OLG with endogenous production

- The <u>differences</u> with respect the OLG model with exogenous production are listed next.
- People are endowed with <u>labour</u>, not goods.
- Time t good can be stored from t to t + 1.
- The good stored at t-1 is called time t capital.
- Time t good can be produced by using time t labour and time t-1 good. This process is represented by a production function.

Labour

- $L_t^i = \left(L_t^i(t), L_t^i(t+1)\right)$ is the <u>lifetime endowment of labour</u> of member i of generation t, $L_t^i(t)$ when young and $L_t^i(t+1)$ when old.
- At each t, there is a <u>competitive labour</u> <u>market</u> where people can sell their labour in exchange for a <u>wage</u> $\omega(t)$ paid in good units.
- People only care about consumption, not leisure. They (inelastically) supply all their labour in both periods of their life. Labour L(t) at t is $\sum_{i \in N(t)} L_t^i(t) + \sum_{i \in N(t-1)} L_{t-1}^i(t)$.

Capital

- Every young individual may <u>save</u> a part $K^{i}(t)$ of the wage $\omega(t)$.
- Their aggregate savings $\sum_{i \in N(t)} K^i(t)$ at t become the <u>capital stock</u> K(t+1) at t+1.
- All capital available at *t* depreciates (is completely used up) during *t*.
- At t = 1, there is an <u>initial endowment</u> K(1).
- $K^i(t)$ represents the capital owned at t (when old) by member i of generation t-1.

Production function

- A production function takes the form Y(t) = G(A(t), K(t), L(t)), where A(t) represents the <u>state of technology</u> at t, L(t) is labour at t, and K(t) is capital at t. For simplicity, $\forall t \ Y(t) = A(t) \cdot F(K(t), L(t))$.
- F displays constant returns to scale: for $\delta > 0$, $F(\delta \cdot K(t), \delta \cdot L(t)) = \delta \cdot F(K(t), L(t))$.
- Marginal productivities are positive but decreasing: $\frac{\partial F}{\partial K(t)} > 0$, $\frac{\partial F}{\partial L(t)} > 0$, $\frac{\partial^2 F}{\partial K(t)^2} < 0$, and $\frac{\partial^2 F}{\partial L(t)^2} < 0$.

Firms

- There are many profit-maximizing <u>competitive firms</u> with the same production function.
- Competitiveness and constant returns imply that firms emply *K* and *L* in the same proportion, so all of them are <u>larger or</u> smaller copies of a given firm.
- As a result, total production Y(t) at t is a function of total capital K(t) and labour L(t) at t. Typical production function: the Cobb-Douglas, $Y(t) = A(t) \cdot K(t)^{\alpha} \cdot L(t)^{1-\alpha}$.

General feasibility condition

Total production Y(t) at t is: (i) obtained from total labour L(t) and total capital K(t)available at t; and (ii) is either consumed or accumulated for the next period. Formally,

$$\sum_{i \in N(t)} c_t^i(t) + \sum_{i \in N(t-1)} c_{t-1}^i(t) + \sum_{i \in N(t)} K^i(t+1) = A(t) \cdot F(K(t), L(t))$$
 or
$$C(t) + K(t+1) = A(t) \cdot F(K(t), L(t)).$$

• Assumptions:
$$\frac{\partial F}{\partial K(t)} \to \infty$$
 if $K(t) \to 0$, $\frac{\partial F}{\partial K(t)} \to 0$ if $K(t) \to \infty$, & the same for $L(t)$.

 $\frac{\partial F}{\partial K(t)} \to 0$ if $K(t) \to \infty$, & the same for L(t).

Prices of inputs

- Since the labour market is competitive, the wage rate equals the marginal productivity of labour: $\omega(t) = \partial F/\partial L(t)$.
- The capital market is also assumed to be competitive, so the price $\sigma(t)$ of capital equals the marginal productivity of capital: $\sigma(t) = \partial F/\partial K(t)$.
- Constant returns guarantee that ω and σ depend on the relative, not the absolute, amounts of K and L.

