Representative-agent (Ramsey) model

Time is discrete. There is only one good in
each period. Expressing variables in per
capita terms, at each t, production at t equals

consumption at t plus investment at t.

Ve =t 1
Output can only be consumed or saved:

Y¢ = ¢¢ + s;. Therefore, i, = s;.

Each period a fraction 0 < § <1 of capital
depreciates. Capital at t + 1 is investment at

t plus the remaining capital from period t.
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kepr =i +(1—=6)k; (2)

e The production function f makes output per

capita depend on capital per capita.

ye = f(ke) (3)
e [ satisfies the typical properties: f >0,
f'>0, f"<0, limg,_of (k) =0, and
limy, o0 f'(ky) = 0.
e Combining (1), (2), and (3),
fley) =ct+ k1 — (A =6) -k 4)
or, by defining Ak, 1 = kg — ke,
f(ke) =c +Akpyq +6 - ke 5)
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Dynamic constraint on the economy

(5) defines the dynamic constraint the

economy faces. Interpretation 1: given k¢, ¢,

and k., are determined; given ki 4, Cr41

and kg, are determined... Interpretation 2:

given k;, decision is over ¢, ¢t41, Cry2- .-
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Consumption maximization (golden rule)

e There is a representative agent. If population
is constant, then variables can be seen as per
capita variables (¢, would be what the agent

consumes in period t).

e Suppose the aim of the agent is to maximize

consumption each period (no discounting).

e The problem can be solved by considering
the steady state (the long run of the econo-

my). Let c and k be the steady state values.
e From (5), f(k) =c+6-k;ie,c= f(k)—3d k.
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This is the familiar idea that steady-state
consumption is the output that remains once
taken the output necessary to replace the lost
capital, so that capital remains constant.

The first-order condition to maximize c is

Z—; = 0; that is, f'(k) = §. Since f" <0, the

... d%c
second-order condition (W < O) holds.

f'(k) = § says that the marginal product of
capital equals its depreciation rate. This
solution is known as “the golden rule”. If
f'(k) <6, ¢ can be increased by rising c. If
f'(k) > &, c can be increased by lowering k.
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Shocks and the golden rule

e Let (c5,kg) be the golden rule solution.
Suppose capital is exogenously reduced to

k < ks but the agent tries to maintain cg.

e Thenc; = f(kg)—8-kgand c= f(k)—6-
k—Ak. Ifco=c, then f(ks)—6- k;=
f(k) — & - k — Ak. Solving for Ak,

Ak = (f(k) =6 k) — (f(kg) — 6 - k).
e As (cg, kg) is the golden rule solution

flkg) =6 kg > f(k) — 6 - k. In sum, Ak < 0.
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With less capital, future output would be
smaller. The attempt to keep c; will further
decrease the stock of capital, making the

consumption level c¢; eventually untenable.

Lesson: “too much” consumption sooner or
later exhausts the capital stock, so the
economy will be unable to sustain that

consumption level.

Solution to the negative shock on k: divert

consumption temporarily to rebuild the

capital stock. Once kg is restored, ¢ can be

increased to reach level c;.
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Utility maximization: problem

If consumption in different periods is valued
differently, the agent may choose to
maximize the present value of the infinite
sequence of consumption (cy,cy,Cy,...) O,
given a utility function u common for each ¢,

the present value of (u(cy), u(cy), u(cy), ...).

t
max{Ct, kf+1} Z(t)ozoﬁ u(ct)

subject to ¢; + keyq = f(ke) + (1= 6) - k¢

Assumptionsonu: u >0, u’ > 0, and u" < 0.

Parameter 8 € (0, 1) is the discount factor.
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Utility maximization: solution

e Using the method of Lagrange multipliers,

define the Lagrangian as
Le=TiZolBt ule) + A (f k) + (1= 8) - ke — ¢p — ki)l

which is maximized w.r.t. ¢, k41, and A, (£, is

not maximized w.r.t. k, because k; is known at t).

First-order conditions

aLt ¢ ’
O=-—=p"-u(c) — 4

dc;
0L
0= ak—t =Aes1(f () +1=68) — A
o t+1
0=_t=f(kt)+(1_6)'kt_ct_kt+1
0A:
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Transversality condition (TC)

limgeo B u'(ce) kepy =0
To interpret TC, suppose t is the last period.

If k,y1 >0 (some capital is left at the last
period), then u'(c;) =0: consuming that

capital should have no impact on utility.

If u'(c;) >0, then it cannot be that some
capital is saved for the next (non-existent)
period, because utility would be increased
by consuming that capital now. Therefore, it

must be that k;,; = 0.
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Euler equation

e From the first FOC, 1,=pg%u'(c,) and
Aeyr = B - u'(cq1). Substituting for A, and 1,4
in the second FOC,

ﬁtﬂ W (Cesr)  [f'(kesr) +1=6] = ﬁt “u'(ce) .
e The result is the so-called Euler equation:
Bu'(cesr)  [f'(keyr) +1 =81 =u'(ct). (6)

e Interpretation. How much additional c¢;4
can be obtained by just reducing ¢, while
leaving total utility (and everything beyond
period t + 1) constant?
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e Since periods after t+1 are unaffected,
attention can be restricted to u(c) +
B -u(c41), which must remain constant.
Taking the total differential,

