Representative-agent (Ramsey) model

• Time is discrete. There is only one good in each period. Expressing variables in per capita terms, at each *t*, production at *t* equals consumption at *t* plus investment at *t*.

$$y_t = c_t + i_t \tag{1}$$

- Output can only be consumed or saved: $y_t = c_t + s_t$. Therefore, $i_t = s_t$.
- Each period a fraction $0 < \delta < 1$ of capital depreciates. Capital at t + 1 is investment at t plus the remaining capital from period t.

 $k_{t+1} = i_t + (1 - \delta) \cdot k_t$

(2)

(5)

RAM-2

$$y_t = f(k_t) \tag{3}$$

 • f satisfies the typical properties: $f \ge 0$,

- f' > 0, f'' < 0, $\lim_{k \to 0} f'(k_t) = \infty$, and $\lim_{k_t \to \infty} f'(k_t) = 0.$
- Combining (1), (2), and (3),

• Combining (1), (2), and (3),
$$f(k_t) = c_t + k_{t+1} - (1 - \delta) \cdot k_t \qquad (4)$$

• Combining (1), (2), and (3),
$$f(k_t) = c_t + k_{t+1} - (1 - \delta) \cdot k_t \qquad (4)$$

 $f(k_t) = c_t + \Delta k_{t+1} + \delta \cdot k_t$

or, by defining $\Delta k_{t+1} = k_{t+1} - k_t$,

Dynamic constraint on the economy

• (5) defines the dynamic constraint the economy faces. Interpretation 1: given k_t , c_t and k_{t+1} are determined; given k_{t+1} , c_{t+1} and k_{t+2} are determined... Interpretation 2: given k_t , decision is over c_t , c_{t+1} , c_{t+2} ...

Consumption maximization (golden rule)

- There is a representative agent. If population is constant, then variables can be seen as per capita variables (c_t would be what the agent consumes in period t).
- Suppose the aim of the agent is to <u>maximize</u> <u>consumption</u> each period (no discounting).
- The problem can be solved by considering the steady state (the long run of the economy). Let *c* and *k* be the steady state values.
- From (5), $f(k) = c + \delta \cdot k$; i.e., $c = f(k) \delta \cdot k$.

- This is the familiar idea that steady-state consumption is the output that remains once taken the output necessary to replace the lost capital, so that capital remains constant.
- The first-order condition to maximize c is $\frac{\partial c}{\partial k} = 0$; that is, $f'(k) = \delta$. Since f'' < 0, the second-order condition $\left(\frac{\partial^2 c}{\partial k^2} < 0\right)$ holds.
- $f'(k) = \delta$ says that the marginal product of capital equals its depreciation rate. This solution is known as "the golden rule". If $f'(k) < \delta$, c can be increased by rising c. If $f'(k) > \delta$, c can be increased by lowering k.

Shocks and the golden rule

- Let (c_G, k_G) be the golden rule solution. Suppose capital is exogenously reduced to $k < k_G$ but the agent tries to maintain c_G .
- Then $c_G = f(k_G) \delta \cdot k_G$ and $c = f(k) \delta \cdot k \Delta k$. If $c_G = c$, then $f(k_G) \delta \cdot k_G = f(k) \delta \cdot k \Delta k$. Solving for Δk ,

$$\Delta k = (f(k) - \delta \cdot k) - (f(k_G) - \delta \cdot k_G).$$

• As (c_G, k_G) is the golden rule solution $f(k_G) - \delta \cdot k_G > f(k) - \delta \cdot k$. In sum, $\Delta k < 0$.

- With less capital, future output would be smaller. The attempt to keep c_G will further decrease the stock of capital, making the consumption level c_G eventually untenable.
- <u>Lesson</u>: "too much" consumption sooner or later exhausts the capital stock, so the economy will be unable to sustain that consumption level.
- Solution to the negative shock on k: divert consumption temporarily to rebuild the capital stock. Once k_G is restored, c can be increased to reach level c_G.

Utility maximization: problem

• If consumption in different periods is valued differently, the agent may choose to $\underline{\text{maximize}}$ the present value of the infinite sequence of consumption $(c_0, c_1, c_2, ...)$ or, given a utility function u common for each t, $\underline{\text{the present value}}$ of $(u(c_0), u(c_1), u(c_2), ...)$.

$$\max_{\{c_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
subject to $c_t + k_{t+1} = f(k_t) + (1 - \delta) \cdot k_t$

• Assumptions on u: $u \ge 0$, u' > 0, and u'' < 0. Parameter $\beta \in (0, 1)$ is the discount factor.

Utility maximization: solution

• Using the method of Lagrange multipliers, define the Lagrangian as

$$\mathcal{L}_t = \sum_{t=0}^{\infty} [\beta^t \cdot u(c_t) + \lambda_t (f(k_t) + (1-\delta) \cdot k_t - c_t - k_{t+1})]$$

which is maximized w.r.t. c_t , k_{t+1} , and λ_t (\mathcal{L}_t is not maximized w.r.t. k_t because k_t is known at t).

