budget constraint at t is $\tau(t)N(t) = p(t)N(t-1)$. That is, $\tau(t)(1+n)N(t-1) = p(t)N(t-1)$. Therefore, $\tau(t)(1+n) = p(t)$.
- When young, *i*'s budget constraint is $c_t^i(t) + l^i(t) + \tau(t) = w_t^i(t)$; when old, it is $c_t^i(t+1) = w_t^i(t+1) + R(t)l^i(t) + p(t) = w_t^i(t+1) + R(t)l^i(t) + \tau(t)(1+n)$.

• The lifetime budget constraint is

$$c_t^i(t) + \frac{c_t^i(t+1)}{R(t)} =$$

$$= w_t^i(t) + \frac{w_t^i(t+1)}{R(t)} + \tau(t) \left(\frac{1+n}{1+r(t)} - 1\right).$$

- Without the pension, the term $\tau(t) \left(\frac{n-r}{1+r(t)} \right)$ is missing. If n > r(t), the budget set with the pension is larger, so a more preferred consumption basket is feasible (pyramid scheme).
- If n < r(t), the budget set with the pension is smaller. As the welfare maximizing basket without the pension is not feasible now, the pension reduces the young's welfare.