Overlapping generations with theft

The economy

- 1. Each generation 0 has 100 members: 80 of them ("the poor") with endowment (1,0) and the other 20 ("the rich") with endowment (4,2). Each component of the endowment vectors is amount of the only good in the economy.
- 2. All (young) members of all generations have utility function $u_t^i = c_t^i(t) \cdot c_t^i(t+1)$.
- 3. There is no capital nor production.
- 4. The young poor can, and are willing to steal, good from the rich. Specifically, after stealing from the rich, each young poor gets b units of the good. The total theft amounts to $80 \cdot b$ units, which are obtained as follows: $3 \cdot b$ units are taken from each young rich, whereas b units are taken from each old rich. Hence, what the poor obtain $(80 \cdot b)$ equals what the rich lose $(20 \cdot 3 \cdot b + 20 \cdot b)$.
- 5. Compare the individual and group consumption vectors that arise in equilibrium with and without theft (suppose b = 1). Does theft increase or decrease inequality?

No theft analysis

Budget constraint of a young poor individual

$$c_t^{i,P}(t) + l^{i,P}(t) = 1$$

Budget constraint of an old poor individual

$$c_t^{i,P}(t+1) = R(t) \cdot l^{i,P}(t)$$

Lifetime budget constraint of a poor individual

$$c_t^{i,p}(t) + \frac{c_t^{i,p}(t+1)}{R(t)} = 1$$

Budget constraint of a young rich individual

$$c_t^{i,R}(t) + l^{i,R}(t) = 4$$

Budget constraint of an old, initially rich, individual

$$c_t^{i,R}(t+1) = 2 + R(t) \cdot l^{i,R}(t)$$

Lifetime budget constraint of a rich individual

$$c_t^{i,R}(t) + \frac{c_t^{i,R}(t+1)}{R(t)} = 4 + \frac{2}{R(t)}$$

Consumption function of a young poor individual

To maximize $u_t^{i,P}$, $MRS_t^{i,P} = R(t)$. Hence, $c_t^{i,P}(t) = \frac{c_t^{i,P}(t+1)}{R(t)}$. Using the lifetime budget constraint, $2 \cdot c_t^{i,P}(t) = 1$. The demand function for consumption of a young poor individual is therefore $c_t^{i,P}(t) = \frac{1}{2}$.

Savings of a poor individual

The savings function of a young poor individual is $s^{i,p}(t) = 1 - c_t^{i,p}(t) = 1 - \frac{1}{2} = \frac{1}{2}$.

Total savings of the poor individuals

Since there are 80 young poor individuals in period t, total savings $S^{P}(t)$ of the poor are

$$S^{P}(t) = 80 \cdot s^{i,P}(t) = 80 \cdot \frac{1}{2} = 40$$
.

Consumption function of a young rich individual

Since $c_t^{i,R}(t) = \frac{c_t^{i,R}(t+1)}{R(t)}$, the demand function for consumption of a young rich individual is

$$c_t^{i,R}(t) = 2 + \frac{1}{R(t)}.$$

Savings of a rich individual

The savings function of a young rich individual is

$$s^{i,R}(t) = 4 - c_t^{i,R}(t) = 4 - \left(2 + \frac{1}{R(t)}\right) = 2 - \frac{1}{R(t)}$$

Total savings of the rich individuals

Since there are 20 young rich individuals in period *t*, total savings are

$$S^{R}(t) = 20 \cdot s^{i,R}(t) = 40 - \frac{20}{R(t)}.$$

Total savings

The total savings function is $S(t) = S^{P}(t) + S^{R}(t)$. Hence,

$$S(t) = 40 + \left(40 - \frac{20}{R(t)}\right) = 80 - \frac{20}{R(t)}$$

Equilibrium condition

$$S(t) = 0$$

Equilibrium interest rate

Solving $80 - \frac{20}{R(t)} = 0$ for R(t) yields R(t) = 1/4, which is the equilibrium interest rate.