Cobb-Douglas example /1

• Let $Y(t) = A(t) \cdot K(t)^{\alpha} \cdot L(t)^{1-\alpha}$. Then:

$$\omega(t) = \frac{\partial F}{\partial L(t)} = (1 - \alpha) \cdot A(t) \cdot \left(\frac{K(t)}{L(t)}\right)^{\alpha}$$
$$\sigma(t) = \frac{\partial F}{\partial K(t)} = \alpha \cdot A(t) \cdot \left(\frac{L(t)}{K(t)}\right)^{1 - \alpha}$$

- By the uniqueness of the input prices, all firms use *K* and *L* in the same proportion: firms using more *K* will be using more *L*.
- Since all labour is hired, the total wage bill is $\omega(t) \cdot L(t) = (1 \alpha) \cdot A(t) \cdot \left(\frac{K(t)}{L(t)}\right)^{\alpha} \cdot L(t) = (1 \alpha) \cdot Y(t)$. Similarly, $\sigma(t) \cdot K(t) = \alpha \cdot Y(t)$.

$$(\iota) - \alpha \cdot \iota (\iota).$$

Cobb-Douglas example /2

• This says that the total payment to labour is the fraction $1 - \alpha$ of output, whereas the total payment to capital is the fraction α . As a result,

$$\omega(t) \cdot L(t) + \sigma(t) \cdot K(t) = Y(t).$$

- Production is distributed between labour & capital in fixed proportions. This holds for production functions with constant returns.
- Another implication of the previous results is that <u>firms earn no profit</u>.

Worker-consumer's budget constraints

• As before, every *i* aims at <u>maximizing utility</u> <u>subject to the budget constraints</u>. When young and old, *i*'s budget constraints are

$$\begin{split} c_t^i(t) + l^i(t) + K^i(t+1) &= \omega(t) L_t^i(t) \\ c_t^i(t+1) &= R(t) l^i(t) + \sigma(t+1) K^i(t+1) \\ &+ \omega(t+1) L_t^i(t+1). \end{split}$$

By combining the two constraints,

$$\begin{split} c_t^i(t) + \frac{c_t^i(t+1)}{R(t)} &= \omega(t) L_t^i(t) + \frac{\omega(t+1) L_t^i(t+1)}{R(t)} \\ &+ K^i(t+1) \left(\frac{\sigma(t+1)}{R(t)} - 1 \right). \end{split}$$

Equality between σ and R

- If $\sigma(t+1) > R(t)$, everyone would borrow as much of the good to invest in capital. This cannot be in equilibrium: no one lends.
- If $\sigma(t+1) < R(t)$, nobody holds capital, so K(t+1) = 0. This makes the marginal productivity of K, arbitrarily large. Hence, $\sigma(t+1)$ is also arbitrarily large, contradicting the assumption that $\sigma(t+1) < R(t)$.
- Therefore, in equilibrium, only $\sigma(t+1) = R(t)$ is possible, so $K^{i}(t+1) \left(\frac{\sigma(t+1)}{R(t)} 1\right) = 0$.

Worker-consumer's decision problem

- The decision problem of every $i \in N(t)$ is the same as in 17 (with exogenous production) because the lifetime budget constraints in the two cases are analogous: endowments $w_t^i(s)$ are now the wage incomes $\omega(s)L_t^i(s)$.
- The only qualification to be made is that $\omega(t+1)$ is not known at t (and neither is $\sigma(t+1)$ known). Accordingly, for both problems to be the same, it is necessary to postulate <u>perfect foresight</u>: individuals know at t the market prices prevailing at t+1.

General competitive equilibrium

- A general competitive equilibrium (with initial K(1) > 0, production function F, labour endowments, and perfect foresight) is a sequence $\{\widehat{R}(t), \widehat{\sigma}(t), \widehat{\omega}(t), \widehat{K}(t)\}_{t \ge 1}$ such that, for all $t \ge 1$:
- (i) $S_t(\hat{R}(t)) = \hat{K}(t+1)$, where S_t is the total savings function obtained by maximizing each individual's utility;

(ii)
$$\hat{\sigma}(t+1) = \hat{R}(t)$$
;

(iii)
$$\hat{\sigma}(t) = \partial F / \partial K(t)$$
; and

(iv)
$$\widehat{\omega}(t) = \partial F/\partial L(t)$$
.