First-order conditions

$$0 = \frac{\partial \mathcal{L}_t}{\partial c_t} = \beta^t \cdot u'(c_t) - \lambda_t$$

$$0 = \frac{\partial \mathcal{L}_t}{\partial k_{t+1}} = \lambda_{t+1} (f'(k_{t+1}) + 1 - \delta) - \lambda_t$$

$$0 = \frac{\partial \mathcal{L}_t}{\partial \lambda_t} = f(k_t) + (1 - \delta) \cdot k_t - c_t - k_{t+1}$$

Transversality condition (TC) $\lim_{t\to\infty} \beta^t \cdot u'(c_t) \cdot k_{t+1} = 0$

- To interpret TC, suppose *t* is the last period.
- If $k_{t+1} > 0$ (some capital is left at the last period), then $u'(c_t) = 0$: consuming that capital should have no impact on utility.
- If $u'(c_t) > 0$, then it cannot be that some capital is saved for the next (non-existent) period, because utility would be increased by consuming that capital now. Therefore, it must be that $k_{t+1} = 0$.

Euler equation

• From the first FOC, $\lambda_t = \beta^t \cdot u'(c_t)$ and $\lambda_{t+1} = \beta^{t+1} \cdot u'(c_{t+1})$. Substituting for λ_t and λ_{t-1} in the second FOC,

$$\beta^{t+1} \cdot u'(c_{t+1}) \cdot [f'(k_{t+1}) + 1 - \delta] = \beta^t \cdot u'(c_t).$$

• The result is the so-called <u>Euler equation</u>:

$$\beta \cdot u'(c_{t+1}) \cdot [f'(k_{t+1}) + 1 - \delta] = u'(c_t).$$
 (6)

• Interpretation. How much additional c_{t+1} can be obtained by just reducing c_t while leaving total utility (and everything beyond period t+1) constant?

• Since periods after t+1 are unaffected, attention can be restricted to $u(c_t)+\beta \cdot u(c_{t+1})$, which must remain constant. Taking the total differential, $0=du(c_t)+d[\beta \cdot u(c_{t+1})]=du(c_t)+\beta \cdot du(c_{t+1})=$

 $= u'(c_t) \cdot dc_t + \beta \cdot u'(c_{t+1}) \cdot dc_{t+1}.$

$$-\frac{dc_{t+1}}{dc_t} = \frac{u'(c_t)}{\beta \cdot u'(c_{t+1})}.$$
• This is nothing else but the MRS. The resour-

ce constraints at t and t+1 must hold, so $dc_t + dk_{t+1} = df(k_t) + (1-\delta) \cdot dk_t$ $dc_{t+1} + dk_{t+2} = df(k_{t+1}) + (1-\delta) \cdot dk_{t+1}.$

$$dc_{t} + dk_{t+1} = f'(k_{t}) \cdot dk_{t} + (1 - \delta) \cdot dk_{t}$$
$$dc_{t+1} + dk_{t+2} = f'(k_{t+1}) \cdot dk_{t+1} + (1 - \delta) \cdot dk_{t+1}$$

- Since k_t is given at t, $dk_t = 0$. The first equation then becomes $dk_{t+1} = -dc_t$: the additional capital at t + 1 comes from the consumption cut at t.
- By assumption, $dk_{t+2} = 0$. Given $dk_{t+1} =$ $-dc_t$, the second equation is equivalent to $dc_{t+1} = -f'(k_{t+1}) \cdot dc_t - (1 - \delta) \cdot dc_t$

or
$$-\frac{dc_{t+1}}{dc_{t}} = f'(k_{t+1}) + (1 - \delta).$$

- From this and (7) the Euler equation follows.
- Interpretation. The output dc_t not consumed at t yields a utility loss at t of $|u'(c_t) \cdot dc_t|$. This output is invested at t + 1, as dk_{t+1} , to

increase output at t + 1.

• The additional output $|f'(k_{t+1}) \cdot dc_t|$ and the undepreciated part $(1 - \delta) \cdot dk_{t+1} = |(1 - \delta) \cdot dc_t|$ of the extra capital are consumed at t + 1. All in all,

$$dc_{t+1} = [f'(k_{t+1}) + (1 - \delta)] \cdot |dc_t|.$$

The discounted utility of dc_{t+1} is

$$\beta \cdot u'(c_{t+1}) \cdot dc_{t+1} = \beta \cdot u'(c_{t+1}) \cdot [f'(k_{t+1}) + (1 - \delta)] \cdot |dc_t|.$$

But to keep utility constant, the utility $\beta \cdot u'(c_{t+1}) \cdot dc_{t+1}$ gained at t+1 must equal the utility $u'(c_t) \cdot |dc_t|$ lost at t. As a result,

the utility
$$u'(c_t) \cdot |dc_t|$$
 lost at t . As a result,
$$u'(c_t) \cdot |dc_t| = \beta \cdot u'(c_{t+1}) \cdot [f'(k_{t+1}) + (1-\delta)] \cdot |dc_t|$$
 which is the Euler equation once the

which is the Euler equation once common term $|dc_t|$ is cancelled out.