Loans in equilibrium

The poor lend, in aggregate, $S^P(t) = 40$ in period t (they must save for the old age, a time when they have no endowment). This is the amount that the rich borrow at t: $S^R(t) = 40 - \frac{20}{R(t)} = 40 - \frac{20}{1/4} = 40 - 80 = -40$ (each rich individual borrows 2 units of the good). This means that, through the loan market, the rich get richer at t: the savings of the poor at t make the rich individuals richer at t. The poor lend 40 at t, but receive only 10 at t + 1.

Equilibrium consumption vectors: the poor

The consumption vector of each poor individual is $\left(c_t^{i,P}(t),c_t^{i,P}(t+1)\right)=\left(\frac{1}{2},\frac{1}{8}\right)$. The corresponding utility is $u_t^{i,P}=c_t^{i,P}(t)\cdot c_t^{i,P}(t+1)=\frac{1}{2}\cdot\frac{1}{8}=\frac{1}{16}$. The total consumption vector is $\left(c_t^P(t),c_t^P(t+1)\right)=(40,10)$.

Equilibrium consumption vectors: the rich

The consumption vector of each rich individual is $\left(c_t^{i,R}(t),c_t^{i,R}(t+1)\right)=\left(6,\frac{3}{2}\right)$. This confirms the claim that the rich get richer at t: without the loan market, each rich individual could at t consume at most 4 (his endowment), but now he consumes 6. The corresponding utility is $u_t^{i,R}=c_t^{i,R}(t)\cdot c_t^{i,R}(t+1)=6\cdot \frac{3}{2}=9$. The total consumption vector is $\left(c_t^R(t),c_t^R(t+1)\right)=(120,30)$.

Theft analysis

Budget constraint of a young poor individual

$$c_t^{i,P}(t) + l^{i,P}(t) = 1 + b$$

Budget constraint of an old poor individual

$$c_t^{i,P}(t+1) = R(t) \cdot l^{i,P}(t)$$

Lifetime budget constraint of a poor individual

$$c_t^{i,P}(t) + \frac{c_t^{i,P}(t+1)}{R(t)} = 1 + b$$

Budget constraint of a young rich individual

$$c_t^{i,R}(t) + l^{i,R}(t) = 4 - 3 \cdot b$$

Budget constraint of an old, initially rich, individual

$$c_t^{i,R}(t+1) = 2 - b + R(t) \cdot l^{i,R}(t)$$

Lifetime budget constraint of a rich individual

$$c_t^{i,R}(t) + \frac{c_t^{i,R}(t+1)}{R(t)} = 4 - 3 \cdot b + \frac{2-b}{R(t)}$$

Consumption function of a young poor individual

To maximize $u_t^{i,P}$, $MRS_t^{i,P} = R(t)$. Hence, $c_t^{i,P}(t) = \frac{c_t^{i,P}(t+1)}{R(t)}$. Using the lifetime budget constraint, $2 \cdot c_t^{i,P}(t) = 1 + b$. The demand function for consumption of a young poor individual is therefore $c_t^{i,p}(t) = \frac{1+b}{2}$.

Savings of a poor individual

The savings function of a young poor individual is $s^{i,p}(t) = 1 + b - c_t^{i,p}(t) = 1 + b - \frac{1+b}{2} = 1$

Total savings of the poor individuals

Since there are 80 young poor individuals in period t, total savings $S^{P}(t)$ of the poor are

$$S^{P}(t) = 80 \cdot s^{i,P}(t) = 80 \cdot \frac{1+b}{2} = 40 \cdot (1+b)$$
.