Cobb-Douglas example

Let $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$ and $Y(t) = A(t) \cdot K(t)^{\alpha} \cdot L(t)^{1-\alpha}$. Then, defining $L_t(s) = \sum_{i \in N(s)} L_t^i(s)$ and $L(t) = L_t(t) + L_{t-1}(t)$,

$$S_{t} = \frac{\omega(t)L_{t}(t)}{2} - \frac{\omega(t+1)L_{t}(t+1)}{2}$$
$$\omega(t) = (1-\alpha)A(t)\left(\frac{K(t)}{L(t)}\right)^{\alpha}$$
$$\sigma(t) = \alpha A(t)\left(\frac{L(t)}{K(t)}\right)^{1-\alpha}$$

• Substituting these equations into the equilibrium condition $S_t = K(t+1)$ and solving for K(t+1),

$$K(t+1) = \left(\frac{\frac{(1-\alpha)A(t)}{2} \frac{L_t(t)}{L(t)^{\alpha}}}{1 + \frac{1-\alpha}{2\alpha} \frac{L_t(t+1)}{L(t+1)}}\right) K(t)^{\alpha}.$$

• If A, L, and L_t all remain constant, the term within the parenthesis is a constant a > 0. The equation describing the <u>dynamics of</u> capital accumulation in equilibrium is then

$$K(t+1) = a \cdot K(t)^{\alpha}$$
.

• The <u>steady state capital stock</u> \overline{K} is obtained when $K(t+1) = K(t) = \overline{K}$. That is, $\overline{K} = a \cdot \overline{K}^{\alpha}$. Accordingly,

$$\overline{K} = a^{1/(1-\alpha)}$$
.

Population and technology constant

• The graph below represents \overline{K} and equation $K(t+1) = a \cdot K(t)^{\alpha}$. No matter the initial stock K(1) > 0, the economy converges to \overline{K} .

Steady (stationary) state

- A steady state of the economy is characterized by the condition K(t + 1) = K(t).
- Once found a steady state value \overline{K} , then, assuming L and A constant, the value \overline{Y} of output in the steady state can also be found: $\overline{Y} = A \cdot \overline{K}^{\alpha} \cdot L^{1-\alpha}$. Knowing this, both $\overline{\omega}$ and $\overline{\sigma}$ can be determined.
- From the equilibrium condition $S_t = K(t + 1)$, it follows that $\bar{S} = \bar{K}$. Given this, as S_t is a function of R(t), \bar{R} can also be ascertained (in fact, in equilibrium, $\bar{R} = \bar{\sigma}$).

Population grows, technology constant

- With everything else the same, suppose $N(t + 1) = N \cdot N(t)$, for some N > 1, and <u>all</u> generations have the same amount of labour.
- Let $L_0(0)$ be the labour endowment of the young at t = 0 and $L_0(1)$ the labour of the old at t = 1. Define $L(0) = L_0(0) + L_0(1)/N$.
- The total labour endowment (supply) of the young at *t* is

$$L_t(t) = N^t \cdot L_0(0)$$

and the labour endowment of the old at *t* is

$$L_{t-1}(t) = N^{t-1} \cdot L_0(1).$$

• Therefore, total labour supply at t is

$$L(t) = L_t(t) + L_{t-1}(t) = N^t \cdot L_0(0) + N^{t-1} \cdot L_0(1) = N^t \left(L_0(0) + \frac{L_0(1)}{N} \right) = N^t \cdot L(0).$$

• The <u>savings function</u> of each individual *i* at *t* is

is
$$s^{i}(t) = \frac{1}{2} \left(\omega(t) \cdot L_{t}^{i}(t) - \frac{\omega(t+1) \cdot L_{t}^{i}(t+1)}{R(t)} \right).$$

• Aggregate savings at t are

$$S_t = N(t) \cdot s^i(t) = N^t \cdot N(0) \cdot s^i(t) = \frac{1}{2} \left(\omega(t) \cdot N^t \cdot L_0(0) - \frac{\omega(t+1) \cdot N^t \cdot L_0(1)}{R(t)} \right).$$