Steady state solution

• For steady-state values c and k, the Euler equation can be written as

so
$$\beta \cdot u'(c) \cdot [f'(k) + 1 - \delta] = u'(c)$$
$$f'(k) = \delta + \frac{1}{\beta} - 1.$$

• The golden rule solution is $f'(k_G) = \delta$. Since $\frac{1}{\beta} - 1 > 0$, $f'(k) > f'(k_G)$. As f'' < 0, $k < k_G$. There is less capital than under the golden rule because now future utility is discounted at a rate $\frac{1}{\beta} - 1$. Moreover, $k < k_G$ yields c < 1

 c_G : discounting lowers consumption.

Dynamic analysis

• The dynamic analysis relies on the two equations giving the solution at each *t*: Euler equation (6) and the resource constraint (5).

$$\beta \cdot \frac{u'(c_{t+1})}{u'(c_t)} \cdot [f'(k_{t+1}) + 1 - \delta] = 1$$

$$\Delta k_{t+1} = f(k_t) - c_t - \delta \cdot k_t \tag{8}$$

• Linearizing the Euler equation by taking a Taylor series expansion of
$$u'(c_{t+1})$$
 around c_t ,

or
$$u'(c_{t+1}) \approx u'(c_t) + \Delta c_{t+1} \cdot u''(c_t)$$
$$\frac{u'(c_{t+1})}{u'(c_t)} \approx 1 + \Delta c_{t+1} \cdot \frac{u''(c_t)}{u'(c_t)}.$$

Inserting the previous approximation into the Euler equation yields (9), where $\frac{u''}{...} < 0$. $\Delta c_{t+1} = \frac{u''(c_t)}{v'(c_t)} \left(\frac{1}{\beta \cdot [f'(k_{t+1}) + 1 - \delta]} - 1 \right)$ (9)

Let c and k be the steady-state values (the solutions of (8) and (9) if $\Delta k_{t+1} = \Delta c_{t+1} = 0$).

solutions of (8) and (9) if
$$\Delta k_{t+1} = \Delta c_{t+1} = 0$$
).
• If $k_{t+1} < k$, then $f'(k_{t+1}) > f'(k)$. Hence,

 $\beta \cdot [f'(k_{t+1}) + 1 - \delta] > \beta \cdot [f'(k) + 1 - \delta].$ As shown in RAM16, $f'(k) = \delta + \frac{1}{\rho} - 1$. Thus,

• As shown in RAM16,
$$f'(k) = \delta + \frac{1}{\beta} - 1$$
. Thus, $\beta \cdot [f'(k) + 1 - \delta] = 1$.

• Consequently, $\beta \cdot [f'(k_{t+1}) + 1 - \delta] > 1$ and, in (9), $\frac{1}{\beta \cdot [f'(k_{t+1}) + 1 - \delta]} < 1$. Since $\frac{u''}{u'} < 0$, the final conclusion is that

 $k_{t+1} < k \Rightarrow \Delta c_{t+1} > 0$.

 $k_{t+1} > k \Rightarrow \Delta c_{t+1} < 0$

A similar reasoning proves tha

$$k_{t+1} = k \Rightarrow \Delta c_{t+1} < 0.$$

• This consumption dynamics is represented in the next figure: for capital stock to the left of the steady-state value k, consumption increases; for stock to the right of k, consumption decreases.

Consumption dynamics

Capital dynamics

• The previous figure shows the capital dynamics following (8). Clearly, $\Delta k_{t+1} > 0 \iff f(k_t) - \delta \cdot k_t > -c_t.$

- Above the curve $\Delta k_{t+1} = 0$, consumption is higher that the steady-state consumption, so capital must decumulate.
- At point a, consumption exceeds the level (given by b) compatible with the steady state (with $\Delta k_{t+1} = 0$). Capital has to decrease to compensate excessive consumption.
- Below the curve $\Delta k_{t+1} = 0$, consumption allows capital to acumulate.

Phase diagram

- When the two preceding figures are put together (see RAM24), the steady-state solution can be identified as the intersection g of the curves $\Delta k_{t+1} = 0$ and $\Delta c_{t+1} = 0$. The arrows show the dynamics of k_{t+1} and c_{t+1} .
- The curve *PP* (the <u>saddlepath</u> or stable manifold) indicates the only states that are attainable (*PP* may change when some parameter of the model is modified). If the economy were outside *PP*, the dynamics guarantees that the steady state is never reached.