0 = du(ce) +d[f - u(ces1)] = dulcy) + B - du(cesq) =
=u'(cy) -dey + B u'(Cryr) - deryr -
e Insum,

_ dceyq _ u'(cy)
dc; B -u'(ces1) '

Q)

e This is nothing else but the MRS. The resour-
ce constraints at ¢t and t + 1 must hold, so
decy + dkyyq = df (k) + (1 = 8) - dk,
degpy + dkeyy = df (keyq) + (1= 6) - dkgyq.
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e Thatis,
dCt + dkt+1 = f,(kt) * dkt + (1 - 6) * dkt
degpq + dkeyy = f(keyr) - Ak + (1= 8) - dkyyy

e Since k; is given at t, dk, =0. The first
equation then becomes dk;,; = —dc;: the
additional capital at t +1 comes from the

consumption cut at ¢.

e By assumption, dk;i, =0. Given dkyiq =
—dc, the second equation is equivalent to
deeyr = —f'(keyq) -deg — (1 = 8) - dcy
or

dc ,
~ge = [k + =8,
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e From this and (7) the Euler equation follows.

e Interpretation. The output dc; not consumed
at t yields a utility loss at t of |u'(c,) - dcl.
This output is invested at t + 1, as dk;;, to

increase output at ¢t + 1.

e The additional output |f'(k¢41) - dc;| and the
undepreciated part (1-96) -dkiyq =
[(1—=38)-dc| of the extra -capital are

consumed at t + 1. All in all,

deerr = [f'(kerr) + (1 = 8)] - |dc].
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The discounted utility of dc;4 is

B - u’(ct+1) “depyr =

B-u'(crpr) - [f (kepr) + (1= 8)] - |del.

But to keep utility constant, the utility

B-u'(c,,) dceyq gained at t+ 1 must equal

the utility u'(c,) - |dc,| lost at t. As a result,

w(e) - ldeel = B (cern) - [f (ker) + (1 — 8)] -

|dc

which is the Euler equation once the

common term |dc;| is cancelled out.
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Steady state solution

For steady-state values ¢ and k, the Euler
equation can be written as

B-u'(c) - [f'(k)+1—6]=u'(c)

SO

) = & 4L
f(k)—6+ﬁ 1.

The golden rule solution is f'(k;) = §. Since

%— 1>0, f'(k) > f'(kg). As f <0, k < kg.

There is less capital than under the golden

rule because now future utility is discounted
at a rate %— 1. Moreover, k < kg yields ¢ <

cg: discounting lowers consumption.
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Dynamic analysis

The dynamic analysis relies on the two equa-

tions giving the solution at each t¢: Euler

equation (6) and the resource constraint (5).

) u'(cer1) )
u'(ce)

Akipq = fke) —ce— 6k (8)

B [f'(kes) +1-6] =1

Linearizing the Euler equation by taking a

Taylor series expansion of u'(c41) around ¢,

U (Ceyr) = U'(cp) +Aceyq - u"(cp)
or

U (Ce1) u"(cy)
~ 1+ Acy ot
u’(ct) t+1 u(c

RAM-17




Inserting the previous approximation into
the Euler equation yields (9), where i—, <0.
A u"(c,) ( 1
C =
) B I (k) +1- 0]

-1) ©

Equations (8) and (9) establish the changes in

the capital stock and consumption.

Let ¢ and k be the steady-state values (the
solutions of (8) and (9) if Ak;y1 = Aciyq = 0).
If k;ypq < k, then f'(k.1) > f'(k). Hence,
B-If'tkey) +1=61>p-[f'(k)+1-4].
As shown in RAM16, f'(k) =6 +%— 1. Thus,

B-If(k)+1—6]=1.
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Consequently, B - [f'(k;41) + 1 —68] > 1 and, in
1

. u'’ .
(9), m < 1. Since v < 0, the final
conclusion is that

kt+1 < k = ACH_l >0.

A similar reasoning proves that
kt+1 >k = ACt+1 <0

kiv1 =k = Acey1 <O
This consumption dynamics is represented
in the next figure: for capital stock to the left
of the steady-state value k, consumption
increases; for stock to the right of k,

consumption decreases.
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Consumption dynamics

ACi11 =0

ACty1 >0

Act+1 < 0

Kesa
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Ct+1

Capital dynamics

ce > f(ke) =6kt

{—

Akt+1 <0
b

ce < f(ke) =6k

—

Akppq >0 Oe

Aki1=0

Kesa
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The previous figure shows the capital

dynamics following (8). Clearly,
Akt+1>0 @f(kt)—5kt>—Ct

Above the curve Ak;.; = 0, consumption is
higher that the steady-state consumption, so

capital must decumulate.

At point a, consumption exceeds the level
(given by b) compatible with the steady state
(with Ak, = 0). Capital has to decrease to

compensate excessive consumption.

Below the curve Ak;;; =0, consumption

allows capital to acumulate.
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Phase diagram

When the two preceding figures are put
together (see RAM24), the steady-state solu-
tion can be identified as the intersection g of
the curves Ak;y; =0 and Ac;y; =0. The

arrows show the dynamics of k;;; and c;44.

The curve PP (the saddlepath or stable mani-
fold) indicates the only states that are attain-
able (PP may change when some parameter
of the model is modified). If the economy
were outside PP, the dynamics guarantees

that the steady state is never reached.
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