The wage at t is

$$\omega(t) = \frac{\partial F}{\partial L(t)} = (1 - \alpha) \cdot A(t) \cdot \left(\frac{K(t)}{N^t \cdot L(0)}\right)^{\alpha}.$$
The price of capital at $t + 1$ (which equals

• The price of capital at t + 1 (which equals R(t) in equilibrium) is

$$\sigma(t+1) = \frac{\partial F}{\partial K(t+1)} = \alpha \cdot A(t) \cdot \left(\frac{K(t+1)}{N^{t+1} \cdot L(0)}\right)^{\alpha-1}.$$

Using these equations and the equilibrium condition $S_t = K(t+1)$, or simply recalling

• Using these equations and the equilibrium condition
$$S_t = K(t+1)$$
, or simply recalling
$$K(t+1) = \left(\frac{\frac{(1-\alpha)A(t)}{2} \frac{L_t(t)}{L(t)^{\alpha}}}{1 + \frac{1-\alpha}{2\alpha} \frac{L_t(t+1)}{L(t+1)}}\right) K(t)^{\alpha}$$

which is the equation describing the equilibrium path of capital,

$$K(t+1) = \left(\frac{\frac{(1-\alpha)A(0)}{2} \frac{L_0(0)}{L(0)^{\alpha}}}{1 + \frac{1-\alpha}{2\alpha} \frac{L_0(1)}{N \cdot L(0)}}\right) \cdot N^{t(1-\alpha)} \cdot K(t)^{\alpha}.$$
• Denoting by B the term in parenthesis,

- $K(t+1) = B \cdot N^{t(1-\alpha)} \cdot K(t)^{\alpha}.$
- The gross growth rate of capital is

$$G_K(t+1) = \frac{K(t+1)}{K(t)} = \frac{B \cdot N^{t(1-\alpha)} \cdot K(t)^{\alpha}}{B \cdot N^{(t-1)(1-\alpha)} \cdot K(t-1)^{\alpha}}$$
$$= \frac{1}{N^{\alpha-1}} \cdot G_K(t)^{\alpha} = N^{1-\alpha} \cdot G_K(t)^{\alpha}.$$

Let G_K designate the limit of the gross growth rate of capital. As a result,

$$G_K = N^{1-\alpha} \cdot G_K^{\alpha} .$$

• Solving for G_K , $G_K^{1-\alpha} = N^{1-\alpha}$. In sum,

$$G_K=N$$
.

- This says that, in the equilibrium steady state, capital accumulates at the same rate as the population grows: $K(t + 1) = N \cdot K(t)$.
- The growth rate of the capital stock *K* and the growth rate of ouput *Y* eventually equal the growth rate of the population.

Population constant, technology grows

- Suppose now that technology improves at gross rate G > 1: $A(t+1) = G \cdot A(t)$. Since $Y = A \cdot K^{\alpha} \cdot L^{1-\alpha}$, technological growth is called <u>neutral</u> (changes in A affect the productivity of both capital and labour).
- Given $A(t) = G^t \cdot A(0)$ and constant population, the equilibrium path of capital is

$$K(t+1) = \left(\frac{\frac{(1-\alpha)A(0)}{2} \frac{L_0(0)}{L(0)^{\alpha}}}{1 + \frac{1-\alpha}{2\alpha} \frac{L_0(1)}{N \cdot L(0)}}\right) \cdot G^t \cdot K(t)^{\alpha}.$$

- Denoting by B the term in parenthesis, $K(t+1) = B \cdot G^t \cdot K(t)^{\alpha}$.
- The gross growth rate of capital is

$$G_K(t+1) = \frac{K(t+1)}{K(t)} = \frac{B \cdot G^t \cdot K(t)^{\alpha}}{B \cdot G^{t-1} \cdot K(t-1)^{\alpha}} =$$
$$= G \cdot G_K(t)^{\alpha}.$$

- If G_K is the limit of $G_K(t)$, $G_K = G \cdot G_K^{\alpha}$ and $G_K = G^{\frac{1}{1-\alpha}}$.
- As $1/(1-\alpha) > 1$, $G_K > G$: the capital stock growth rate (which equals the ouput growth rate) is greater than the technology growth rate.