Consumption function of a young rich individual

Since $c_t^{i,R}(t) = \frac{c_t^{i,R}(t+1)}{R(t)}$, the demand function for consumption of a young rich individual is

$$c_t^{i,R}(t) = 2 - \frac{3}{2} \cdot b + \frac{2-b}{2 \cdot R(t)}.$$

Savings of a rich individual

The savings function of a young rich individual is

$$s^{i,R}(t) = 4 - c_t^{i,R}(t) = 4 - 3 \cdot b - \left(2 - \frac{3}{2} \cdot b + \frac{2 - b}{2 \cdot R(t)}\right) = 2 - \frac{3 \cdot b}{2} - \frac{2 - b}{2 \cdot R(t)}.$$

Total savings of the rich individuals

Since there are 20 young rich individuals in period t, total savings are

$$S^{R}(t) = 20 \cdot s^{i,R}(t) = 40 - 30 \cdot b - \frac{20 - 10 \cdot b}{R(t)}.$$

Total savings

The total savings function is $S(t) = S^{P}(t) + S^{R}(t)$. Hence,

$$S(t) = \left[40 \cdot (1+b)\right] + \left(40 - 30 \cdot b - \frac{20 - 10 \cdot b}{R(t)}\right) = 80 + 10 \cdot b - \frac{20 - 10 \cdot b}{R(t)}$$

Equilibrium condition

$$S(t) = 0$$

Equilibrium interest rate Solving 880 + $10 \cdot b - \frac{20 - 10 \cdot b}{R(t)} = 0$ for R(t) yields the equilibrium interest rate $R(t) = \frac{20 - 10 \cdot b}{80 + 10 \cdot b}$.

Loans in equilibrium when b = 1

The poor lend, in aggregate, $S^P(t) = 40 \cdot (1+b) = 80$ in period t. The equilibrium interest rate is $R(t) = \frac{20-10 \cdot b}{80+10 \cdot b} = \frac{1}{9}$ (with respect to the no theft case, R falls) This is the amount that the rich borrow at t: $S^R(t) = 40 - 30 \cdot b - \frac{20-10 \cdot b}{R(t)} = 10 - 90 = -80$ (each rich individual borrows 4 units of the good). Despite theft, the rich get even richer at t: though the poor steal $20 \cdot 3 \cdot b + 20 \cdot b = 80$, they lend also 80 to receive $\frac{1}{9} \cdot 80 \approx 8.88$ in the next period.

Equilibrium consumption vectors: the poor

The consumption vector of each poor individual is $\left(c_t^{i,P}(t),c_t^{i,P}(t+1)\right)=\left(1,\frac{1}{9}\right)$. The corresponding utility is $u_t^{i,P}=c_t^{i,P}(t)\cdot c_t^{i,P}(t+1)=1\cdot \frac{1}{9}=\frac{1}{9}$. The total consumption vector is $\left(c_t^P(t),c_t^P(t+1)\right)=\left(80,\frac{80}{9}\right)$. It is worth noticing that the poor's consumption under theft when old $\left(\frac{1}{9}\right)$ is smaller than their consumption without theft $\left(\frac{1}{8}\right)$. Paradoxically, stealing from the rich when young makes the poor worse off when old.

Equilibrium consumption vectors: the rich

The consumption vector of each rich individual is $\left(c_t^{i,R}(t),c_t^{i,R}(t+1)\right)=\left(5,\frac{5}{9}\right)$. The corresponding utility is $u_t^{i,R}=c_t^{i,R}(t)\cdot c_t^{i,R}(t+1)=5\cdot\frac{5}{9}=\frac{25}{9}$. The total consumption vector is $\left(c_t^R(t),c_t^R(t+1)\right)=\left(100,\frac{100}{9}\right)$. Theft lowers the rich's welfare when young as well as when old. As a result, theft only benefits the poor when young: the poor when old, the rich when young, and the rich when old are all worse off when theft occurs.

Summary of results: total consumption and individual utilities when b = 1

total consumption	t			t+1		
	no market	market &	market &	no market	market &	market &
		no theft	theft		no theft	theft
poor	80	40	80	0	10	80/9 ≈ 8.88
	$u^i = 0$	$u^i = 1/16$	$u^i = 1/9$			
rich	80	120	100	40	30	100/9 ≈ 11.1
	$u^{i} = 8$	$u^{i} = 9$	$u^i = 25/9$			

Suggestion: extend the results of the previous table when b = 1/2 and when b = 2.